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Abstract
Many perceptual models and theories hinge on treating objects as a collection of constituent parts.
When applying these approaches to data, a fundamental problem arises: how can we determine
what are the parts? We attack this problem using learning, proposing a form of generative latent
factor model, in which each data dimension is allowed to select a different factor or part as its expla-
nation. This approach permits a range of variations that posit different models for the appearance of
a part. Here we provide the details for two such models: a discrete and a continuous one. Further,
we show that this latent factor model can be extended hierarchically to account for correlations
between the appearances of different parts. This permits modeling of data consisting of multiple
categories, and learning these categories simultaneously with the parts when they are unobserved.
Experiments demonstrate the ability to learn parts-based representations, and categories, of facial
images and user-preference data.

Keywords: parts, unsupervised learning, latent factor models, collaborative filtering, hierarchical
learning

1. Introduction

Many collections of data exhibit a common underlying structure: they consist of a number of parts
or factors, each with a range of possible states. When data are represented as vectors, parts manifest
themselves as subsets of the data dimensions that take on values in a coordinated fashion. In the
domain of digital images, these parts may correspond to the intuitive notion of the component parts
of objects, such as the arms, legs, torso, and head of the human body. Prominent theories of compu-
tational vision, such as Biederman’s Recognition-by-Components (Biederman, 1987) advocate the
suitability of a parts-based approach for recognition in both humans and machines. Recognizing
an object by first recognizing its constituent parts, then validating their geometric configuration has
several advantages:

1. Highly articulate objects, such as the human body, are able to appear in a wide range of
configurations. It would be difficult to learn a holistic model capturing all of these variants.

2. Objects which are partially occluded can be identified as long as some of their parts are
visible.
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3. The appearances of certain parts may vary less under a change in pose than the appearance of
the whole object. This can result in detectors which, for example, are more robust to rotations
of the target object.

4. New examples from an object class may be recognized as simply a novel combination of
familiar parts. For example a parts-based face detection system could generalize to detect
faces with both beards and sunglasses, having been trained only on faces containing one, but
not both, of these features.

The principal difficulty in creating such systems is determining which parts should be used, and
identifying examples of these parts in the training data.

In the part-based detectors created by Mohan et al. (2001) and Heisele et al. (2000) parts
were chosen by the experimenters based on intuition, and the component-detectors—support vec-
tor machines—were trained on image subwindows containing only the part in question. Obtaining
these subwindows required that they be manually extracted from hundreds or thousands of train-
ing images. In contrast, the parts-based detector created by Weber et al. (2000) proposed a way to
automate this process. During training of the geometric model, parts were selected from an initial
set of candidates to include only those which lead to the highest detection performance. The re-
sulting detector relied on a very small number of parts (e.g., 3) corresponding to very small local
features. Unlike the SVMs, which were trained on a range of appearances of the part, each of these
part-detectors could identify only a single fixed appearance.

Parts-based representations of data can also be learned in an entirely unsupervised fashion.
These parts can be used for subsequent supervised learning, but the models constructed can also be
valuable on their own. A parts-based model provides an efficient, distributed representation, and
can aid in the discovery of causal structure within data. For example, a model consisting of K parts,
each with J possible states, can represent JK different objects. Inferring the state of each part can
be done efficiently, as each part depends only on a fraction of the data dimensions.

These computational considerations make parts-based models particularly suitable for modeling
high-dimensional data such as user preferences in collaborative filtering problems. In this setting,
each data vector contains ratings given by a human subject to a number of items, such as books or
movies. Typically there are thousands of unique items, but for each user we can only observe ratings
for a small fraction of them. The goal in collaborative filtering is to make accurate predictions of
the unobserved ratings. Parts can be formed from groups of related items, and the states of a part
correspond to different attitudes towards the items. Unsupervised learning of a parts-based model
allows us to learn the relationships between items, which allows for efficient online and active
learning.

Here we propose a probabilistic generative approach to learning parts-based representations of
high-dimensional data. Our key assumption is that the dimensions of the data can be separated
into several disjoint subsets, or factors, which take on values independently of each other. Each
factor has a range of possible states or appearances, and we investigate two ways of modeling this
variability. First we address the case in which each factor has a small number of discrete states, and
model it using a vector quantizer. In some situations, however, continually-varying descriptions
of parts are more suitable. Thus, in our second approach we model part-appearances using factor
analysis. Given a set of training examples, our approach learns the association of data dimensions
with factors, as well as the states of each factor. Inference and learning are carried out efficiently
via variational algorithms. The general approach, as well as details for the models, are given in
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Section 2. Experiments showing parts-based representations learned for real data sets follow in
Section 3.

Although we initially assume that parts take on states independently, clearly in real-world situ-
ations there are dependencies. For example, consider the case of modeling images of human faces.
A model could be constructed representing the various parts of the face (eyes, nose, mouth, etc.),
and the various appearances of each part. If one part were to select an appearance with high pixel
intensities, due to lighting conditions or skin tone, then it seems likely that the other parts should
appear similarly bright. Realizing this, in Section 4 we propose a method of learning these depen-
dencies between part selections hierarchically, by introducing an additional higher-level cause, or
‘class’ variable, on which state selections for the factors are conditioned. This allows us to model
different categories of data using the same vocabulary of parts, and to induce the categories when
they are not available in advance. We conclude with a comparison to related methods, and a final
discussion in Sections 5 and 6.

2. An Approach to Learning Parts-Based Models

We approach the problem of learning parts by posing it as a stochastic generative model. We assume
that there are K factors, each a probabilistic model for the range of appearances of one of the parts.
To generate an observed data vector of D dimensions, x ∈ ℜD, we stochastically select one state
for each factor, and one factor for each data dimension, xd . The first selection allows each part to
independently choose its appearance, while the second dictates how the parts combine to produce
the observed data vector.

This approach differs from a traditional mixture model in that each dimension of the data is gen-
erated by a different linear combination of the factors. Rather than clustering the data vectors based
on which mixture component gives the highest probability, we are grouping the data dimensions
based on which part provides the best explanation.

The selection of factors for each dimension are represented as binary latent variables, R = {rdk},
for d = 1...D,k = 1...K. The variable rdk = 1 if and only if factor k has been selected for data
dimension d. These variables can be described equivalently as multinomials, rd ∈ 1...K, and are
drawn according to their respective prior distributions, P(rdk) = adk. The choice of state for each
factor is also a latent variable, which we will represent by sk. Using θk to represent the parameters
of the kth factor, we arrive at the following complete likelihood function:

P(x,R,S|θ) = ∏
d,k

(adk
rdk)∏

k

(P(sk))∏
d,k

(P(xd |θk,sk)
rdk) . (1)

This probability model is depicted graphically in Figure 1.
As described thus far, the approach is independent of the particular choice of model used for

each of the factors. We now provide details for two particular choices: a discrete model of factors,
vector quantization; and a continuous model, factor analysis.

2.1 Multiple Cause Vector Quantization

In Multiple Cause Vector Quantization, first proposed in Ross and Zemel (2003), we assume that
each part has a small number of appearances, and model them using a vector quantizer (VQ) of J
possible states. To generate an observed data example, we stochastically select one state for each
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Figure 1: Graphical representation of the parts-based learning model. We let rd=1 represent all the
variables rd=1,k, which together select a factor for x1. Similarly, sk=1 selects a state for
factor 1. The plates depict repetitions across the D input dimensions and the K factors.
To extend this model to multiple data cases, we would include an additional plate over r,
x, and s.

