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Abstract

Under-complete models, which derive lower-dimensional representations of input data, are valuable
in domains in which the number of input dimensions is very large, such as data consisting of a temporal
sequence of images. We present the “under-complete product of experts” (UPoE), where each expert mod-
els a one dimensional projection of the data. Maximum-likelihood learning rules for this model constitute
a tractable and exact algorithm for learning under-complete independent components. The learning rules
for this model coincide with approximate learning rules proposed earlier for under-complete ICA models.
We also derive an efficient sequential learning algorithm from this model, and discuss its relationship to
sequential ICA, projection pursuit density estimation, and feature induction algorithms for additive ran-
dom field models. We demonstrate the efficacy of these novel algorithms on high-dimensional continuous
datasets.

1 Introduction

The fundamental aim of unsupervised learning is to find useful representations or transformations of data.
Considerable progress has been achieved using the simplest such form of representation, a linear trans-
formation. Methods such as principal components analysis, factor analysis, and projection pursuit search
for a linear transformation of the observed variables that has some suitable properties, typically formu-
lated in terms of information-theoretic criteria, such as entropy maximization, or minimization of mutual
information between the components of the representation.

Perhaps the most significant development in unsupervised learning over the last decade has been the in-
dependent components analysis (ICA) algorithm, or family of algorithms. These algorithms also search for
linear transformations of data, where here the transformed components are as statistically independent as



possible. In this paper, we propose a new learning algorithm that can be seen as a fast, efficient, and princi-
pled method to perform a particular form of ICA: under-complete ICA. Before describing our new method,
we motivate the emphasis on this form.

Three forms of ICA exist, based on the relationship between the number of input dimensions (D) and
hidden dimensions (J): square (J = D), over-complete (J > D), and under-complete (J < D). The stan-
dard ICA model applies to the square case [Bell and Sejnowski, 1995]; however, the assumption that J =
D is restrictive. Over-complete ICA methods [Olshausen and Field, 1997, Lewicki and Sejnowski, 1998,
Teh et al., 2003] are motivated by signal and image processing approaches, which involve multi-scale, re-
dundant basis sets. However, domains in which the number of input dimensions is very large, such as
data consisting of a temporal sequence of images, call for under-complete methods, which reduce the input
dimensionality.

In this paper we propose a novel algorithm for learning under-complete independent components, based
on optimizing a probabilistic density model of the data. Our components are independent under a different
noise model, which is arguably less natural but more tractable. We show that the learning rules for this
model coincide with approximate learning rules proposed before for under-complete ICA models. Moreover,
we derive an efficient and principled sequential learning algorithm that searches for the maximum decrease
in Kullback-Leibler divergence between the data and model distribution, given what the model has learned
so far. When this algorithm is run until the number of experts is equal to the number of input dimensions,
it constitutes a sequential learning algorithm for square ICA.

We derive both a parallel and a sequential algorithm for learning the components, but focus on the latter.
Sequential methods for learning components are attractive for a number of reasons. First, they contain the
potential for a form of model selection. If some metric exists for evaluating if adding a new component is
worthwhile, i.e., the advantage in data representation ability outweighs the increase in model complexity,
then the method contains an automatic stopping criterion. Second, the learning algorithms are generally
much simpler, involving the learning of only a few parameters rather than all parameters of all components
simultaneously. Finally, this simplicity often translates into computational efficiency.

The rest of this paper is organized as follows. We first describe the under-complete ICA model in more de-
tail, and present our new objective and learning algorithms, both parallel and sequential versions. We then
present empirical results of our model, and relate it to a number of other methods for sequentially learn-
ing components, such as projection pursuit and maximum entropy models. We conclude by suggesting
applications and extensions of this approach.

2 Under-complete ICA

Algorithms for standard (i.e., square) independent components analysis have been developed from both a
causal probability density model approach, utilizing stochastic hidden variables, and from an information-
theoretic approach, which does not posit any probabilistic model for the data. Recently, a third formula-
tion of ICA has been proposed, utilizing a probability density model without stochastic hidden variables
[Hinton et al., 2001]. This method generalizes to over-complete representations in a different form than
the earlier models. Under-complete ICA algorithms, including our new algorithm presented here, fall into
the same categories. We briefly review previous causal probability density, and information-theoretic ap-
proaches to UICA, and then present our method, based on a probability density model without stochastic
hidden variables.



