Probability Basics for Machine Learning

CSC411

^{*}Based on many other people's slides and resource from Wikipedia.

Outline

- Motivation
- Notation, definitions, laws
- Probability distributions

Why Represent Uncertainty?

- The world is full of uncertainty
 - "What will the weather be like today?"
 - "Will I like this movie?"
 - "Is there a person in this image?"
- We're trying to build systems that understand and (possibly) interact with the real world
- We often can't prove something is true, but we can still ask how likely different outcomes are or ask for the most likely explanation

Why Use Probability to Represent Uncertainty?

- Write down simple, reasonable criteria that you'd want from a system of uncertainty (common sense stuff), and you always get probability.
- We will restrict ourselves to a relatively informal discussion of probability theory.

Notation

- A random variable X represents outcomes or states of the world.
- We will write p(x) to mean Probability(X = x)
- Sample space: the space of all possible outcomes (may be discrete, continuous, or mixed)
- p(x) is the probability mass (density) function
 - Assigns a number to each point in sample space
 - Non-negative, sums (integrates) to 1
 - Intuitively: how often does x occur, how much do we believe in x.

Joint Probability Distribution

- Prob(X=x, Y=y)
 - "Probability of X=x and Y=y"
 - -p(x, y)

Conditional Probability Distribution

- Prob(X=x | Y=y)
 - "Probability of X=x given Y=y"
 - -p(x|y) = p(x,y)/p(y)

Example

- Consider a bag of 3 red and 5 blue marbles
- We will take two marbles out of the bag, one at a time, without replacement.
 - Let X=(x1, x2) denote the event that the first marble has color x1 and the second marble has color x2. Both x1 and x2 can be R(Red) or B(Blue)
- Sample space: {(R,R), (R,B), (B,R), (B,B)}

Example

- Consider a bag of 3 red and 5 blue marbles
- We will take two marbles out of the bag, one at a time, without replacement.
 - Let X=R1 denote the event of drawing a red marble first, B1 a blue marble first, and R2, B2 of drawing a red and blue marble second respectively.
- Sample space: {R1,R2}, {B1,B2}, {R1,B2}, {B1,R2}

Example: Conditional Probability

P(x1,x2)	x1=R	x1=B
x2=R	3/28	15/56
x2=B	15/56	5/14

- Now assume x1=R
- What are the conditional probabilities P(x2=R|x1=R), P (x2=B|x1=R)?

$$P(x2=R|x1=R) = (3/28)/((3/28)+(15/56)) = (2/7)$$

 $P(x2=B|x1=R) = (15/56)/((3/28)+(15/56)) = (5/7)$

- We "slice" the table by choosing column x1=R, and then renormalize
- Alternatively: What are P(R) and P(B) after we remove a red marble from the bag?

The Rules of Probability

Sum Rule (marginalization/summing out):

$$p(x) = \sum_{y} p(x, y)$$

$$p(x_1) = \sum_{x_2} \sum_{x_3} ... \sum_{x_N} p(x_1, x_2, ..., x_N)$$

Product/Chain Rule:

$$p(x, y) = p(y | x)p(x)$$

$$p(x_1,...,x_N) = p(x_1)p(x_2 | x_1)...p(x_N | x_1,...,x_{N-1})$$

Example: Marginalizing and Chaining

P(x1,x2)	x1=R	x1=B
x2=R	3/28	15/56
x2=B	15/56	5/14

Marginalization:

$$P(x1=R) = P(R,R) + P(R,B) = (3/28) + (15/56) = 3/8$$

Chaining:

$$P(x2=R)$$

$$= P(R,R)+P(B,R)$$

$$= P(x2=R|x1=R)P(x1=R) + P(x2=R|x1=B)P(x1=B)$$

$$= (2/7)*(3/8)+(3/7)*(5/8)=3/8$$

Bayes' Rule

One of the most important formulas in probability theory

$$p(x | y) = \frac{p(y | x)p(x)}{p(y)} = \frac{p(y | x)p(x)}{\sum_{x'} p(y | x')p(x')}$$

This gives us a way of "reversing" conditional probabilities

Independence

 Two random variables are said to be independent iff their joint distribution factors

$$p(x, y) = p(y | x)p(x) = p(x | y)p(y) = p(x)p(y)$$

 $p(x) = p(x | y) \text{ or } p(y) = p(y | x)$

 Two random variables are conditionally independent given a third if they are independent after conditioning on the third

$$p(x, y | z) = p(y | x, z)p(x | z) = p(y | z)p(x | z)$$

Example: Independence

P(x1,x2)	x1=R	x1=B
x2=R	9/64	15/64
x2=B	15/64	25/64

- Now we sample with replacement
- The joint distribution has been changed accordingly
- P(R,B) = (3/8)*(5/8) = 15/64
- Notice that P(R,B) = P(x1=R)P(x2=B), the two trials are independent

Continuous Random Variables

 Outcomes are real values. Probability density functions define distribution.

$$P(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

Probability mass in [a,b]

$$p(a \le x \le b) = \int_b^a \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x-\mu)^2\right\} dx$$

Continuous Random Variables

- Continuous joint distributions: replace sums with integrals, and everything holds
 - E.g., Marginalization and conditional probability

$$P(x,z) = \int_{y} P(x,y,z) = \int_{y} P(x,z \mid y) P(y)$$

Summarizing Probability Distributions

 It is often useful to give summaries of distributions without defining the whole distribution (E.g., mean and variance)

