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Abstract

In many machine learning applications, there are multiple decision-makers involved,
both automated and human. The interaction between these agents often goes
unaddressed in algorithmic development. In this work, we explore a simple version
of this interaction with a two-stage framework containing an automated model
and an external decision-maker. The model can choose to say PASS, and pass the
decision downstream, as explored in rejection learning. We extend this concept by
proposing learning to defer, which generalizes rejection learning by considering
the effect of other agents in the decision-making process. We propose a learning
algorithm which accounts for potential biases held by external decision-makers
in a system. Experiments demonstrate that learning to defer can make systems
not only more accurate but also less biased. Even when working with inconsistent
or biased users, we show that deferring models still greatly improve the accuracy
and/or fairness of the entire system.

1 Introduction

Can humans and machines make decisions jointly? A growing use of automated decision-making in
complex domains such as loan approvals [5], medical diagnosis [14], and criminal justice [26], has
raised questions about the role of machine learning in high-stakes decision-making, and the role of
humans in overseeing and applying machine predictions. Consider a black-box model which outputs
risk scores to assist a judge presiding over a bail case [19]. How does a risk score factor into the
decision-making process of an external agent such as a judge? How should this influence how the
score is learned? The model producing the score may be state-of-the-art in isolation, but its true
impact comes as an element of the judge’s decision-making process.

We argue that since these models are often used as part of larger systems e.g. in tandem with another
decision maker (like a judge), they should learn to predict responsibly: the model should predict
only if its predictions are reliably aligned with the system’s objectives, which often include accuracy
(predictions should mostly indicate ground truth) and fairness (predictions should be unbiased with
respect to different subgroups).

Rejection learning [8, 10] proposes a solution: allow models to reject (not make a prediction) when
they are not confidently accurate. However, this approach is inherently nonadaptive: both the model
and the decision-maker act independently of one another. When a model is working in tandem
with some external decision-maker, the decision to reject should depend not only on the model’s
confidence, but also on the decision-maker’s expertise and weaknesses. For example, if the judge’s
black-box is uncertain about some subgroup, but the judge is very inaccurate or biased towards that
subgroup, we may prefer the model make a prediction despite its uncertainty.
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Our main contribution is the formulation of adaptive rejection learning, which we call learning
to defer, where the model works adaptively with the decision-maker. We provide theoretical and
experimental evidence that learning to defer improves upon the standard rejection learning paradigm,
if models are intended to work as part of a larger system. We show that embedding a deferring model
in a pipeline can improve the accuracy and fairness of the system as a whole. Experimentally, we
simulate three scenarios where our model can defer judgment to external decision makers, echoing
realistic situations where downstream decision makers are inconsistent, biased, or have access to side
information. Our experimental results show that in each scenario, learning to defer allows models to
work with users to make fairer, more responsible decisions.

2 Learning to Defer

2.1 A Joint Decision-Making Framework
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Figure 1: A larger decision system containing an automated model. When the model predicts, the
system outputs the model’s prediction; when the model says PASS, the system outputs the decision-
maker’s (DM’s) prediction. Standard rejection learning considers the model stage, in isolation, as the
system output, while learning-to-defer optimizes the model over the system output.

A complex real-world decision system can be modeled as an interactive process between various
agents including decision makers, enforcement groups, and learning systems. Our focus in this
paper is on a two-agent model, between one decision-maker and one learning model, where the
decision flow is in two stages. This simple but still interactive setup describes many practical systems
containing multiple decision-makers (Fig 1). The first stage is an automated model whose parameters
we want to learn. The second stage is some external decision maker (DM) which we do not have
control over e.g. a human user, a proprietary black-box model. The decision-making flow is modeled
as a cascade, where the first-step model can either predict (positive/negative) or say PASS. If it
predicts, the DM will output the model’s prediction. However, if it says PASS, the DM makes its own
decision. This scenario is one possible characterization of a realistic decision task, which can be an
interactive (potentially game-theoretic) process.

We can consider the first stage to be flagging difficult cases for review, culling a large pool of inputs,
auditing the DM for problematic output, or simply as an assistive tool. In our setup, we assume
that the DM has access to information that the model does not — reflecting a number of practical
scenarios where DMs later in the chain may have more resources for efficiency, security, or contextual
reasons. However, the DM may be flawed, e.g. biased or inconsistent. A tradeoff suggests itself:
can a machine learning model be combined with the DM to leverage the DM’s extra insight, but
overcome its potential flaws?