2.1 Causal density models for UICA

Standard probabilistic models for ICA take the form of causal generative models where a number of sources
{s;}, distributed according to the prior distributions p;(s;), are linearly combined to produce the observed
random variables x = As. The model is given by:

J
p(x|A) =/p(x|s,A) Hpj(sj)ds (1)

=1

where p(x|s, A) is the likelihood term, which models the noise of the observed variables. In the square
noiseless case, the sources are estimated using a linear model of the data, s = Wx = A~1x. Under these
assumptions, the model simplifies to:

J J
p(x|W) = / 5(x — As) [ ps(ss)ds = [W| ][ p;(wx0) @)

=1 =1

where | - | is the absolute value of the determinant, and |W| normalizes for the change in volume induced
by the transformation. The vector w; is the j’th row of the matrix W.

A gradient ascent learning rule for the transformations W can be derived from a maximum-likelihood
approach [Pearlmutter and Parra, 1996]:

OL  [Ologp(x|W)\ 1 4 Ologp;(s;) 1
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where () is an average with respect to the empirical data distribution 5. Assuming particular forms of

sub- or super-Gaussian p;(s;) leads to specific types of components.

For under-complete models, where the number of sources is smaller than the number of observed variables,
observation noise is necessary to make the probability distribution proper, i.e., normalizable over input
space. An approximate maximum likelihood learning rule for this case may be derived by replacing the
stochastic relation between the source variables and input variables by a deterministic one of the form
s* = Wx = A#x where A# = (ATA)~1 AT is the pseudo-inverse [Ridder et al., 2002]. Including an extra
volume factor \/|ATA| = /[WWT| due to the change in variables and assuming isotropic Gaussian noise
of unit variance', the approximate maximum-likelihood learning rule simplifies to a form similar to the
square causal model:

os*

J

p

dlog p; (s*
86—\7LV ~ WHT 4 <70gp] (SJ)XT> 4)

2.2 Mutual information minimization for UICA

Algorithms for under-complete ICA have also been derived from an information-theoretic formulation.
Under this formulation, the components are no longer stochastic random variables s; for a given input x,

1We assume that the data has been sphered in a pre-processing step



but instead are deterministic linear functions of the inputs, z; = wj x. One approach in this framework

minimizes a natural measure of the information, the mutual information between the components:

J
I(z1,29,...27) = ZH(z]) — H(z) ()

j=1
Where the joint entropy H(z) = — [ f(z)log f(z)dz, and H(z;) = — [ f;(z;)1og f;(zj)dz; is the marginal

entropy of component j. I is non—negatlve and equals zero when the components are completely indepen-
dent.

In the standard square case, the output entropy H(z) = H(x) + (log(|2Z|)), where |2Z| is the Jacobian.
Because H(x) is independent of the weights, if we again assume that the data is sphered the objective
simplifies to minimizing:

I(z|W) = <10g Zlogfg zj > = —log|W|— <Zlogfj(zj)> (6)

When f;(z;) matches p;(s;), then minimizing I(z|W) with respect to W yields the same learning rule for
W as in the square causal density model above (Equation 3).

In the under-complete case, the simple linear relationship between the densities of z and x is not valid,
so deriving a learning rule using mutual information minimization requires calculating the entropy H (z),
which is difficult. A simple approximation such as a Gaussian may be used [Lu and Rajapakse, 2000], in
which case the entropy H (z) is proportional to the covariance of z: C' = WCov[x]WT = WWT (assuming
again that the data is sphered). An objective function may be defined that approximates I(z|W):

1(z[W) ~ ——log (WwW)) - <210ng (%) > @)
Differentiating this objective with respect to W yields the gradient ascent learning rule
oI 0log f;(z; )
#T i\Z
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Again, if f;(z;) matches p;(s;), then this learning rule is equivalent to the undercomplete ICA rule for the
causal stochastic model (Equation 4).