VQ, and, as described above, one VQ for each dimension. Given these selections, a single state
from a single VQ determines the value of each data dimension xd .

As before, we represent the selections using binary latent variables, S = {sk j}, for k = 1...K, j =
1...J, where sk j = 1 if and only if state j is selected for VQ k. Again we introduce prior selection
probabilities P(sk j) = bk j, with ∑ j bk j = 1.

Assuming each VQ state specifies the mean as well as the standard deviation of a Gaussian
distribution, and the noise in the data dimensions is conditionally independent, we have (where
θk = {µdk j,σdk j}, and N is the Gaussian pdf)

P(x|R,S,θ) = ∏
d,k, j

N (xd ; µdk j, σ2
dk j)

rdk sk j .

The resulting model can be thought of as a Gaussian mixture model over J×K possible states
for each data dimension (xd). The single state k j is selected if sk jrdk = 1. Note that this selection has
two components. The selection in the j component is made jointly for the different data dimensions,
and in the k component it is made independently for each dimension.

2.1.1 LEARNING AND INFERENCE

The joint distribution over the observed vector x and the latent variables is

P(x,R,S|θ) = P(R|θ)P(S|θ)P(x|R,S,θ),

= ∏
d,k

(

ardk
dk

)

∏
k, j

(

b
sk j

k j

)

∏
d,k, j

N (xd ; θk)
rdksk j .

Given an input x, the posterior distribution over the latent variables, P(R,S|x,θ), cannot tractably
be computed, since all the latent variables become dependent.

We apply a variational EM algorithm to learn the parameters θ, and infer latent variables given
observations. For a given observation, we could approximate the posterior distribution using a
factored distribution, where g and m are variational parameters related to r and s respectively:

Q0(R,S|x,θ) = ∏
d,k

(

grdk
dk

)

∏
k, j

(

m
sk j

k j

)

. (2)
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The model is learned by optimizing the following objective function (Neal and Hinton, 1998),
also known as the variational free energy:

F (Q0,θ) = EQ0 [logP(x,R,S|θ)− logQ0(R,S|x,θk)] ,

= EQ0

[

−∑
d,k

rdk log(gdk/adk)−∑
k, j

sk j log(mk j/bk j)+ ∑
d,k, j

rdksk j logN (xd ; θ)

]

,

= −∑
d,k

gdk log
gdk

adk
−∑

k, j

mk j log
mk j

bk j
− ∑

d,k, j

gdk mk j εdk j,

where εdk j = logσdk j +
(xd−µdk j)

2

2σ2
dk j

. The objective function F is a lower bound on the log likelihood

of generating the observations, given the particular model parameters. The variational EM algorithm
improves this bound by iteratively maximizing F with respect to Q0 (E-step) and to θ (M-step).

Extending this to handle multiple observations—the columns of X = [x1 . . .xC]—we must now
consider approximating the posterior P(R ,S |X,θ), where R = {rc

dk} and S = {sc
k j} are the latent

selections for all training cases c. Our aim is to learn models which have a posterior distribution over
factor selections for each data dimension that is consistent across all data (that is to say, regardless
of the data case, each xd will typically be associated with the same part or parts). Thus, in the
variational posterior we constrain the parameters {gdk} to be the same across all observations xc,c =
1 . . .C. In this general case, the variational approximation to the posterior becomes (cf. Equation (2))

Q(R ,S |X,θ) = ∏
c,d,k

(

gdk
rc

dk

)

∏
c,k, j

(

mc
k j

sc
k j

)

. (3)

It is important to point out that this choice of variational approximation is somewhat unorthodox,
nonetheless it is perfectly valid and has produced good results in practice. A comparison to more
conventional alternatives appears in Appendix A.

Under this formulation, only the {mc
k j} parameters are updated during the E step for each ob-

servation xc:

mc
k j = bk j exp

(

−∑
d

gdk εc
dk j

)

/
J

∑
ρ=1

bkρ exp
(

−∑
d

gdk εc
dρk

)

.

The M step updates the parameters, µ and σ, which relate each latent state k j to each input
dimension d, the parameters of Q related to factor selection {gdk}, and the priors {adk} and {bk j}:

gdk = adk exp
(

−
1
C ∑

c, j

mc
k j εc

dk j

)

/
K

∑
ρ=1

adρ exp
(

−
1
C ∑

c, j

mc
jρ εc

d jρ

)

, (4)

µdk j =
∑c mc

k jx
c
d

∑c mc
k j

, σ2
dk j =

∑c mc
k j(x

c
d−µdk j)

2

∑c mc
k j

,

adk = gdk, bk j =
1
C ∑

c
mc

k j.

As can be seen from the update equations, an iteration of EM learning for MCVQ has compu-
tational complexity linear in each of C, D, J, and K.
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A variational approximation is just one of a number of possible approaches to performing the
intractable inference (E) step in MCVQ. One alternative, known as Monte Carlo EM, is to approxi-
mate the posterior with a set of samples {Rn,Sn}

N
n=1 drawn from the true posterior P(R ,S |X,θ)

via Gibbs sampling. The M step now becomes a maximization of the approximate likelihood
1
N ∑n P(X,Rn,Sn|θ) with respect to the model parameters θ. Note that the intractable marginal-
ization over {rc

dk,s
c
k j} has been replaced with the less-costly sum over N samples. Details of this

approach for a related model can be found in Ghahramani (1995), and a general description in
Andrieu et al. (2003).

2.2 Multiple Cause Factor Analysis

In MCVQ, each factor is modeled as a set of basis vectors, one of which is chosen at a time when
generating data. A more general approach is to allow data to be generated by arbitrary linear com-
binations of the basis vectors in each factor. This extension (with the appropriate choice of prior
distribution) amounts to modeling the range of appearances for each part with a factor analyzer.

A factor analysis (FA) model (e.g., Ghahramani and Hinton, 1996) proposes that the data vectors
come from a low-dimensional linear subspace, represented by the basis vectors of the factor loading
matrix, Λ∈ℜD×J , and an offset ρ∈ℜD from the origin. A data vector is produced by taking a linear
combination s ∈ℜJ of the columns of Λ. The linear combination is treated as an unobserved latent
variable, with a standard Gaussian prior P(s) = N (s;0,I). To this is added zero-mean Gaussian
noise, independent along each dimension. The probability model is

P(x,s|θ) = N (x;Λs+ρ,Ψ) N (s;0,I) (5)

where Ψ is a D×D diagonal covariance matrix.
As with MCVQ, we assume that the data contains K parts and model each using a factor analyzer

θk = (Λk,ρk,Ψk). A data vector is again generated by stochastically selecting one state sk per factor
k, and choosing one factor per data dimension. Under this model factor analyzer k proposes that the
value of xd has a Gaussian distribution centered at Λk

dsk +ρdk with variance Ψk
d (where Λk

d indicates
the dth row of factor loading matrix k, and Ψk

d the dth entry on the diagonal of Ψk). Thus the
likelihood is

P(x|R,S,θ) = ∏
d,k

N (xd ;Λk
dsk +ρdk,Ψk

d)
rdk .

2.2.1 LEARNING AND INFERENCE

Again this model produces an intractable posterior over latent variables S and R, so we resort to a
variational approximation:

Q(R ,S |X,θ) = ∏
c,d,k

(

g
rc

dk
dk

)

∏
c,k

N (sc
k;mc

k,Ωck).