We can describe the problem of learning an automated model in this framework as follows. There
exist data X ∈ Rn, ground truth labels Y ∈ {0, 1}, and some auxiliary data Z ∈ Rm which is only
available to the DM. If we let s ∈ {0, 1} be a PASS indicator variable (s = 1 means PASS), then the
joint probability of the system in Fig. 1 can be expressed as follows:

Pdefer(Y |X,Z) =
∏
i

[PM (Yi = 1|Xi)
Yi(1− PM (Yi = 1|Xi))

1−Yi ](1−si|Xi)

[PD(Yi = 1|Xi, Zi)
Yi(1− PD(Yi = 1|Xi, Zi))

1−Yi ](si|Xi)

(1)

where PM is the probability assigned by the automated model, PD is the probability assigned by
the DM, and i indexes examples. This can be seen as a mixture of Bernoullis, where the labels are
generated by either the model or the DM as determined by s. For convenience, we compress the
probabilistic notation:

ŶM = f(X) = PM (Y = 1|X) ∈ [0, 1]; ŶD = h(X,Z) = PD(Y = 1|X,Z) ∈ [0, 1]

Ŷ = (1− s)ŶM + sŶD ∈ [0, 1]; s = g(X) ∈ {0, 1}
(2)
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ŶM , ŶD, Ŷ are model predictions, DM predictions, and system predictions, respectively (left to right
in Fig. 1). The DM function h is a fixed, unknown black-box. Therefore, learning good {ŶM , s}
involves learning functions f and g which can adapt to h – the goal is to make Ŷ a good predictor
of Y . To do so, we want to find the maximum likelihood solution of Eq. 1. We can minimize its
negative log-likelihood Ldefer, which can be written as:

Ldefer(Y, ŶM , ŶD, s) = − logPdefer(Y |X,Z) = −
∑
i

[(1− si)`(Yi, ŶM,i) + si`(Yi, ŶD,i)] (3)

where `(Y, p) = Y log p + (1 − Y ) log (1− p) i.e. the log probability of the label with respect to
some prediction p. Minimizing Ldefer is what we call learning to defer. In learning to defer, we
aim to learn a model which outputs predictive probabilities ŶM and binary deferral decisions s, in
order to optimize the output of the system as a whole. The role of s is key here: rather than just an
expression of uncertainty, we can think of it as a gating variable, which tries to predict whether ŶM or
ŶD will have lower loss on any given example. This leads naturally to a mixture-of-experts learning
setup; however, we are only able to optimize the parameters for one expert (ŶM ), whereas the other
expert (ŶD) is out of our control. We discuss further in Sec. 3.

We now examine the relationship between learning to defer and rejection learning. Specifically,
we will show that learning to defer is a generalization of rejection learning and argue why it is an
important improvement over rejection learning for many machine learning applications.

2.2 Learning to Reject

Rejection learning is the predominant paradigm for learning models with a PASS option (see Sec.
4). In this area, the standard method is to optimize the accuracy-rejection tradeoff: how much can a
model improve its accuracy on the cases it does classify by PASS-ing some cases? This is usually
learned by minimizing a classification objective Lreject with a penalty γreject for each rejection [10],
where Y is ground truth, ŶM is the model output, and s is the reject variable (s = 1 means PASS); all
binary:

Lreject(Y, ŶM , s) = −
∑
i

[(1− si)`(Yi, ŶM,i) + siγreject] (4)

where ` is usually classification accuracy, i.e. `(Yi, Ŷi) = 1[Yi = Ŷi]. If we instead consider ` to
be the log-probability of the label, then we can interpret Lreject probabilistically as the negative
log-likelihood of the joint distribution Preject:

Preject(Y |X) =
∏
i

[Ŷ Yi

M,i(1− ŶM,i)
(1−Yi)]1−si exp(γreject)

si
(5)

2.3 Learning to Defer is Adaptive Rejection Learning

In learning to defer, the model leverages information about the DM to make PASS decisions adaptively.
We can consider how learning to defer relates to rejection learning. Examining their loss functions
Eq. 3 and Eq. 4 respectively, the only difference is that the rejection loss has a constant γreject where
the deferring loss has variable `(Y, ŶD). This leads us to the following:

Theorem. Let `(Y, Ŷ ) be our desired example-wise objective, where Y = argminŶ − `(Y, Ŷ ).
Then, if the DM has constant loss (e.g. is an oracle), there exist values of γreject, γdefer for which
the learning-to-defer and rejection learning objectives are equivalent.

Proof. As in Eq. 4, the standard rejection learning objective is

Lreject(Y, ŶM , ŶD, s) = −
∑
i

[(1− si)`(Yi, ŶM,i) + siγreject] (6)

where the first term encourages a low negative loss ` for non-PASS examples and the second term
penalizes PASS at a constant rate, γreject. If we include a similar γdefer penalty, the deferring loss
function is

Ldefer(Y, ŶM , ŶD, s) = −
∑
i

[(1− si)`(Yi, ŶM,i) + si`(Yi, ŶD,i) + siγdefer] (7)
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Now, if the DM has constant loss, meaning `(Y, ŶD) = α, we have (with γdefer = γreject − α):

Ldefer(Y, ŶM , ŶD, s) = −
∑
i

[(1− si)`(Yi, ŶM,i) + si · α+ siγdefer]

= −
∑
i

[(1− si)`(Yi, ŶM,i) + si(γdefer + α)] = Lreject(Y, ŶM,i, s)
(8)

�

2.4 Why Learn to Defer?

The proof in Sec. 2.3 shows the central point of learning to defer: rejection learning is exactly a
special case of learning to defer: a DM with constant loss α on each example. We find that the
adaptive version (learning to defer), more accurately describes real-world decision-making processes.
Often, a PASS is not the end of a decision-making sequence. Rather, a decision must be made
eventually on every example by a DM, whether the automated model predicts or not, and the DM
will not, in general, have constant loss on each example.