A very similar derivation of 8, based on the approach of maximizing the entropy of non-linear trans-
formations of the input variables (see [Bell and Sejnowski, 1995] for the square case) was proposed in
[Stone and Porrill, 1998].

2.3 A sequential information-theoretic algorithm for UICA

FastICA [Hyvarinen, 1999] is a fast sequential method for finding independent components, derived from
the same objective of minimizing the mutual information of the components. Finding an invertible trans-
formation W that minimizes I(z|W), the mutual information between the components, is equivalent to
finding orthogonal directions in which J(z;), a normalized form of entropy known as negentropy, is mini-
mized [Comon, 1994]:

J(z;) = H(v;) — H(z;) )



where v; is a Gaussian random vector with the same covariance matrix as z;.

FastICA is a fixed-point algorithm that minimizes mutual information by iteratively finding projections
w; that maximize J(z;), and forcing them to be orthogonal. In order to optimize this objective, H(z;)
must be approximated. Hyvarinen [Hyvérinen, 1998] suggests an approximation that is more robust than
conventional cumulant-based approximations, which leads to an objective for each component w; (row of
the transformation matrix W):

J(wj) = (F(wix) — (F@)P (10)

where F() is a non-quadratic function. The components are estimated one-by-one using a deflation scheme,
which ensures that the components are decorrelated. Choosing F'() as the log of a sub- or super-Gaussian
density f() leads to the formation of the corresponding form of components.

The resulting fixed-point algorithm is fast and efficient. However, approximations are required to compute
the neg-entropy and there is no probabilistic model associated with the discovered components.

3 Under-complete Product of Experts (UPoE)

The “Product of Experts” (PoE) models data as products of one-dimensional projections [Hinton, 1999].
The model has recently been extended to develop over-complete representations [Hinton and Teh, 2001,
Teh et al., 2003]. While the results of this approach are impressive, the model parameters are hard to learn,
and approximate methods are required. This paper introduces the Under-complete Product of Experts
(UPoE) model, an efficient and exact algorithm for learning under-complete representations under the same
model structure.

The UPoE model provides an alternative form of probability density model for under-complete ICA. Rather
than a causal generative model, as in Section 2.1, it defines a data model without stochastic hidden variables.
We show below that the learning rules for the parallel version of this model directly match those derived
as approximations to the under-complete ICA models presented above. In addition, the sequential version
of our model is also closely analogous to the FastlICA method. However, the objective at each stage of the
UPoE model is based on the maximal decrease in the log-likelihood of a density model.

3.1 Probability model for UPoE

The UPoE model consists of a number (J) of “experts” modelling certain projections of the input space. We
will denote a 1-dimensional expert with 7(z;|a;), where z; = w] x is the projection of x onto the vector w;
and a; represent additional parameters used to model the shape of the expert. These parametrized experts
play the role of the density functions f;(z;) in the earlier UICA formulations.

In UPoE these experts, or components, are combined by taking their product. When J < D this does
however not constitute a proper, normalizable probability distribution in D dimensions. To repair this
we fill the remaining dimensions (indicated by y) with uncorrelated Gaussian noise of unit variance. We
assume that the data is preprocessed such that the mean is zero and the covariance matrix is equal to the
identity (i.e. the data has been “sphered”). The final model is thus,

D—J J
p(y,z) = H (y310,1) H (zj]) (11)
i=1 j=1



where y; = vI'x is a projection of x onto the vector v;. The vectors {v;} form an orthonormal basis in the
orthogonal complement of the space spanned by the vectors {w;} which themselves need not be orthogonal
nor normalized. If we collect the vectors {v;} as rows in a matrix V and similarly for {w;} in a matrix W
we have the following relation,

vViv=1-wI'(ww’)~'w (12)
where P = WT(WWT)~!W is the projection operator on the space spanned by the vectors {w,} and
P+ =1- 7P is the projection operator onto the orthogonal complement of that space, i.e. the space spanned
by the basis vectors {v;}.