This differs from the approximation used for MCVQ, Equation (3), in that here we assume the state
variables sk have Gaussian posteriors. Thus, in the E step we must now estimate the first and second
moments of the posterior over sk. As before, we also tie the {gdk} parameters to be the same across
all data cases. Setting up the objective function and differentiating, gives us the following updates
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for the E-step:1

mc
k = ΩckΛkT Ψ−1

k ((xc−ρk) .∗gk),

Ωck =
(

ΛkT gk

Ψk Λk + I
)−1

, 〈sc
ksc

k
T 〉= Ωck +mc

kmc
k

T ,

where gk
Ψk is a diagonal matrix with entries gdk/Ψk

d . Note that the expression for Ωck is independent
of the index over training cases, c, thus we need only have one Ωk = Ωck,∀c.

The M-step involves updating the prior and variational posterior factor-selection parameters,
{adk} and {gdk}, as well as the parameters (Λk,ρk,Ψk) of each factor analyzer. At each iteration
the prior, adk = gdk is set to the posterior at the previous iteration. The remaining updates are

gdk ∝
adk

|Ψk
d|

1/2
exp

[

−1

2CΨk
d
∑
c

(

(xc
d−ρdk)

2 +Λk
d〈s

c
ksc

k
T 〉Λk

d
T
−2(xc

d−ρdk)Λk
dmc

k

)

]

,

Λk =
(

X−ρk1
T )MT

k

(

∑
c
〈sc

ksc
k

T 〉

)−1

,

ρk =
1
C ∑

c

(

xc−Λkmc
k

)

,

Ψk
d =

1
C ∑

c

(

(xc
d−ρdk)

2 +Λk
d〈s

c
ksc

k
T 〉Λk

d
T
−2(xc

d−ρdk)Λk
dmc

k

)

.

where (Mk is a J×C matrix in which the cth column is mc
k).

2.3 Related Algorithms

Here we present the details of two related algorithms, principal components analysis (PCA), and
non-negative matrix factorization (NMF). A more detailed comparison of these algorithms with
MCVQ and MCFA appears below, in Section 5.

The goal of PCA is to learn a factorization of the data matrix X into the product of a coefficient
matrix S and an orthogonal basis Λ so that X≈ ΛS. Typically Λ has fewer columns than rows, so S
can be thought of as a reduced-dimensionality approximation of X, and Λ as the key features of the
data. Using a squared-error cost function, the optimal solution is to let Λ be the top eigenvectors of
the sample covariance matrix, 1

C−1 XXT , and let S = ΛT X.
PCA can also be posed as a probabilistic generative model, closely related to factor analysis

(Roweis, 1997; Tipping and Bishop, 1999). In fact, probabilistic PCA proposes the same generative
model, Equation (5), except that the noise covariance, Ψ, is restricted to be a scalar times the identity
matrix: Ψ = σ2I.

Non-negative matrix factorization (Lee and Seung, 1999) also learns a factorization X ≈WH
of the data matrix, but includes the additional restriction that X, W, and H must be entirely non-
negative. By allowing only additive combinations of a non-negative basis, Lee & Seung propose
to obtain basis vectors that correspond to the intuitive parts of the data. Instead of squared error,
NMF seeks to minimize the divergence D(X‖WH) = ∑d,c

[

xc
d log(WH)dc− (WH)dc

]

which is the

1. The second uncentered moment 〈sc
ksc

k
T 〉 need not be computed explicitly, since it can be expressed as a combination

of the first and second centered moments, mk and Ωck. It is, however, a useful subexpression for computing the
M-step updates and likelihood bound.
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negative log-probability of the data, assuming a Poisson density function with mean WH. A local
minimum of the divergence is obtained by iterating the following multiplicative updates:

wd j← wd j ∑
c

xc
d

(WH)dc
h jc, wd j←

wd j

∑d′ wd′ j
, h jc← h jc ∑

d

wd j
xc

d

(WH)dc
.

Despite the probabilistic interpretation, X ∼ Poisson(WH), NMF is not a proper probabilistic
generative model, since it does not specify a prior distribution over the latent variable H. Thus NMF
does not specify how new data could be generated from a learned basis.

Like the above methods, MCVQ and MCFA can be viewed as matrix factorization methods,
where the left-hand matrix is formed from the {gdk} and the collection of VQ/FA basis vectors,
while the right-hand matrix is comprised of the latent variables {mc

k j}. This view highlights the key
contrast between the assumptions about the data embodied in these earlier models, as opposed to the
proposed model. Here the data is viewed as a concatenation of components or parts, corresponding
to particular subsets of data dimensions, each of which is modeled as a convex combination of
appearances.

3. Experiments

In this section we examine the ability of MCVQ and MCFA to learn parts-based representations of
data from two different problem domains.

We begin by modeling sets of digital images, in this case images of human faces. The parts
learned are fixed subsets of the data dimensions (pixels), corresponding to fixed regions of the
images, that closely resemble intuitive notions of the parts of faces. The ability to learn parts is
robust to partial occlusions in the training images.

The application of MCVQ and MCFA to image data assumes that the images are normalized,
that is, that the head is in a similar pose in each image, and aligned with respect to position and
scale. This constraint is standard for learning methods that attempt to learn visual features beyond
low level edges and corners, though, if desired, the model could be extended to perform automatic
alignment of images (Jojic and Caspi, 2004). While normalization may require a preprocessing step
for image applications, in many other types of applications, the input representation is more stable.
For instance, in collaborative filtering each data vector consists of a single user’s ratings for a fixed
set of items; each data dimension always corresponds to the same item.

Thus, we also explore the application of MCVQ and MCFA to the problem of predicting ratings
of unseen movies, given observed ratings for a large set of users. Here parts correspond to subsets
of the movies which have correlated ratings.

Code implementing MCVQ and MCFA in MATLAB, as used for the following experiments, can
be obtained at http://www.cs.toronto.edu/∼dross/mcvq/.

3.1 Face Images

The face data set consisted of 2429 images from the CBCL Face database #1 (MIT-CBCL, 2000).
Each image contained a single frontal or near-frontal face, depicted in 19×19 pixel grayscale. The
images were histogram equalized, and pixel values rescaled to lie in [−2,2]. Sample training images
are shown in Figure 2.

Using these images as input, we trained MCVQ and MCFA models, each containing K = 6
factors. The MCVQ model with J = 10 states converged in 120 iterations of Monte Carlo EM, while

2376



LEARNING PARTS-BASED REPRESENTATIONS OF DATA

Figure 2: Sample training images from the CBCL Face database #1.

VQ 1

VQ 2

VQ 3

VQ 4

VQ 5

VQ 6

Figure 3: The parts-based model of faces learned by MCVQ. On the left are plots showing the
posterior probability with which each pixel selects the indicated VQ. On the right are the
means, for each state of each VQ, masked by the aforementioned selection probabilities
(µk j .∗gk).

the MCFA model with J = 4 basis vectors converged in 15 variational EM iterations. In practice, the
Monte Carlo approach to inference leads to better local maxima of the objective function, and better
parts-based models of the data. For both MCVQ and MCFA, prior probabilities were initialized
to uniform, and states/basis vectors to randomly selected training images. The learned parts-based
decompositions are depicted in Figures 3 and 4.

On the left of each figure is a plot of posterior probabilities {gdk} that each pixel selects the
indicated factor as its explanation. White indicates high probability of selection, and black low. As
can be seen, each gk can be thought of as a mask indicating which pixels ‘belong’ to factor k.

In the noise-free case, each image generated by one of these models is a sum of the contributions
from the various factors, where each contribution is ‘masked’ by the probability of pixel selection.
For example in Figure 3 the probability of selecting VQ #4 is non-zero only around the nose, thus
the contribution of this VQ to the remaining areas of the face in any generated image is negligible.