Say our model is trained to detect melanoma, and when it says PASS, a human doctor can run an
extra suite of medical tests. The model learns that it is very inaccurate at detecting amelanocytic
(non-pigmented) melanoma, and says PASS if this might be the case. However, suppose that the
doctor is even less accurate at detecting amelanocytic melanoma than the model is. Then, we may
prefer the model to make a prediction despite its uncertainty. Conversely, if there are some illnesses
that the doctor knows well, then the doctor may have a more informed, nuanced opinion than the
model. Then, we may prefer the model say PASS more frequently relative to its internal uncertainty.

Saying PASS on the wrong examples can also have fairness consequences. If the doctor’s decisions
bias against a certain group, then it is probably preferable for a less-biased model to defer less
frequently on the cases of that group. If some side information helps a DM achieve high accuracy on
some subgroup, but confuses the DM on another, then the model should defer most frequently on the
DM’s high accuracy subgroup, to ensure fair and equal treatment is provided to all groups. In short,
if the model we train is part of a larger pipeline, then we should train and evaluate the performance of
the pipeline with this model included, rather than solely focusing on the model itself. We note that
it is unnecessary to acquire decision data from a specific DM; rather, data could be sampled from
many DMs (potentially using crowd-sourcing). Research suggests that common trends exist in DM
behavior [6, 11], suggesting that a model trained on some DM or group of DMs could generalize to
unseen DMs.

3 Formulating Adaptive Models within Decision Systems

In our decision-making pipeline, we aim to formulate a fair model which can be used for learning to
defer (Eq. 3) (and by extension non-adaptive rejection learning as well (Eq. 4)). Such a model must
have two outputs for each example: a predictive probability ŶM and a PASS indicator s. We draw
inspiration from the mixture-of-experts model [21]. One important difference between learning-to-
defer and a mixture-of-experts is that one of the “experts” in this case is the DM, which is out of our
control; we can only learn the parameters of ŶM .

If we interpret the full system as a mixture between the model’s prediction ŶM and the DM’s
predictions ŶD, we can introduce a mixing coefficient π, where s ∼ Ber(π). π is the probability of
deferral, i.e. that the DM makes the final decision on an example X , rather than the model; 1− π is
the probability that the model’s decision becomes the final output of the system. Recall that ŶM , π
are functions of the input X; they are parametrized below by θ. Then, if there is some loss `(Y, Ŷ )
we want our system to minimize, we can learn to defer by minimizing an expectation over s:

Ldefer(Y, ŶM , ŶD, π; θ) = Es∼Ber(π)L(Y, ŶM , ŶD, s; θ)

=
∑
i

Esi∼Ber(πi)[(1− si)`(Yi, ŶM,i; θ) + si`(Yi, ŶD,i)]
(9)
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or, in the case of rejection learning:

Lreject(Y, ŶM , ŶD, π; θ) =
∑
i

Esi∼Ber(πi)[(1− si)`(Yi, ŶM,i; θ) + siγreject] (10)

Next, we give two methods of specifying and training such a model and present our method of
learning these models fairly, using a regularization scheme.

3.1 Post-hoc Thresholding

   + + + + + + + 

- - - - -

- - - - - -

+ + + + + PASS

t

t0 t1
Figure 2: Binary classification (one
threshold) vs. ternary classification with
a PASS option (two thresholds)

.

One way to formulate an adaptive model with a PASS op-
tion is to let π be a function of ŶM alone; i.e. ŶM = f(X)

and π = g(ŶM ). One such function g is a thresholding
function — we can learn two thresholds t0, t1 (see Figure
2) which yield a ternary classifier. The third category is
PASS, which can be outputted when the model prefers not
to commit to a positive or negative prediction. A conve-
nience of this method is that the thresholds can be trained
post-hoc on an existing model with an output in [0, 1] e.g.
many binary classifiers. We use a neural network as our
binary classifier, and describe our post-hoc thresholding
scheme in Appendix D. At test time, we use the thresholds
to partition the examples. On each example, the model
outputs a score β ∈ [0, 1]. If t0 < β < t1, then we
output π = 1 and defer (the value of ŶM becomes irrelevant). Otherwise, if t0 ≥ β we output
π = 0, ŶM = 0; if t1 ≤ β we output π = 0, ŶM = 1. Since π ∈ {0, 1} here, the expectation over
s ∼ Ber(π) in Eq. 9 is trivial.