Since the data are provided in x space we like to express the probability density in those variables. Trans-
forming variables in densities involves a volume factor (Jacobian) as follows,

Ny, z)
ox

Using that |A| = \/|AAT|, with AT = [VI|WT], VWT = WVT =0 and?> VVT = I we arrive at,

D—J J
= I[ NTxo, 1) H w'x|a) \/W (14)
=1 7j=1

We note that the model has no hidden variables and has a simple normalization factor Z = 1//|[WWT]|
which implies that it is fully tractable.

p(x) = p(y, z) ‘ (13)

3.2 Parallel learning of components in UPoE

To learn the parameters of the UPoE model we use the log-likelihood as our objective:

D-J
1
= 510g|WWT| +<Zlog/\/v xn|0,1) —}—ZlogTw xn|ce])>~

i=1 j=1 P

To perform gradient ascent on this cost function, we need its derivatives with respect to the matrix W and
the expert parameters {a;}. We first define the “energy” E(z;):

T(zjlay) = e~ 755599 | Zj(ay) (15)
where Z; is the normalizing constant for expert 5, which depends on a; but not on w;.

The gradients are then:

oL

oL _ #T _ fg T

W w (E'(z) x >13 (16)
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where the pseudo-inverse is defined as above: W# = WT(WW7T)~! and E'(-) denotes the derivative of
E with respect to z;. In the derivation we have used the fact that the quadratic noise term averaged over
the (sphered) data is independent of W,

<XTPJ'X>15 =tr (PJ‘ <XXT>I3) =tr (PJ‘) =D-J

?Note that VTV is a projection operator which has J — D eigenvalues 1, and the rest zeros. Assume that u is an eigenvector of
VTV with eigenvalue 1, then Vu is an eigenvector of VVT with eigenvalue 1. Hence, all eigenvalues of VVT are 1 which implies
that it must be equal to I.




with tr denoting the trace. We also used this fact:
10log | WWT|
2 OW

Learning now proceeds through the updates W — W +7ndL/0W and a; =+ a; + v0L/0c; for appropriate
step-sizes i and .

= W#T (19)

The learning rule for the matrix W in Equation 16 matches that defined for the mutual information mini-
mization approach to under-complete ICA (Equation 8), which also matches the rule for the causal density
model (Equation 4) under the no-noise assumption. In those cases, the rule is an approximate gradient based
on a mutual information or maximum likelihood objective, while here it is derived as an exact learning rule
for maximum likelihood under the under-complete PoE model.

Assume for a moment that we are training the j'* component, while all other components are kept fixed. It
is important to observe that the first term in Eqn.16 depends on all components through the pseudo-inverse,
while the second term only depends on the w; parameters of the component that we are currently training.
This implies that the first term represents what the model already knows about the data and therefore
causes the components to diversify. Without this term all components would become the same. Another
way of seeing this is by rewriting the first term as,

WH#T = (E'(z) xT) (20)

p
where (-), means an average with respect to the model distribution p (Eqn.14). One could choose to com-
pute the above average through sampling from the model p (see Appendix A). The role of these samples
is to shield off or “nullify” the data that are well represented by the model, causing learning to focus on
poorly represented data. In fact, learning only stops when the average of E'(z)x’ over the empirical data
distribution and the model distribution (represented by samples) match.

3.3 Sequential learning of components in UPoE

Learning the components can occur either in parallel or sequentially. However, since the calculation of the
pseudo-inverse W# is the computational bottleneck, the latter doesn’t seem a very attractive option®. What
is needed is a way to avoid the recomputation of W# for every step of gradient ascent learning.

We propose a more efficient sequential learning algorithm, which draws inspiration from projection pursuit
density estimation (PPDE) [Friedman et al., 1984, Huber, 1985]. In PPDE the learning procedure is split
into two parts: in one phase we search for a direction W in which the projected data look non-normally
distributed, i.e. we look for “interesting” directions in the data. This is usually implemented by defining a
projection index and minimizing it. In the other phase, we fit a model to the marginal distribution in that
direction and use it to replace the current estimate of that marginal distribution. In fact, one can show that
for a given direction W;, the optimal multiplicative update for the model at round j — 1 is given by,