On the right of each figure is a plot of the 10 states/4 basis vectors for each factor. Each image
has been masked (via element-wise multiplication) with the corresponding gk. For MCVQ this is
(µdk j .∗gdk), and for MCFA this is (Λk

d j .∗gdk). In the case of MCVQ, each state is an alternative
appearance for the corresponding part. For example VQ #4 gives 10 alternative noses to select from
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FA 1

FA 2

FA 3

FA 4

FA 5

FA 6

Figure 4: The parts-based model of faces learned by MCFA.

when generating a face. These range from thin to wide, with shadows of the left or right, and with
light or dark upper-lips (possibly corresponding to moustaches). In MCFA, on the other hand, the
basis vectors are not discrete alternatives. Rather these vectors are combined via arbitrary linear
combinations to generate an appearance of a part.

To test the fidelity of the learned representations, the trained models were used to probabilisti-
cally classify held-out test images as either face or non-face. The test data consisted of the 472 face
images and 472 randomly-selected non-face images from the CBCL database test set. To classify
test images, we evaluated their probability under the model, labeling an image as face if its prob-
ability exceeded a threshold, and non-face if it did not. For each model the threshold was chosen
to maximize classification performance. Evaluating the probability of a data vector under MCVQ
and MCFA can be difficult, since it requires marginalizing over all possible values of the latent vari-
ables. Thus, in practice, we use a Monte Carlo approximation, obtained by averaging over a sample
of possible selections. The results of this experiment are shown in Table 1. In addition to MCVQ
and MCFA, we performed the same experiment with four other probabilistic models: probabilistic
principal components analysis (PPCA), mixture of Gaussians, a single Gaussian distribution, and
cooperative vector quantization (Hinton and Zemel, 1994) (which is described further in Section 5).
It is important to note that in this experiment an increase in model size (using more VQs, states,
or basis vectors) does not necessarily improve the ability to discriminate faces from non-faces. For
example, PPCA achieves its highest accuracy when using only three basis vectors, and a mixture of
Gaussians with 60 states outperforms one with 84 states. As can be seen, the highest performance
is achieved by an MCVQ model with 6 VQs and 14 states per VQ.

Another way of validating image models it to use them to generate new examples and see how
closely they resemble images from the observed data—in this case how much the generated im-
ages resemble actual faces. Examples of images generated from MCVQ and MCFA are shown in
Figure 5.
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Model Accuracy
MCVQ (6 VQs, 14 states each) 0.8305
Mixture of Gaussians (60 states) 0.8072
MCVQ (6 VQs, 10 states each) 0.8030
Probabilistic PCA (3 components) 0.7903
Gaussian distribution (diagonal covariance) 0.7871
Mixture of Gaussians (84 states) 0.7680
MCFA (6 FAs, 3 basis vectors each) 0.7415
MCFA (6 FAs, 4 basis vectors each) 0.7267
Cooperative Vector Quantization (6 VQs, 10 states each) 0.6208

Table 1: Results of classifying test images as face or non-face, by computing their probabilities
under trained generative models of faces.

Figure 5: Synthetic images generated using MCVQ (left) and MCFA (right).

The parts-based models learned by MCVQ and MCFA differ from those learned by NMF and
PCA, as depicted in Figure 6, in two important ways. First, the basis is sparse—each factor con-
tributes to only a limited region of the image, whereas in NMF and PCA basis vectors include
more global effects. Secondly MCVQ and MCFA learn a grouping of vectors into related parts, by
explicitly modeling the sparsity via the gdk distributions.

A further point of comparison is that, in images generated by PPCA and NMF, a significant
proportion of the pixels in the generated images lie outside the range of values appearing in the
training data (7% for PPCA and 4.5% for NMF), requiring that the generated values be thresholded.
On the other hand, MCVQ will never generate pixel values outside the observed range. This is a
simple result, since each generated image is a convex combination of basis vectors, and each basis
vector is a convex combination of data vectors. Although no such guarantee exists for MCFA, in
practice pixels it generates are all within-range.
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Figure 6: Bases learned by non-negative matrix factorization (left) and probabilistic principal com-
ponents analysis (right), when trained on the face images.

3.1.1 PARTIAL OCCLUSION

Parts-based models can also be reliably learned from image data in which the object is partially
occluded. As an illustration, we trained an MCVQ model on a data set containing partially-occluded
faces. The occlusions were generated by replacing pixels in randomly-selected contiguous regions
of each training image with noise. The noise, which covered 1

4 to 1
2 of each image, had the same

first- and second-order statistics as the unoccluded pixels. The resulting training set contained 4858
images, half of which were partially occluded.

Examples of the training images, and the resulting model, can be seen in Figure 7. In the model
each VQ has learned at least one state containing a blurry region, which corresponds to an occluded
view of the respective part (e.g., for VQ 1, the second state from the right). Thus this model is able
to generate and reconstruct (recognize) partially-occluded faces.

3.2 Collaborative Filtering

Here we test MCVQ on a collaborative filtering task, using the EachMovie data set, where the
input vectors are ratings by viewers of movies, and a given element always corresponds to the same
movie. The original data set contains ratings, on a scale from 1 to 6, of a set of 1649 movies, by
74,424 viewers. In order to reduce the sparseness of the data set, since many viewers rated only a
few movies, we only included viewers who rated at least 20 movies, and removed unrated movies.
The remaining data set, containing 1623 movies and 36,656 viewers, was still very sparse (95.7%).

We evaluated the performance of MCVQ using the framework proposed by Marlin (2004) for
comparison of collaborative filtering algorithms. From each viewer in the EachMovie set, a single
randomly-chosen rating was held out. The performance of the model at predicting these held-out
ratings was evaluated using 3-fold cross validation. In each fold, the model was fit to a training set
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VQ 1

VQ 2

VQ 3

VQ 4

VQ 5

VQ 6

Figure 7: The model learned by MCVQ on partially-occluded faces. On the left are six representa-
tive images from the training data. In the middle are plots of the posterior part selection
probability (the gdk’s) for each VQ. On the right are the (unmasked) means for each state
of each VQ. Note that each VQ has learned at least one state to represent partial occlusion
of the corresponding part.

of 2/3 of the viewers, with the remaining 1/3 viewers retained as a testing set.2 This model was used
to predict the held-out ratings of the training viewers, a task referred to as weak generalization, as
well as the held-out ratings of the testing viewers, called strong generalization. Each prediction was
obtained by first inferring the latent states of the factors mk j, then averaging the mean of each state
by its probability of selection: ∑k, j gdk mk j µk jd .

Prediction performance was calculated using normalized mean absolute error (NMAE). Given
a set of predictions {pi}, and the corresponding ratings {ri}, the NMAE is

1
zn

n

∑
i=1

|ri− pi|

where z is a normalizing factor equal to the expectation of the mean absolute error, assuming
uniformly distributed pi’s and ri’s (Marlin, 2004).3 For the EachMovie data set this value is
z = 35/18≈ 1.9444.

We trained several models on this data set, including MCVQ, MCFA, factor analysis, mixture
of Gaussians, as well as a baseline algorithm which, for each movie, simply predicts the mean of

2. This differs slightly from Marlin’s approach. He used three randomly sampled training and test sets of 30000 and
5000 viewers respectively. However, his test sets were not disjoint, introducing a potential bias in the error estimate.
We, instead, partitioned the data into thirds, using 2/3 of the viewers for training and 1/3 for testing in each of the
three folds. The resulting estimates of error should be less biased, but remain directly comparable to Marlin’s results.