3.2 Learning a Differentiable Model

We may wish to use continuous outputs ŶM , π ∈ [0, 1] and train our models with gradient-based
optimization. To this end, we consider a method for training a differentiable adaptive model. One
could imagine extending the method in Sec. 3.1 to learn smooth thresholds end-to-end on top
of a predictor. However, to add flexibility, we can allow π to be a function of X as well as ŶM ,
i.e. ŶM = f(X) and π = g(ŶM , X). This is advantageous because a DM’s actions may depend
heterogenously on the data: the DM’s expected loss may change as a function of X , and it may do so
differently than the model’s. We can parametrize ŶM and π with neural networks, and optimize Eq.
9 or 10 directly using gradient descent. At test time, we defer when π > 0.5.

We estimate the expected value in Eq. 9 by sampling s ∼ Ber(π) during training (once per example).
To estimate the gradient through this sampling procedure, we use the Concrete relaxation [28].
Additionally, it can be helpful to stop the gradient from π from backpropogating through ŶM . This
allows for ŶM to still be a good predictor independently of π.

See Appendix F for a brief discussion of a third model we consider, a Bayesian Neural Network [3].

3.3 Fair Classification through Regularization

We can build a regularized fair loss function to combine error rate with a fairness metric. We can
extend the loss in Eq. 9 to include a regularization term R, with a coefficient αfair to balance
accuracy and fairness:

Ldefer(Y, ŶM , ŶD, π; θ) = Es∼Ber(π)[L(Y, ŶM , ŶD, s; θ) + αfairR(Y, ŶM , ŶD, s) (11)

We now provide some fairness background. In fair binary classification, we have input labels Y ,
predictions Ŷ , and sensitive attribute A (e.g., gender, race, age, etc.), assuming for simplicity that
Y, Ŷ , A ∈ {0, 1}. In this work we assume that A is known. The aim is twofold: firstly, accurate
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classification i.e Yi = Ŷi; and fairness with respect to A i.e. Ŷ does not discriminate unfairly against
particular values of A. Adding fairness constraints can provably hurt classification error [29]. We
thus define a loss function which trades off between these two objectives, yielding a regularizer.
We choose equalized odds as our fairness metric [20], which requires that false positive and false
negative rates are equal between the two groups. We will refer to the difference between these rates
as disparate impact (DI). Here we define a continuous relaxation of DI, having the model output a
probability p and considering Ŷ ∼ Ber(p). The resulting term D acts as our regularizerR in Eq. 11:

DIY=i(Y,A, Ŷ ) = |EŶ∼Ber(p)(Ŷ = 1− Y |A = 0, Y = i)− EŶ∼Ber(p)(Ŷ = 1− Y |A = 1, Y = i)|

D(Y,A, Ŷ ) =
1

2
(DIY=0(Y,A, Ŷ ) +DIY=1(Y,A, Ŷ ))

(12)

Our regularization scheme is similar to Bechavod and Ligett [2], Kamishima et al. [24]; see Appendix
B for results confirming the efficacy of this scheme in binary classification. We show experimentally
that the equivalence between learning to defer with an oracle-DM and rejection learning holds in the
fairness case (see Appendix E).

4 Related Work

Notions of Fairness. A challenging aspect of machine learning approaches to fairness is formulating
an operational definition. Several works have focused on the goal of treating similar people similarly
(individual fairness) and the necessity of fair-awareness [13, 34].

Some definitions of fairness center around statistical parity [23, 24], calibration [17, 30] or equalized
odds [7, 20, 27, 33]. It has been shown that equalized odds and calibration cannot be simultaneously
(non-trivially) satisfied [7, 27]. Hardt et al. [20] present the related notion of “equal opportunity”.
Zafar et al. [33] and Bechavod and Ligett [2] develop and implement learning algorithms that integrate
equalized odds into learning via regularization.

Incorporating PASS. Several works have examined the PASS option (cf. rejection learning), begin-
ning with Chow [8, 9] who studies the tradeoff between error-rate and rejection rate. Cortes et al.
[10] develop a framework for integrating PASS directly into learning. Attenberg et al. [1] discuss the
difficulty of a model learning what it doesn’t know (particularly rare cases), and analyzes how human
users can audit such models. Wang et al. [32] propose a cascading model, which can be learned
end-to-end. However, none of these works look at the fairness impact of this procedure. From the AI
safety literature, Hadfield-Menell et al. [18] give a reinforcement-learning algorithm for machines to
work with humans to achieve common goals. We also note that the phrase “adaptive rejection” exists
independently of this work, but with a different meaning [15].