Wi (T
Paata(W; X)
pj(x) = pj-1(x) 7‘;3 ,}
P jx)

(1)

(W

where pg';ta is the marginal data distribution in the direction w; and p?'_"l is the marginal model distribution
at round j — 1 in direction w;. Note that the new model distribution p;(x) is still normalized after this

30ne can define a natural gradient[Amari, 1998]. However, unlike the complete (square) case, this natural gradient still depends
on the pseudo-inverse, therefore not resulting in improved efficiency per iteration. Because we work with sphered data the covariant
form of the updates will also not lead to faster convergence.



update. This procedure is initiated with a “prior” noise model po(x) which is typically a multivariate
standard normal distribution.

It not difficult to compute the change in the Kullback-Leibler distance between the data and the model
distribution due to this update,

Q = D (paatallps) = D (paatallps 1) = D (piiallP}1 )

PPDE minimizes this projection index Q over directions ;. The algorithm thus searches for directions for
which the improvement of the model is largest. These are the directions where the model is most different
from the data distribution. Although theoretically appealing, the computational load of this algorithm is
large. This is due to the fact that the marginal distributions are typically modelled by splines or histograms,

which makes the computation of the KL distance D (pg';ta| | pj'j'l) and its derivatives (needed for gradient
descent) cumbersome.

We now describe a procedure, based on the above ideas, that trains the UPoE model sequentially. Due
to the parametric form of the experts, this learning algorithm will turn out to be very efficient albeit less
flexible than the plain vanilla PPDE procedure. We first observe that the addition of an expert to the UPoE
model in a direction orthogonal to the previous component directions can be written as follows,
T; (W] %3 05)
p;(x) = pj_l(X)W (23)

jX

This is precisely in the form of Eqn.21 if the marginal data distribution in the direction ¥ ; is perfectly
described by the expert 7;. Note that the fact that the model p;_; (x) is indeed normal in any direction or-
thogonal to the component directions {w1, ..., w;_1 } guarantees that the new model p; is again normalized.
To compute the projection index we determine the change in KL divergence between the data distribution
and the model distribution, assuming update Eqn.23,

Q = D (paatallpj) — D (paatallpi—1) = D (pi2allTs ) = P (pikal V) (24)

In contrast to the PPDE objective in Eqn.22 this projection index has two terms. The first term searches for
directions in which the data can be well described by the expert while the second term prefers directions
that are “interesting”, i.e. non-normally distributed. Compared to Eqn.22, the first term is new and appears
because we didn’t assume that the data distribution in the direction ¥ ; can be modelled with infinite pre-
cision. However, the most important difference between the two projection indices is that the latter is far
more tractable than the one used for PPDE. This can be seen by inserting the empirical data distribution p
for pgata and rewriting Eqn.24 as,

. L . 1

Q= (B(@]xia;) - 5(¥7%)°) +1ogZ;(a) ~ 5 log(2n)
P

which is trivially evaluated as are its derivatives given by
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= <(E; (v“v;‘-rx; aj) — v”vfx) XT>5 (26)
There are two reasons for the simplification. Firstly, the entropy of the marginal data distribution p¥ drops
out of the projection index. Secondly, we can force the model p;_; to be normally distributed in the new
direction by making it orthogonal to the previous directions. To maintain that condition we need to re-
orthogonalize Ww; with respect to {W1, ..., W;_1 } after every gradient update,

wi = w;— Wi W, 1w, wi = w;/ | w; |l (27)



where W_; is the matrix with the component directions {w1, ..., w;_1 } as its rows.

The expert parameters «; can be learned simultaneously with the directions ¥;, by minimizing Q. The
gradients are given by,

(28)

29 <3Ej(w}’x;aj)> , 0log Z(aj)

67&]' 8aj 6(1]’

p

which is precisely equivalent to Eqn.17. This flexibility to adapt the expert at the same time as we learn the
direction #; may become important if different directions in the data have qualitatively different marginals,
e.g. some directions could be highly kurtotic while others could be bimodal.

Since Q represents the change in the negative log-likelihood (if we replace the data distribution with the
empirical distribution) we should stop learning when all remaining directions satisfy Q > 0.