3. For data sets in which the ratings range over the integers, from a minimum of m to a maximum of M, there is a simple

expression for z. Let N = M−m be the largest possible absolute error. Then z =
N(N+2)
3(N+1)

.
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Model Weak Generalization Strong Generalization
MCVQ K = 5,J = 12 0.4896 0.4942
Gaussian mixture J = 60 0.4945 0.4895
Factor Analysis J = 60 0.5314 0.5318
MCFA K = 4,J = 6 0.5502 0.5503
Predict mean observed rating 0.5621 0.5621

Table 2: Collaborative filtering performance. For each algorithm we show the prediction error, in
terms of NMAE (see text), on held out ratings from the training data (weak generalization)
and the test data (strong generalization). K and J give the number of factors and basis
vectors per factor respectively.

the observed ratings for that movie. MCVQ and MCFA were both trained using variational EM,
converging in 15 iterations. We selected this approach due to its efficiency, as running each of
these algorithms on the large data sets used in these experiments via the Monte Carlo EM approach
would require considerable computation time. Note that in the graphical model (Fig. 1), all the
observation dimensions are leaves, so a data variable whose value is not specified in a particular
observation vector will not play a role in inference or learning. This makes inference and learning
with sparse data rapid and efficient in MCVQ and MCFA.

The results of rating prediction are summarized in Table 2 For each model, we have included the
best performance, under the restriction that JK ≤ 60. For comparison, the current state-of-the-art
performance on this experiment is 0.4422 weak and 0.4557 strong generalization, by Marlin’s User
Rating Profile model (Marlin, 2004).

In addition to its utility for rating prediction, the parts-based model learned by MCVQ can
also provide key insights regarding the relationships between the movies. These relationships are
largely captured by the learned {gdk} parameters. For a movie d, the probability distribution gd =
[gd1 . . .gdK ] indicates the affinity of the movie for each of the K factors. To study these relationships
we retrained MCVQ on the EachMovie set, using all available data, again with K = 5 and J = 12.

When trained on the full data set, the average entropy of the gd distributions was only 0.0475
bits. In other words, for 98% of the movies, at least one factor was consistently selected with a
posterior probability exceeding 0.9. The movies in the training set were distributed fairly evenly
amongst the available factors. Specifically, using a probability of gdk > 0.9 to indicate strong asso-
ciation, VQs 1 to 5 were assigned 14%, 33%, 9%, 20% and 22% respectively of the movies. Thus
MCVQ learned a partitioning of the movies into approximately disjoint subsets.

In the parts-based model, movies with related ratings were associated with the same factor. For
example, all seven movies from the Amityville Horror series were assigned to VQ #1. Similarly the
three original Star Wars movies, as well as seven of the eight Star Trek movies were all associated
with VQ #5. By examining VQ #5 in more detail we can see that each state of the VQ corresponds
to a different attitude towards the associated movies, or ‘ratings profile’. In Figure 8 we compare
the ratings given to the Star Wars and Star Trek movies by various states of VQ #5. For each state
we have plotted the difference between the predicted rating and the mean rating, µdk j−∑ j′(µdk j′/J),
for each of the 10 movies. This score will be large for a particular movie if the state, or profile, gives
the movie a much higher rating than it ordinarily receives.
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The four states depicted in Figure 8 show a range of possible ratings profiles. State 2 shows a
strong preference for all the movies, with each receiving a rating 1-2.5 points higher than usual. In
contrast, state 9 shows an equally strong dislike for the movies. State 10 indicates a viewer who is
fond of Star Wars, but not Star Trek. Finally, state 11 shows an ambivalent attitude: slight preference
for some films, and slight dislike for others.

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 2

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 9

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 10

W1 W2 W3 T1 T2 T3 T4 T5 T6 T7
−2.5

0

2.5
VQ 5, State 11

Star Wars W1 Star Trek III: The Search for Spock T3
The Empire Strikes Back W2 Star Trek IV: The Voyage Home T4
Return of the Jedi W3 Star Trek V: The Final Frontier T5
Star Trek: The Motion Picture T1 Star Trek VI: The Undiscovered Country T6
Star Trek II: The Wrath of Khan T2 Star Trek: First Contact T7

Figure 8: Ratings profiles learned by MCVQ on the EachMovie data, for Star Wars and Star Trek
movies. Each state represents a different attitude towards the movies. Positive scores
correspond to above-average ratings for the movie, and negative to below-average.

3.2.1 ACTIVE LEARNING

When collaborative filtering is posed in an online or active setting, the set of available data is con-
tinually growing, as viewers are queried and new ratings are observed. When a viewer provides a
new rating for an item, the system’s beliefs about his preferences must be updated. In generative
models, such as we have described, this entails updating the distribution over latent state variables
for the viewer. This update is often costly, and can pose a problem when the system must be used
interactively. Furthermore, queries of the sort “What is the rating of xd?” must be generated online,
based on the viewer’s previous responses, to maximize the value of the information obtained. This
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value could simply be the system’s certainty as to the viewer’s preferences, or, more interestingly,
its ability to recommend movies that he might enjoy.

The parts based models we describe significantly simplify both of these computations. By
learning a partitioning of the items, a new rating will only affect beliefs about unobserved ratings
associated with the same factor. Specifically, only one mk j will be updated for each new rating, and
the update will depend only on a fraction of the observations.

Also, since we explicitly model the relationships between items, we can determine how the
possible responses to a putative query would affect predictions. Thus, we can formulate a query
designed to identify movies with high predicted ratings. More details on a successful application of
MCVQ to active collaborative filtering, using these ideas, can be found in Boutilier et al. (2003).

4. Hierarchical Learning

Thus far it has been assumed that the states of each factor are selected independently. Although
this assumption has proven useful, it is unrealistic to suppose that, for example, the appearance of
the eyes and mouth in a face are entirely uncorrelated. Rather than simply being a violation of our
modeling assumptions, these correlations can be viewed as an additional source of information from
which we can learn higher-order structure present in the data.

Here we relax the assumption of independence by including an additional higher-level latent
variable upon which state selections are conditioned. This variable has two possible interpretations.
First, if the higher-level cause is unobserved, it can be learned, inducing a categorization of the data
vectors based on their state selections. Secondly, if the variable is observed, it can be treated as side
information available during learning. In this case the prior over state selections will be adapted to
account for the side information.

We now develop both approaches, and demonstrate their use on a set of images containing
different facial expressions.

4.1 Extending the Generative Model

Suppose that each data vector comes from one of N different classes. We assume that for a given
data vector the selections of the states for each factor (the sk’s) depend on the class, but that the
selections of a factor per data dimension (the rd’s) do not. Specifically, for training case x, we
introduce a new multinomial variable y which selects exactly one of the N classes. y can be thought
of as an indicator vector y ∈ {0,1}N , where yn = 1 if and only if class n has been selected. Using a
prior P(yn = 1) = βn over y, the complete likelihood takes the following form (cf. Equation (1)):

P(x,R,S,y|θ) = P(x|R,S,θ)P(R)P(S|y)P(y),

= ∏
d,k

(P(xd|θk,sk)
rdk)∏

d,k

(

ardk
dk

)

∏
n,k, j

(

b
sk jyn

nk j

)

∏
n

(βyn
n ) . (6)

The graphical model representation is given in Figure 9.
Note that for each class n there is a different prior distribution over the state selections. We

represent these distributions with {bnk j}nk j, ∑ j bnk j = 1, where bnk j is the probability of selecting
state j from factor k given class n. Since the model contains N priors over S, one to be selected for
each data vector, then we can think of this model as incorporating an additional vector quantization
or clustering, this time over distributions for S.
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βxdda ksdr

θk
D

K

y

Figure 9: Graphical model with additional class variable, y. Note that y can be either observed or
unobserved.