A few papers have addressed topics related to both above sections. Bower et al. [4] describe fair
sequential decision making but do not have a PASS concept or provide a learning procedure. In Joseph
et al. [22], the authors show theoretical connections between KWIK-learning and a proposed method
for fair bandit learning. Grgić-Hlaca et al. [16] discuss fairness that can arise out of a mixture of
classifiers. Varshney and Alemzadeh [31] propose “safety reserves” and “safe fail” options which
combine learning with rejection and fairness/safety, but do not analyze learning procedures or larger
decision-making frameworks.

5 Experiments

We experiment with three scenarios, each of which represent an important class of real-world
decision-makers:

1. High-accuracy DM, ignores fairness: This may occur if the extra information available to
the DM is important, yet withheld from the model for privacy or computational reasons.

2. Highly-biased DM, strongly unfair: Particularly in high-stakes/sensitive scenarios, DMs
can exhibit many biases.
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3. Inconsistent DM, ignores fairness (DM’s accuracy varies by subgroup, with total accuracy
lower than model): Human DMs can be less accurate, despite having extra information [12].
We add noise to the DM’s output on some subgroups to simulate human inconsistency.

Due to difficulty obtaining and evaluating real-life decision-making data, we use “semi-synthetic
data”: real datasets, and simulated DM data by training a separate classifier under slightly different
conditions (see Experiment Details). In each scenario, the simulated DM receives access to extra
information which the model does not see.

Datasets and Experiment Details. We use two datasets: COMPAS [26], where we
predict a defendant’s recidivism without discriminating by race, and Heritage Health
(https://www.kaggle.com/c/hhp), where we predict a patient’s Charlson Index (a comorbidity indica-
tor) without discriminating by age. We train all models and DMs with a fully-connected two-layer
neural network 1. See Appendix C for details on datasets and experiments.

We found post-hoc and end-to-end models performed qualitatively similarly for high-accuracy DMs,
so we show results from the simpler model (post-hoc) for those. However, the post-hoc model cannot
adjust to the case of the inconsistent DM (scenario 3), since it does not take X as an input to π (as
discussed in Sec. 3.2), so we show results from the end-to-end model for the inconsistent DM.

Each DM receives extra information in training. For COMPAS, this is the defendant’s violent
recidivism; for Health, this is the patient’s primary condition group. To simulate high-bias DMs (scen.
2) we train a regularized model with αfair = −0.1 to encourage learning a “DM” with high disparate
impact. To create inconsistent DMs (scen. 3), we flip a subset of the DM’s predictions post-hoc with
30% probability: on COMPAS, this subset is people below the mean age; on Health this is males.

Displaying Results. We show results across various hyperparameter settings (αfair, γdefer/γreject),
to illustrate accuracy and/or fairness tradeoffs. Each plotted line connects several points, which are
each a median of 5 runs at one setting. In Fig. 6, we only show the Pareto front, i.e., points for which
no other point had both better accuracy and fairness. All results are on held-out test sets.

5.1 Learning to Defer to Three Types of DM

0.00 0.05 0.10 0.15 0.20
Disparate Impact

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

defer-fair
reject-fair
binary-fair
baseline-acc
DM

(a) COMPAS, High-Accuracy DM

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Disparate Impact

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

reject-fair
defer-fair
baseline-acc
DM_biased

(b) COMPAS, Highly-Biased DM
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Figure 3: Comparing learning-to-defer, rejection learning and binary models. dataset only; Health
dataset results in Appendix A. Each figure is a different DM scenario. In Figs. 3a and 3b, X-axis is
fairness (lower is better); in Fig. 3c, X-axis is deferral rate. Y-axis is accuracy for all figures. Square
is a baseline binary classifier, trained only to optimize accuracy; dashed line is fair rejection model;
solid line is fair deferring model. Yellow circle is DM alone. In Fig. 3a, green dotted line is a binary
model also optimizing fairness. Figs. 3a and 3b are hyperparameter sweep over γreject/defer/αfair;
Fig. 3c sweeps γreject/defer only, with αfair = 0 (for αfair ≥ 0, see Appendix G).

High-Accuracy DM. In this experiment, we consider the scenario where a DM has higher accuracy
than the model we train, due to the DM having access to extra information/resources for security,
efficiency, or contextual reasons. However, the DM is not trained to be fair. In Fig. 3a, we show
that learning-to-defer achieves a better accuracy-fairness tradeoff than rejection learning. Hence,
learning-to-defer can be a valuable fairness tool for anyone who designs or oversees a many-part
system - an adaptive first stage can improve the fairness of a more accurate DM. The fair rejection
learning model also outperforms binary baselines, by integrating the extra DM accuracy on some

1Code available at https://github.com/dmadras/predict-responsibly.
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examples. For further analysis, we break out the results in Figs. 3a by deferral rate, and find that most
of the benefit in this scenario is indeed coming from added fairness by the model (see Appendix H).