Finally, we summarize the resulting algorithm below:

Sequential Learning Algorithm for UPOEs

Repeat for j=1 to ] or until Q > 0:
1. Initialize W; to a random unit length D-vector, orthogonal to the previous directions {1, ..., W;_1 }.
2. Repeat until convergence:
2i. Take a gradient step to decrease projection index Q over directions W; (Eqn.26) and parameters
a; (Eqn.28).
2ii. Apply Gram-Schmidt orthonormalization to w; (Eqn.27).
3. Update model (Eqn.23).

4 Experiments

To compare the parallel learning algorithm of section 3.2 with the sequential algorithm described in section
3.3 we trained models with varying numbers of components. The data-set* consisted of 1965 face images
of 128 pixels each. This data-set was centered, sphered and reduced to 50 dimensions using PCA, keeping
only the high variance directions. The data cases were split in 1000 randomly chosen training cases and
965 test cases. We used Student-t experts (see appendix B) to describe the marginal distributions which
can gracefully interpolate between a normal distribution and a super-Gaussian distribution (highly peaked
distribution with heavy tails).

In figure 1 we show the log-likelihood for three different training procedures. The (green) curve indicated
with “PAR-TRN” shows the results for the parallel update (Equations 16 & 17). Each time a component is
added to the model, the other components are initialized at the ones previously learned, but are allowed
to change during learning. The dashed (green) line indicated by “PAR-TST” shows the result on the test
data. The (blue) curves indicated by “PP-TRN” and “PP-TST” are the training and testing results for the
sequential learning algorithm described in section 3.3. The (red) curves indicated by “SEQ-TRN"” and “SEQ-
TST” show the results for a procedure very similar to the parallel algorithm, but without the ability to
update the previously learned components. Although the parallel procedure outperforms the sequential
methods on training data, there is no significant difference on the test data.

4Obtained from www.cs.toronto.edu/ roweis/data
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Figure 1: Models trained on the “Frey-faces” data set with varying numbers of components. Solid curves represent
log-likelihood on training data while dashed lines represent log-likelihood on test data. “PAR” indicates that the com-
ponents were trained in parallel using Eqn.16. “SEQ” indicates that the model was trained using Eqn.16 sequentially
(see main text for details) and “PP” indicates that the model was trained using the algorithm described in section 3.3.

In another experiment we used a mixture of 2 Student-t distributions (see appendix B) with fixed setting
of the inverse temperature at 312 = 20 and means at 4y = —1, u» = +1. The goal of this experiment was
to verify that our projection pursuit algorithm could extract the interesting multi-modal projections from
the “ Leptograpsus Crabs” data set °> . This data set contains 50 specimens of each sex of two color forms
[Ripley, 1996]. The Crabs data were first centered and sphered before presentation to the sequential learning
algorithm. Figure 2 and 3 show the results. It was found that there were many local minima present and
each time the results looked slightly different.

Finally we collected 100.000 patches of natural images® of size 30 x 30 pixels. This data set was centered,
sphered and reduced to 400 dimensions using PCA. In figure 4 we plotted 25 out of 100 components &

5Obtained from www.stats.ox.ac. uk/pub/PRNN/
6Obtained from www.cis.hut.fi/ projects/ica/data/images

1% Projection 2" projection
10 10,

(b)
Figure 2: First projection (a) and second projection (b) of the Crabs data set found by the sequential learning algorithm.
Overlayed are the fitted mixture of Student-t distributions with means fixated at 1 = —1 and p2 = +1 (solid red curve).
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Figure 3: First versus second projection of the Crabs data set corresponding to the histograms shown in figure 2. The
4 different symbols (o, [0, ¢, +) correspond to the 4 different classes of crab species and sex.

trained on this data set. Training was done in batches of 100 cases and involved an adaptive step-size. The
goal of this experiment was to verify that the sequential learning algorithm could efficiently train on large,
high dimensional data sets (training took a few hours on a 1-Gz PC). The results are qualitatively similar to
the Gabor-like components found using ICA in [Bell and Sejnowski, 1997].