If the class variable y corresponds to an observed label for each data vector, then the new model
can be thought of as a standard MCVQ or MCFA model, but with the requirement that we learn
a different prior over S for each class. On the other hand, if y is unobserved, then the new model
learns a mixture over the space of possible priors for S, rather than the single maximum likelihood
point estimate learned in standard MCVQ and MCFA.

Below we derive the EM updates for the hierarchical MCVQ model. The derivation of hierar-
chical MCFA is similar.

4.2 Unsupervised Case

In the unsupervised case, yc, for each training case c = 1 . . .C is an unobserved variable, like Rc

and Sc. As in standard MCVQ, the posterior P(R,S,y|x,θ) over latent variables cannot tractably be
computed. Instead, we use the following factorized variational approximation:

Q(R ,S ,Y ) =

(

∏
c,d,k

g
rc

dk
dk

)(

∏
c,n,k, j

mc
nk j

sc
k jy

c
n

)(

∏
c,n

zc
n

yc
n

)

.

Note that, as in standard MCVQ, we restrict the posterior selections of VQ made for each
training case to be identical, that is, {gdk} is independent of c. Using the variational posterior and
the likelihood, Equation (6), we obtain the following lower bound on the log-likelihood:

F = EQ [logP(X ,R ,S ,Y |θ)− logQ(R ,S ,Y |X,θ))] ,

= EQ

[

∑
c

logP(xc|Rc,Sc,yc,θ)+∑
c

logP(Rc,Sc,yc)−∑
c

logQ(Rc,Sc,yc)

]

,

= − ∑
c,d,k

gdk log
gdk

adk
− ∑

c,n,k, j

mc
nk jz

c
n log

mc
nk j

bnk j
−∑

c,n
zc

n log
zc

n

βn

− ∑
c,d,k, j

gdk
(

∑
n

mc
nk jz

c
n

)

εc
dk j−

CD
2

log(2π).

By differentiating F with respect to each of the parameters and latent variables, and solving for
their respective maxima, we obtain the EM updates used for learning the model. The E-step updates
for mc

nk j and zc
n are

mc
nk j ∝ bnk j exp

(

−∑
d

gdkεc
dk j

)

,
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zc
n ∝ βn exp

(

∑
k j

mc
nk j log

bnk j

mc
nk j
−∑

dk j

gdkmc
nk jε

c
dk j

)

.

The M-step updates for adk,gdk,µdk j, and σdk j are unchanged from standard MCVQ, except for
the substitution of ∑n(m

c
nk jz

c
n) in place of mc

k j, wherever it appears. The updates for βn and bnk j are

βn =
1
C ∑

c
zc

n, bnk j =
∑c mc

nk jz
c
n

∑c zc
n

.

A useful interpretation of the latent variable y is that, for a given data vector, it indicates the
assignment of that datum to one of N clusters. Specifically, zc

n can be thought of as the posterior
probability that example c belongs to cluster n.

4.3 Supervised Case

In the supervised case, we are given a set of labeled training data (xc,yc) for c = 1 . . .C. Note that
this case is essentially the same as the unsupervised case—we can obtain the supervised updates by
constraining zc = yc,∀c. Since the class is known, we may now drop the subscript n from mc

nk j.
As stated earlier, when the y’s are given, we learn a different prior over state selections for each

class n:

bnk j =
1

Cβn
∑
c

mc
k jy

c
n,

where the prior probability of observing class n, βn, can be calculated from the training labels:

βn =
1
C ∑

c
yc

n.

The posterior probabilities of state selection for each example c, mc
k j, depend only on the prior

corresponding to c’s class:

mc
k j ∝ byck j exp

(

−∑
d

gdkεc
dk j

)

.

4.4 Experiments

In this section we present experimental results obtained by training the above models on images
taken from the AR Face Database (Martinez and Benavente, 1998). This data consists of images of
frontal faces of 126 subjects under a number of different conditions. The five conditions used for
these experiments were: 1) anger, 2) neutral, 3) scream, 4) smile, and 5) sunglasses.

The data set in its raw form contains faces which, although roughly centered, appear at different
locations, angles, and scales. Since the learning algorithms do not attempt to compensate for these
differences, we manually aligned each face such that the eyes always appeared in the same location.
Next we cropped the images tightly around the face, and subsampled to reduce the size to 29×22
pixels. Finally, we converted the image data to grayscale, with pixel values ranging from -1 to 1.
Examples of the preprocessed images can be seen in Figure 10.

The above preprocessing steps are standard when applying unsupervised learning methods, such
as NMF, PCA, ICA, etc., to image data.
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Figure 10: Examples of preprocessed images from the AR Face Database. These images, from left
to right, correspond to the conditions: anger, neutral, scream, smile, and sunglasses.

4.4.1 SUPERVISED CASE: LEARNING CLASS-CONDITIONAL PRIORS

We first trained a supervised model on the entire data set, with a goal of learning a different prior
over state selections for each of the five classes of image (anger, neutral, scream, smile, and sun-
glasses).

The model consisted of 5 VQs, 10 states each. The image regions that each VQ learned to
explain are shown in Figure 11. For each VQ k we have plotted, as a grayscale image, the prior
probability of each pixel selecting k (i.e., adk, d = pixel index). Two regions which we expected to
be class discriminative, the mouth and the eyes, were captured by VQs 3 and 4 respectively.

VQ 1 VQ 2 VQ 3 VQ 4 VQ 5

Figure 11: Image regions explained by each VQ. The prior probability of a VQ being selected for
each pixel is plotted as a gray value between 0=black and 1=white.

The priors over state selection for these VQs varied widely depending on the class of the image
being considered. As an example, in Figure 12 we have plotted the prior probability, given the
class, of selecting each of the states from VQ 3. In the figure we can see that the prior probabilities
closely matched our intuition as to which mouth shapes corresponded to which facial expressions.
For example the first state (top left) appears to depict a smiling mouth. Accordingly, the smile class
assigned it the highest prior probability, 0.34, while the other classes each assigned it 0.05 or less.
Also, given the scream class, we see that the highest prior probabilities were assigned to the third
and fourth states—both widely screaming mouths. States 6 through 9 (second row) range from
depicting a neutral to an angry mouth.

Note that for sunglasses, which does not presuppose a mouth shape, the prior showed a prefer-
ence for the more neutral mouths. The explanation for this is simply that most subjects in the data
adopted a neutral expression when wearing sunglasses.
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Figure 12: Class-conditional priors over mouth selections. Each image displayed is the mean of
a state learned for VQ 3, masked (multiplied) by the prior probability of VQ 3 being
selected for that pixel. The bar charts indicate, for each state, the prior probability of
it being selected given each of the five class labels. From left to right these are anger
(A), neutral (N), scream (S), smile (M), and sunglasses (G). On each chart, the y-axis
extends up to a probability of 0.4.
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One method for qualitatively evaluating the suitability of a class-conditional prior is to use it to
generate novel images from the model, and see how well they match the class. Samples drawn this
way using each of the five priors can be seen in Figure 13.

Anger Neutral Scream Smile Glasses

Figure 13: Sample images generated from the supervised hierarchical MCVQ model. Four images
are depicted for each of the five class-conditional priors. Note the generated images
can contain a novel combination of parts not seen in the training data, such as a person
screaming and wearing glasses (Scream, upper-left). (The images do not include the
Gaussian noise described in the generative process.)