Highly-Biased DM. In this scenario, we consider the case of a DM which is extremely biased (Fig.
3b). We find that the advantage of a deferring model holds in this case, as it adapts to the DM’s
extreme bias. For further analysis, we examine the deferral rate of each model in this plot (see
Appendix I). We find that the deferring model’s adaptivity brings two advantages: it can adaptively
defer at different rates for the two sensitive groups to counteract the DM’s bias; and it is able to
modulate the overall amount that it defers when the DM is biased.

Inconsistent DM. In this experiment, we consider a DM with access to extra information, but which
due to inconsistent accuracy across subgroups, has a lower overall accuracy than the model. In Fig.
3c, we compare deferring and rejecting models, examining their classification accuracy at different
deferral rates. We observe that for each deferral rate, the model that learned to defer achieves a higher
classification accuracy. Furthermore, we find that the best learning-to-defer models outperform both
the DM and a baseline binary classifier. Note that although the DM is less accurate than the model,
the most accurate result is not to replace the DM, but to use a DM-model mixture. Critically, only
when the model is adaptive (i.e. learns to defer) is the potential of this mixture unlocked.
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(b) COMPAS, Unreliable
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(c) Health, Reliable
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Figure 4: Each point is some setting of γreject/defer. X-axis is total deferral rate, Y-axis is deferral
rate on DM reliable/unreliable subgroup (COMPAS: Old/Young; Health: Female/Male). Gray line
= 45◦: above is more deferral; below is less. Solid line: learning to defer; dashed line: rejection
learning.
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Figure 5: Each point is a single run in sweep over
γreject/γdefer. X-axis is the model’s lowest accu-
racy over 4 subgroups, defined by the cross prod-
uct of binarized (sensitive attribute, unreliable at-
tribute), which are (race, age) and (age, gender)
for COMPAS and Health respectively. Y-axis is
model accuracy. Only best Y-value for each X-
value shown. Solid line is learning to defer; dashed
line is rejection learning.

To analyze further how the deferring model in
Fig. 3c achieves its accuracy, we examine two
subgroups from the data: where the DM is re-
liable and unreliable (the unreliable subgroup
is where post-hoc noise was added to the DM’s
output; see Experiment Details). Fig. 4 plots
the deferral rate on these subgroups against the
overall deferral rates. We find that the defer-
ring models deferred more on the DM’s reliable
subgroup, and less on the unreliable subgroup,
particularly as compared to rejection models.
This shows the advantage of learning to defer;
the model was able to adapt to the strengths and
weaknesses of the DM.

We also explore how learning-to-defer’s errors
distribute across subgroups. We look at accuracy
on four subgroups, defined by the cross-product
of the sensitive attribute and the attribute defin-
ing the DM’s unreliability, both binary. In Fig. 5,
we plot the minimum subgroup accuracy (MSA)
and the overall accuracy. We find that the deferring models (which were higher accuracy in general),
continue to achieve higher accuracy even when requiring that models attain a certain MSA. This
means that the improvement we see in the deferring models are not coming at the expense of the least
accurate subgroups. Instead, we find that the most accurate deferring models also have the highest
MSA, rather than exhibiting a tradeoff. This is a compelling natural fairness property of learning to
defer which we leave to future work for further investigation.
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6 Conclusion

In this work, we define a framework for multi-agent decision-making which describes many practical
systems. We propose a method, learning to defer (or adaptive rejection learning), which generalizes
rejection learning under this framework. We give an algorithm for learning to defer in the context of
larger systems and explain how to do so fairly. Experimentally, we demonstrate that deferring models
can optimize the performance of decision-making pipelines as a whole, beyond the improvement
provided by rejection learning. This is a powerful, general framework, with ramifications for many
complex domains where automated models interact with other decision-making agents. Through
deferring, we show how models can learn to predict responsibly within their surrounding systems, an
essential step towards fairer, more responsible machine learning.
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A Learning to Defer to Three Types of DM: Health Results
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(a) Health, High-Accuracy DM
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Figure 6: Comparing learning-to-defer, rejection learning and binary models. Health dataset. Each
column is with a different DM scenario, according to captions. In left and centre columns, X-axis
is fairness (lower is better); in right column, X-axis is deferral rate. Y-axis is accuracy for all. The
red square is a baseline binary classifier, trained only to optimize accuracy; dashed line is the fair
rejection model; solid line is a fair deferring model. Yellow circle shows DM alone. In left and centre
columns, dotted line is a binary model also optimizing fairness. Each experiment is a hyperparameter
sweep over γreject/γdefer (in left and centre columns, also αfair; in right column, αfair = 0; for
results with αfair ≥ 0, see Appendix G).

Results for Health dataset corresponding to Fig. 6 in Sec. 5.1.