5 Relation to Other Models

5.1 Under-complete ICA

The causal generative model for under-complete ICA defined in Section 2.1 is different from the under-
complete PoE model since it is defined in terms of stochastic hidden source variables {s;} which are difficult
to integrate out. The information-minimization approach to under-complete ICA defined in Section 2.2 is
also different from the UPoE model, in that it does not define a probabilistic density model for the data.
However, all of these models are closely related, as the exact learning rule for UPoE using the derivative
Eqn.16 is used as an approximation to the intractable gradient ascent learning rules for the earlier under-
complete ICA models [Stone and Porrill, 1998, Lu and Rajapakse, 2000, Ridder et al., 2002]. In the complete
noiseless case, i.e. when J = D and p(x|s) = §(x — W~1s), the PoE and ICA models become in fact
equivalent. This implies that the presented sequential learning algorithm, when completed until J = D,
can be interpreted as a sequential learning algorithm for square noiseless ICA.

The formulation of ICA that is closest in spirit to the sequential learning method presented in this paper
is the one underlying the FastICA algorithm [Hyvarinen, 1999] (see Section 2.3). There, new components
are added sequentially by minimizing the negentropy as a projection index. The main difference with the
sequential procedure described here is that our (different) projection index is based on the maximal decrease
in log-likelihood of a probabilistic model.
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Figure 4: 25 randomly chosen components out of a 100 learned components (using the sequential algorithm) on the
natural image data set.

5.2 Projection pursuit

In section 3.3 we described the forward or synthetic PPDE procedure. The resulting model is in fact very
similar to a UPoE model, with the subtle difference that the background model in PPDE is a full dimensional
standard normal while the background model for a UPoE is normal only in the orthogonal complement of
the space spanned by the components. The PPDE procedure is more flexible than the sequential learning
algorithm for UPoEs because the marginals are fit with histograms or splines and the components are not
necessarily orthogonal. The price to be paid is its computational inefficiency.

There is also a backward or analytic approach to PPDE [Friedman, 1987]. The idea is that one starts with
the data distribution and sequentially strips away its non-Gaussian structure. A practical method to inform
the algorithm about the structure that has already been detected in previous rounds is to “Gaussianize”
those directions. This amounts to transforming the old data set into a new one where previously detected
directions are now normally distributed. This technique only works when the directions are mutually
orthogonal. In [Zhu, 2002] it is argued that the resulting density model is in fact very cumbersome, due to
the need to “unwrap” these transformations.

5.3 Additive random field models

In the discrete domain product models are known under various names; additive random field models
[Pietra et al., 1997], log-linear models [Darroch and Ratcliff, 1972] and maximum entropy models [Zhu et al., 1997].
These models have an elegant dual interpretation as the distribution that minimizes the KL divergence
D(p||p°®) with a “prior model” p°, subject to a number of constraints {(®;(x)) = (®i(x)),,.,.- The
resulting model has the form,

Pmodel

p(x) o p(x)eXiz1 Ai®i(x) (29)
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The features ®; are selected from a large “library” while the Lagrange multipliers A; (or weights), which
multiply the features are learned. This procedure is typically sequential, minimizing a similar objective
as the projection index proposed in this paper, D (paatal|pj) — D (Pdatal|pj—1). Identifying features with
®(y;,x) = d(y;—wIx) we can show that the optimal choice for the weights is given by A(y;) = log T (ys; ;) —

log N (y;), which precisely corresponds to the UPoE model.

The discrete search over features is therefore replaced in our case with a continuous optimization over
directions W while the estimation of the weights A could be identified with the optimization of expert pa-
rameters a. Thus, in many respects the UPoE model and its sequential learning algorithm are the analogue
in the continuous domain of the additive random field model and its feature pursuit algorithm.

6 Conclusion

The UPoE model and its learning algorithms provide a link between under-complete ICA, projection pur-
suit and additive random field models. The parallel learning rules have been proposed in the literature as
approximate learning rules for under-complete ICA. This paper provides insight into what those learning
rules really accomplish. The sequential learning rules can be interpreted as a a parametric variant of PPDE,
but are also similar in spirit to the FastICA fitting method. In fact, when the number of experts is equal to
the dimensionality of the input space it constitutes an ICA learning algorithm. Finally, the UPoE and its
sequential learning rules may be interpreted as the continuous analogue of additive random field models
and their feature induction techniques.