4.4.2 UNSUPERVISED CASE

To evaluate the performance of the unsupervised model, we trained a model on a subset of the five
classes, with the hope that it would learn clusters corresponding to the original classes.

The data set was restricted to contain only three classes—neutral, scream, and sunglasses—
totaling 765 images. To prevent the images from being clustered simply by their overall brightness
levels, for this experiment we performed equalization of the intensity histogram for each of the
training images. The model we trained consisted of 15 VQs, 10 states each, and the latent class
variable had 3 settings (i.e., 3 clusters).

In Table 3 we see the relationship between learned clusters and classes. The first cluster corre-
sponded to the sunglasses class, containing all but two of the sunglasses images. The second and
third clusters contained approximately equal numbers of neutral and scream images. Closer exam-
ination revealed that, of those not wearing sunglasses, 88% of the males had been placed in cluster
2, and 80% of the females in cluster 3. While we predicted that the model would learn classes
corresponding to neutral and scream, it appears instead to have learned classes corresponding to
gender. Examples of training images assigned to each of the clusters are shown in Figure 14.

Figure 14: Two training examples randomly selected from each of the three learned clusters.
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cluster 1 2 3
neutral 0 154 101
scream 0 139 116
sunglasses 253 0 2
totals 253 293 219

cluster 1 2 3
female 112 46 184
male 141 247 35
totals 253 293 219

Table 3: Number of images from each class assigned to each cluster. We consider an image to
belong to the cluster with the highest posterior probability (zc

n).

4.5 Discussion

In this section we have presented an extension to MCVQ that allows higher-level causes or rela-
tionships to be learned from the data. Specifically, assuming the data comes from a pre-specified
number of classes, this extension models the relationships between data vectors, based on the state
selections each class favours in an MCVQ model.

Given a set of labeled data, such as facial images classified by the expression of the subject, this
approach learns a single vocabulary of parts, and the likelihood of each part appearing in images
of a given class. These probabilities are of interest since, by applying Bayes’ rule, we can discover
how the possible states for each feature affect what class a data vector will belong to.

Finally, when the data are not labeled, the proposed method can learn a clustering of the data
into classes while simultaneously learning the relationships described above.

5. Related Models

MCVQ and MCFA fall into the expanding class of unsupervised algorithms known as factorial
methods, in which the aim of the learning algorithm is to discover multiple independent causes, or
factors, that can well characterize the observed data. Their direct ancestor is Cooperative Vector
Quantization (Zemel, 1993; Hinton and Zemel, 1994; Ghahramani, 1995), which has a very simi-
lar generative model to MCVQ, but lacks the stochastic selection of one VQ per data dimension.
Instead, a data vector is generated cooperatively: each VQ selects one vector, and these vectors
are summed to produce the data (again using a Gaussian noise model). The contrast between these
approaches mirrors the development of the competitive mixture-of-experts algorithm (Jacobs et al.,
1991) which grew out of the inability of a cooperative, linear combination of experts to decompose
inputs into separable experts.

Unfortunately Cooperative Vector Quantization can learn unintuitive global features which in-
clude both additive and subtractive effects. The aforementioned non-negative matrix factorization
(NMF) (Lee and Seung, 1999, 2001; Mel, 1999) overcomes this problem by proposing that each
data vector is generated by taking a non-negative linear combination of non-negative basis vec-
tors. Since each basis vector contains only non-negative values, it is unable to ‘subtract away’ the
effects of other basis vectors it is combined with. This property encourages learning a basis of
sparse vectors, each capturing a single instantiation of one of the independent latent factors, for
example a local feature of an image. Like NMF, given non-negative data MCVQ will learn a non-
negative basis, taken only in non-negative combinations. Unlike MCVQ and MCFA, NMF provides
no mechanism for learning compositional structure - how basis images or parts may be combined

2390



LEARNING PARTS-BASED REPRESENTATIONS OF DATA

to form a valid whole. Rather, it considers any non-negative linear combination of basis vectors
to be equally suitable, and hence NMF and MCVQ models differ in the range of novel examples
they can generate. Interestingly, the conditions under which non-negative matrix factorization will
learn a correct parts-based decomposition, as shown by Donoho and Stodden (2004), closely re-
semble the generative model proposed by MCVQ. However one of these conditions—that the data
set contain a complete factorial sampling of all JK possible part configurations—seems difficult to
achieve in practice. Other work such as Li et al. (2001) suggests that, when using realistic data sets,
non-negativity alone may not be sufficient to ensure the learned basis corresponds to localized parts.

MCVQ also resembles a wide range of generative models developed to address image segmen-
tation (Williams and Adams, 1999; Hinton et al., 2000; Jojic and Frey, 2001). These are generally
complex, hierarchical models designed to focus on a different aspect of this problem than that of
MCVQ: to dynamically decide which pixels belong to which objects. The chief obstacle faced by
these models is the unknown pose (primarily limited to position) of an object in an image, and they
employ learned object models to find the single object that best explains each pixel. MCVQ adopts
a more constrained solution with respect to part locations, assuming that these are consistent across
images, and instead focuses on the assembling of input dimensions into parts, and the variety of
instantiations of each part. The constraints built into MCVQ limit its generality, but also lead to
rapid learning and inference, and enable it to scale up to high-dimensional data.

A recent generative model closely related to MCVQ is the Probabilistic Index Map (PIM) (Jojic
and Caspi, 2004; Winn and Jojic, 2005). PIMs propose that an image is generated by selecting,
for each pixel, one colour from a palette of K colours (in the simplest case—the palette could also
contain texture, filter coefficients, etc.). Pixels are grouped together if they select the same index
into the palette. Across a collection of images, segmentation of the pixels into consistent parts is
accomplished via a shared prior distribution over the palette index, and variation between images
is accounted for by learning a different palette for each image. When learning parts, PIMs group
together pixels which are self-similar (e.g., a similar colour), while MCVQ groups pixels which are
highly correlated, regardless of their relative intensities.

Connections can also be made between MCVQ and algorithms for biclustering, which aim to
produce a simultaneous clustering of both the rows and the columns of the data matrix (Mirkin,
1996). Biclustering has recently become popular in bioinformatics as a tool for analyzing DNA mi-
croarray data, which presents the expression levels for different genes under multiple experimental
conditions as a matrix (Cheng and Church, 2000). Assuming column-vector data, the selection of
a VQ for each data dimension in MCVQ produces a clustering of the rows. MCVQ differs from
other biclustering methods in that it produces not one but K clusterings of the columns, one for each
of the K VQs. In Section 4 we presented an hierarchical extension that combines the clusterings,
allowing MCVQ to produce a single biclustering of the data.

Finally, MCVQ also closely relates to sparse matrix decomposition techniques, such as the as-
pect model (Hofmann, 1999), a latent variable model which associates an unobserved class variable,
the aspect z, with each observation. Observations consist of co-occurrence statistics, such as counts
of how often a specific word occurs in a document. The latent Dirichlet allocation model (LDA)
(Blei et al., 2002) can be seen as a proper generative version of the aspect model: each docu-
ment/input vector is not represented as a set of labels for a particular vector in the training set, and
there is a natural way to examine the probability of some unseen vector. MCVQ shares the ability
of these models to associate multiple aspects with a given document, yet it achieves this in a slightly
different manner, since the two approaches present different ways of generating documents. The

2391



ROSS AND ZEMEL

aspect and LDA models propose that each document—a list of exchangeable words—is generated
by sampling an aspect, then sampling a word from the aspect, for each word in the document. Thus
each occurrence of a word is associated with a single aspect, but different aspects can generate the
same word. On the other hand MCVQ models the aggregate word counts of a document. That is,
each data vector has a number of components D equal to the size of the vocabulary, and xc

d indicates
the number of times word d appears in document c. For each word in the vocabulary, its entire
document frequency is generated according to the dictates of a stochastically-selected aspect (VQ).
The stochastic selection leads to a posterior probability stipulating a soft mixture over aspects for
each word.