B Results: Binary Classification with Fair Regularization

The results in Figures 7 and 8 roughly replicate the results from [2], who also test on the COMPAS
dataset. Their results are slightly different for two reasons: 1) we use a 1-layer NN and they use
logistic regression; and 2) our training/test splits are different from theirs - we have more examples in
our training set. However, the main takeaway is similar: regularization is an effective way to reduce
DI without making too many more errors. We also show the results of this regularization for neural
networks with Bayesian uncertainty on the weights (see Appendix F).

(a) COMPAS, MLP (b) Health, MLP (c) COMPAS, BNN (d) Health, BNN

Figure 7: Relationship of DI to α, the coefficient on the DI regularizer, 5 runs for each value of α.
Two datasets, COMPAS and Health. Two learning algorithms, MLP and Bayesian weight uncertainty.

(a) COMPAS, MLP (b) Health, MLP (c) COMPAS, BNN (d) Health, BNN

Figure 8: Relationship of error rate to α, the coefficient on the DI regularizer, 5 runs for each value
of α. Two datasets, COMPAS and Health. Two learning algorithms, MLP and Bayesian weight
uncertainty.
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C Dataset and Experiment Details

We show results on two datasets. The first is the COMPAS recidivism dataset, made available by
ProPublica [26] 2. This dataset concerns recidivism: whether or not a criminal defendant will commit
a crime while on bail. The goal is to predict whether or not the person will recidivate, and the sensitive
variable is race (split into black and non-black). We used information about counts of prior charges,
charge degree, sex, age, and charge type (e.g., robbery, drug possession). We provide one extra bit of
information to our DM - whether or not the defendant violently recidivated. This clearly delineates
between two groups in the data - one where the DM knows the correct answer (those who violently
recidivated) and one where the DM has no extra information (those who did not recidivate, and those
who recidivated non-violently). This simulates a real-world scenario where a DM, unbeknownst to
the model, may have extra information on a subset of the data. The simulated DM had a 24% error
rate, better than the baseline model’s 29% error rate. We split the dataset into 7718 training examples
and 3309 test examples.

The second dataset is the Heritage Health dataset3. This dataset concerns health and hospitalization,
particularly with respect to insurance. For this dataset, we chose the goal of predicting the Charlson
Index, a comorbidity indicator, related to someone’s chances of death in the next several years. We
binarize the Charlson Index of a patient as 0/greater than 0. We take the sensitive variable to be
age and binarize by over/under 70 years old. This dataset contains information on sex, age, lab test,
prescription, and claim details. The extra information available to the DM is the primary condition
group of the patient (given in the form of a code e.g., ’SEIZURE’, ’STROKE’, ’PNEUM’). Again,
this simulates the situation where a DM may have extra information on the patient’s health that the
algorithm does not have access to. The simulated DM had a 16% error rate, better than the baseline
model’s 21% error rate. We split the dataset into 46769 training examples and 20044 test examples.

We trained all models using a fully-connected two-layer neural network with a logistic non-linearity
on the output, where appropriate. We used 5 sigmoid hidden units for COMPAS and 20 sigmoid
hidden units for Health. We used ADAM [25] for gradient descent. We split the training data into
80% training, 20% validation, and stopped training after 50 consecutive epochs without achieving a
new minimum loss on the validation set.

D Details on Optimization: Hard Thresholds

We now explain the post-hoc threshold optimization search procedure we used. To encourage fairness,
we can learn a separate set of thresholds for each group, then apply the appropriate set of thresholds
to each example. Since it is a very small space (one dimension per threshold = 4 dimensions; ), we
used a random search. We sampled 1000 combinations of thresholds, picked the thresholds which
minimized the loss on one half of the test set, and evaluated these thresholds on the other half of the
test set. We do this for several values of α, γ in thresholding, as well as several values of α for the
original binary model.

We did not sample thresholds from the [0, 1] interval uniformly. Rather we used the following
procedure. We sampled our lower thresholds from the scores in the training set which were below
0.5, and our upper thresholds from the scores in the training set which were above 0.5. Our sampling
scheme was guided by two principles: this forced 0.5 to always be in the PASS region; and this
allowed us to sample more thresholds where the scores were more dense. If only choosing one
threshold per class, we sampled from the entire training set distribution, without dividing into above
0.5 and below 0.5.

This random search was significantly faster than grid search, and no less effective. It was also faster
and more effective than gradient-based optimization methods for thresholds - the loss landscape
seemed to have many local minima.
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Figure 9: Comparing model performance between learning to defer training with oracle as DM to
rejection learning. At test time, same DM is used.

E Comparison of Learning to Defer with an Oracle in Training to Rejection
Learning

In Section 2.3, we discuss that rejection learning is similar to learning to defer training, except
with a training DM who treats all examples similarly, in some sense. In Section 2.3, we show that
theoretically these are equivalent. However, our fairness regularizer is not of the correct form for the
proof in Sec.2.3 to hold. Here we show experimental evidence that the objectives are equivalent for
the fair-regularized loss function. The plots in Figure 9 compare these two models: rejection learning,
and learning to defer with an oracle at training time, and the standard DM at test time. We can see
that these models trade off between accuracy and fairness in almost an identical manner.