Important features of the UPOE are its tractability and its efficient learning rules. The most important
disadvantage is that the they are limited to learning undercomplete, or square models. In some settings
over-complete models are preferred, particularly when the fidelity of the representation outweighs its effi-
ciency. Overcomplete PoE models [Teh et al., 2003] can be applied here, but these are much harder to learn
than UPoEs.

Another limitation is its restriction to the continuous domain. Many applications, such as document re-
trieval and language processing, require models to work in the (positive) discrete data domains. Many
existing models, such as the aspect model, suffer from intractable inference which is needed for learning.
Extending PoE models into this domain is a topic of future research.

In [Welling et al., 2002] a product model was described that has the ability to topographically order its
components. This idea readily extends to the UPoE model. Unfortunately, learning has to proceed using
approximate methods such as contrastive divergence. Extending these ideas to the discrete domain may

have interesting applications in latent semantic analysis where the topics can be ordered topographically
according to their interdependencies.

Acknowledgements

We would like to thank Yee Whye Teh, Simon Osindero and Sam Roweis for discussions and suggestions.

13



A Sampling

Sampling from the UPOE is relatively straightforward. We sample z; ~ T (z;|a;) and y; ~ N (y;]0,1) and
combine them into a sample in x-space using,

x =Px +Ptx = W#z+ Vly (30)

To explicitly compute an orthonormal basis VZ we can compute the following SVD decomposition ABCT =
SV D([WT|0]). The last J — D columns of A then form and orthonormal basis in the complement subspace,
A = [Ap;|VT]. Moreover, the pseudo-inverse of W can also be computed as W# = Ap;B;1CY .

Alternatively, we can sample x' ~ N (x'|0,I) and subsequently project the samples on the orthogonal sub-
space: VI'y = pix'.

B Student-T Experts

The probability distribution of a (generalized) Student-t distribution is given by,

T(2) = 1+ 1 2) 31
(z)—m(+5((2—ﬂ))> (31)

where 1 is its mean, § > 0 is an inverse scale parameter and 8 > 1 an inverse “temperature” which controls
the sharpness of the distribution. We can easily sample from it for arbitrary 3 and : first computea = g —
and b = 2. Next, sample precision parameters from a gamma distribution, y ~ c¢y®~'e~¥/%. Finally, sample
z from a normal distribution with that precision z ~ ¢ e~ ¥ " The derivatives of the log-likelihood for the

parameters p, 8, 3 are given by,

oL _ 1 po2*

o 6 <1 +1(62) >13 o
0L 1 1

3 = V() - (B -3) - <log (1 +3 (02)2> >,; (33)
oL _ | _—BP(z—n)

au_<1+%(0(z—u))2>- o

P

where ¥(z) = 0/0xInT'(z) is the “digamma” function. It is not hard to compute the variance and kurtosis
of a central Student-T distribution,

1 3
(#*) 3 5
SRS o

Thus, small values for 3 represent peaked distributions with large kurtosis. The derivative of the projection
index with respect to the component w; is given by,

Lo} Bif3W] x .
e L —wix | xT (37)
J 1+35 (ijj x) 5
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A more general family of experts is given by mixtures of Student-t distributions.
Tx) = maTa(x;00) (38)

where 7, are the mixture coefficients. Learning mixture models is straightforward using the EM algorithm,

Tq 7:1(371; aa)

I S CRT )
m = rn (40)
%w=aﬁ%;%@%%&l @
e PR Pl @)

where the projections also need to be orthonormalized at every step. For u and 6 there are faster IRLS
updates available [Titterington et al., 1985],

Wan = P — (43)
(14 5 Balzn — 1a))’)
new n WanZn
Ha = Z%:T (44)
new N,n.new
92 — a 45
( )a En QqWan (zn - I'La)2 (#5)

The new weights w,, downweight outliers which makes this a robust alternative to the mixture of Gaus-
sians model [Titterington et al., 1985].
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