Recently LDA and the aspect model have also been applied to images, by first representing
each image as an exchangeable set of ‘visual words’—interest points or image patches extracted
from the image (Fei-Fei and Perona, 2005; Sivic et al., 2005; Fergus et al., 2005; Sudderth et al.,
2005). By selecting as ‘words’ (or parts) image features that can be recognized regardless of the
position or scale at which they appear, these models can be made invariant to the position of the
target object in the training images. Since these models are designed for object detection and image
categorization, they learn very different object representations than MCVQ/MCFA. First, parts are
represented using invariant descriptors (typically SIFT descriptors, Lowe, 2004), which are useful
for recognizing a part but provide little information about its actual appearance. Second, since
interest points generally do not appear on all regions of the object, the learned parts are not sufficient
for describing all aspects of its appearance. Thus, unlike MCVQ/MCFA, one cannot use these
models to synthesize or repair a realistic image of the object.

The generative model of MCFA, and the EM algorithm for learning it, are related to the mixture
of factor analyzers model (MFA) (Ghahramani, 1995). The distinction between the two is that
in MFA a data point is generated entirely by one selected factor analyzer, while in MCFA data
dimensions can be generated by different FAs. Thus MFA does not attempt to learn parts, rather it
fits the data with a mixture of linear manifolds. MCFA also resembles a recently proposed method
employing factor analysis to model the appearance and occlusion masks of moving ‘sprites’ in video
(Frey et al., 2003).

6. Conclusion

In this paper we have proposed an approach to learning parts-based models of data, and provided
details for a discrete appearance model (MCVQ) and a continuous appearance model (MCFA) for
the latent factors.

This approach can be used to learn informative and intuitively appealing models of various
kinds of vector-valued data, such face images and movie ratings. The parts-based models can be
interpreted as a set of sparse basis vectors, with constraints on how they can be combined to generate
a valid data vector. The sparsity is not assumed a priori, or forcibly encoded in the model. Rather it
results naturally from our assumption that different parts choose their states independently.

When the independence assumption does not hold, we have shown that the model can be ex-
tended hierarchically, learning the dependencies between latent states. This permits modeling of
data containing multiple categories with a single vocabulary of parts, in addition to clustering data
based on the states used for each part in the generative process.

Considering the four potential advantages of parts-based models for objects in images, as out-
lined in the introduction, our approach has managed to realize two of these. Firstly, addressing
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advantage 2., our approach naturally allows the generation of new images that are novel combi-
nations of familiar parts (see Figure 13). Secondly, addressing advantage 4., we have shown that
MCVQ is robust to partial occlusions in the training images (see Section 3.1.1, including Figure 7).
Unfortunately, however, the approach we present for learning parts is not well-suited to handling
pose variation and articulation of the target object in images. This is because in our models a part is
essentially a group of like-minded pixels, thus is tied to specific dimensions of the input vector. As
such it cannot handle variation in the spatial location of parts. One way to address this would be to
incorporate the transformation invariances developed by Frey and Jojic (2003).

An important direction for future research is the problem of automatically discovering the num-
ber of parts present in the data. Possible methods for this include employing ideas from variational
Bayesian modeling (Beal and Ghahramani, 2003), or infinite mixture models and Dirichlet process
(Teh et al., 2005).
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Appendix A.

In this appendix we motivate, in more detail, our choice of approximate posterior for variational
EM learning of MCVQ (and consequently for MCFA as well). This choice is somewhat unorthodox
in that the generative model proposes a selection variable rc

dk for each dimension of each training
vector c, yet the approximate posterior (3) includes only one parameter gdk for all the training
vectors. There are two alternatives which might seem more natural: the number of variational
parameters could be increased to match the generative model, or the generative model could be
modified so that the selection of factors is made only once for all data vectors.

The simplest and most conventional variation approximation, the fully-factorized mean-field
method (Ghahramani, 1995), proposes using a set of variational parameters gc

dk for each training
case c. This causes a number of changes to the EM updates. First of all the gc

dk’s, now updated in
the E-step, depend only on a single training case c, while in the M-step their prior is computed by
averaging:

gc
dk ∝ adk exp

(

−∑
j

mc
k jε

c
dk j

)

, adk =
1
C ∑

c
gc

dk.

The remaining changes consist of replacing gdk with gc
dk in the update of mc

k j, and replacing mc
k j

with gc
dkmc

k j in the updates of µdk j and σ2
dk j. Experimentally this results in a weak (high-entropy)

prior, unable to discover any parts in the data. Adding a low-entropy hyper-prior to the adk’s, as
proposed by Brand (1999), did not improve learning.

Another closely related model proposes only a single set of factor selections, rdk, which are used
to generate all of the data vectors. For this model, which we will call the r-tied model, equation (3)
is the natural fully-factorized mean-field approximation. Working through the EM updates, the only
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change from Section 2.1.1 is in the update for gdk, which becomes

gdk ∝ adk exp

(

−∑
c j

mc
k jε

c
dk j

)

.

This update differs from (4) only in the omission of a factor of 1
C inside the exponential. Thus the

new gdk’s can be obtained from the old ones through exponentiating by the power C and renormal-
izing. This has the effect of pushing the low probability factor selections closer to zero and high
probability selections closer to 1, resulting in new gdk’s with lower entropy.

As a quantitative comparison, we trained MCVQ models using each of the three algorithms
on the face images described in Section 3.1. For each trained model we computed the mean and
standard deviation of the entropy of the adk parameters, as well as the sum-of-squares error recon-
structing 100 held-out face images. A low mean entropy indicates that a near-binary association
between data dimensions and factors was been learned, while a low reconstruction error shows that
a good model of faces was obtained. The results appear in Table 4.

Learning Algorithm Standard Fully-Factorized r-Tied
Average Entropy in adk 0.6751 1.9662 0.4365
Squared Reconstruction Error 1.5163e+04 1.9699e+04 1.5362e+04

Table 4: A quantitative comparison of alternative learning algorithms for MCVQ.

As expected, the entropy in the prior distribution over factor selection is lowest in the r-tied
model, and highest in the fully-factorized model. The fully-factorized model also has the highest
reconstruction error, while the standard model shows a slight advantage over the r-tied model. In
practice, the fully-factorized model performs poorly, and is unable to discover any parts in the
data. The standard and r-tied models often show similar performance, but the standard algorithm
is usually qualitatively better at discovering parts. A possible explanation could be that the r-tied
updates push the gdk parameters too quickly to a low-entropy configuration during the early stages
of learning.

In the future we plan to explore the possibility of combining these alternatives, in hope of being
able to realize benefits provided by each. For instance, the parameters learned by a standard or r-tied
MCVQ model could be used as an initialization for learning with the fully-factorized variational
approximation. This approach has the potential to be able to discover parts, while still allowing
some variation in parts between data (e.g., borderline pixels could be assigned to the nose in some
face images, and to the upper-lip in others).

Code for MCVQ, which also implements all the alternatives described here, can be obtained at
http://www.cs.toronto.edu/∼dross/mcvq/.
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