F Bayesian Weight Uncertainty

We can also take a Bayesian approach to uncertainty by learning a distribution over the weights
of a neural network [3]. In this method, we use variational inference to approximate the posterior
distribution of the model weights given the data. When sampling from this distribution, we can obtain
an uncertainty estimate. If sampling several times yields widely varying results, we can state the
model is uncertain on that example.

This model outputs a prediction p ∈ [0, 1] and an uncertainty ρ ∈ [0, 1] for example x. We calculate
these by sampling J times from the model, yielding J predictions zj ∈ [0, 1]. Our prediction p is
the sample mean µ = 1

J

∑J
j=1 zj . To represent our uncertainty, we can use signal-to-noise ratio,

defined as S = |µ−0.5|
σ , based on µ and the sample standard deviation σ =

√∑J
j=1(zj−µ)2
J−1 . Setting

ρ = σ(log(1/S)) yields uncertainty values in a [0, 1] range. At test time, the system can threshold
this uncertainty; any example with uncertainty beyond a threshold is rejected, and passed to the DM.

With weights w and variational parameters θ, our variational lower bound `m is then (with CE
denoting cross entropy):

`BNNm (Y,A,X,w; θ) = −KL[q(w|θ)||Prior(w)] + Eq(w|θ) − CE(Yi, p(xi; θ))

G Results: Differentiable Learning-to-Defer Fairness with αfair ≥ 0

We show here the results of the experiments with deferring fairly to a low accuracy, inconsistent DM
with accuracy to extra information. The results are qualitatively similar to those in Figs. 3a and 6a.
However, it is worth noting here that the rejection learning results mostly overlap the binary model
results. This means that if the DM is not taken into consideration through learning to defer, then the
win of rejection learning over training a binary model can be minimal.

2downloaded from https://github.com/propublica/compas-analysis
3Downloaded from https://www.kaggle.com/c/hhp
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Figure 10: Comparing learning-to-defer, rejection learning and binary models. High-accuracy, ignores
fairness DM. X-axis is fairness (lower is better). Y-axis is accuracy. The red square is a baseline
binary classifier, trained only to optimize accuracy; dashed line is the fair rejection model; solid
line is a fair deferring model. Yellow circle shows DM alone. In left and centre columns, dotted
line is a binary model also optimizing fairness. Each experiment is a hyperparameter sweep over
γreject/γdefer/αfair.

H Results: Learning to Defer by Deferral Rate
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ferral Rate

0.00 0.05 0.10 0.15 0.20
Disparate Impact

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Ac
cu

ra
cy

reject-fair
defer-fair
baseline-acc
DM

(b) COMPAS dataset, 30-70% De-
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Deferral Rate

Figure 11: Comparison of learning to defer (solid) and reject (dashed). Each figure considers only
runs where the final deferral rate was low, medium, or high, taking the Pareto front on that set of
examples.

Models which rarely defer behave very differently from those which frequently defer. In Figure 11,
we break down the results from Figure 3a by deferral rate. First, we note that even for models with
similar deferral rates, we see a similar fairness/accuracy win for the deferring models. Next, we can
look separately at the low and high deferral rate models. We note that the benefit of learning to defer
is much larger for high deferral rate models. This suggests that the largest benefit of learning to defer
comes from a win in fairness, rather than accuracy, since the DM already provides high accuracy.

I Results: Deferral Rates with a Biased DM

In Fig. 12, we further analyze the difference in deferral and rejection rates between models trained
with the biased DM (Fig. 3b) and standard DM (Fig. 3a). We ran the model for over 1000 different
hyperparameter combinations, and show the distribution of the deferral rates of these runs on the
COMPAS dataset, dividing up by defer/reject models, biased/standard DM, and the value of the
sensitive attribute.

Notably, the deferring models are able to treat the two DM’s differently, whereas the rejecting models
are not. In particular, notice that the solid line (biased DM) is much higher in the low deferral regime,
meaning that the deferring model, given a biased DM, almost defers on fewer than 20% of examples
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(a) Reject, A = 0
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(b) Defer, A = 0
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(c) Reject, A = 1
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Figure 12: Deferral rate for a range of hyperparameter settings, COMPAS dataset. X-axis is cutoff
∈ [0, 1], line shows percentage of runs which had deferral rate below the cutoff. Blue solid line is
models trained with biased DM, purple dashed line is with standard DM. Left column is rejection
learning, right column is learning-to-defer. Top and bottom row split by value of the sensitive attribute
A.

since the DM is of lower quality. Secondly, we see that the deferring model is also able to adapt to the
biased DM by deferring at differing rates for the two values of the sensitive attribute — an effective
response to a (mildly or strongly) biased DM who may already treat the two groups differently. This
is another way in which a model that learns to defer can be more flexible and provide value to a
system.
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