• Mean:
$$E[x] = \langle x \rangle = \int_{x} x \cdot p(x) dx$$

• Variance:
$$var(x) = \int_{x}^{2} (x - E[x])^{2} \cdot p(x) dx$$

$$= E[x^2] - E[x]^2$$

Example 1: Bernoulli

Binary random variable

$$X \in \{0,1\}$$

• $p(heads) = \mu$

$$\mu \in [0,1]$$

Coin toss

$$p(x \mid \mu) = \mu^{x} (1 - \mu)^{1-x}$$

- Mean: μ
- Variance: μ(1- μ)

Example 2: Multinomial

$$X \in \{1,2,...,K\}$$

$$\mu_k \in [0,1], \sum_{k=1}^K \mu_k = 1$$

- $p(X=k | \mu) = \mu_k$
- For a single observation die toss
 - Sometimes called Categorical

$$X = (x_1, x_2, ..., x_K)$$
 $x_i \in \{0, 1\}$ $p(x_1, x_2, ..., x_K | \mu) = \prod_{k=1}^{\infty} \mu_k^{x_k}$
• Marginal distribution: $p(x_k | \mu) = \mu_k^{x_k} (1 - \mu_k)^{1 - x_k}$

- Mean of x_k : μ_k
- Variance of x_k : $\mu_k(1-\mu_k)$
- This is a generalization of the Bernoulli distribution to a 1 of K distribution
- Note that the x_k's are not independent since must sum to 1 over all k's

Example 2: Multinomial

For multiple observations

$$\mu_k \in [0,1], \sum_{k=1}^K \mu_k = 1$$

- integer counts on N trials
- Prob(1 came out 3 times, 2 came out once,...,6
 came out 7 times if I tossed a die 20 times)

$$\sum_{k=1}^{K} x_k = N \qquad P(x_1, ..., x_K \mid \mu) = \frac{N!}{\prod_{k=1}^{K} x_k!} \prod_{k=1}^{K} \mu_k^{x_k}$$

Gaussian (Normal)

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

$$p(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\}$$

- μ is the mean
- σ^2 is the variance
- Can verify these by computing integrals. E.g.,

$$\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{1}{2\sigma^2} (x - \mu)^2\right\} dx = \mu$$

Multivariate Gaussian

$$P(x \mid \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^T \sum^{-1}(x - \mu)\right\}$$

Multivariate Gaussian

$$p(x \mid \mu, \Sigma) = |2\pi \Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^T \sum^{-1}(x - \mu)\right\}$$

- x is now a vector
- μ is the mean vector
- Σ is the **covariance matrix**

Example: Maximum Likelihood For a 1D Gaussian

• Suppose we are given a data set of samples of a Gaussian random variable X, $D=\{x^1,...,x^N\}$ and told that the variance of the data is σ^2

What is our best guess of μ ?

*Need to assume data is independent and identically distributed (i.i.d.)

Example: Maximum Likelihood For a 1D Gaussian

What is our best guess of μ ?

We can write down the likelihood function:

$$p(D | \mu) = \prod_{i=1}^{N} p(x^{i} | \mu, \sigma) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^{2}} (x^{i} - \mu)^{2}\right\}$$

- We want to choose the μ that maximizes this expression
 - Take log, then basic calculus: differentiate w.r.t. μ,
 set derivative to 0, solve for μ to get sample mean

$$\mu_{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Example: Maximum Likelihood For a 1D Gaussian

Maximum Likelihood

Least-squares Regression

 Standard loss/cost/objective function measures the squared error in y [the prediction of t(x)] from x.

$$J(\mathbf{w}) = \sum_{n=1}^{N} [t^{(n)} - y^{(n)}]^2$$

 The loss for the red hypothesis is the sum of the squared vertical errors.

When is minimizing the squared error equivalent to Maximum Likelihood Learning?

Minimizing the squared residuals is equivalent to maximizing the log probability of the correct answer under a Gaussian centered at the model's guess.

$$y^{(n)} = y(\mathbf{x}^{(n)}, \mathbf{w})$$

t = the answer

y = model'scorrect estimate of most probable value

$$p(t^{(n)} | y^{(n)}) = p(y^{(n)} + noise = t^{(n)} | \mathbf{x}^{(n)}, \mathbf{w}) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(t^{(n)} - y^{(n)})^2}{2\sigma^2}}$$

$$-\log p(t^{(n)} | y^{(n)}) = \log \sqrt{2\pi} + \log \sigma + \frac{(t^{(n)} - y^{(n)})^2}{2\sigma^2_{\text{can}}}$$

can be ignored if sigma is fixed

can be ignored if sigma is same for every case

Minimizing the absolute error

An alternative to the least-squares objective:

$$\min_{over \mathbf{w}} \sum_{n} |t^{(n)} - \mathbf{w}^T \mathbf{x}^{(n)}|$$

- This minimization involves solving a linear programming problem.
- It corresponds to maximum likelihood estimation if the output noise is modeled by a Laplacian instead of a Gaussian.

$$p(t^{(n)} | y^{(n)}) = a e^{-a |t^{(n)} - y^{(n)}|}$$

$$-\log p(t^{(n)} | y^{(n)}) = -a |t^{(n)} - y^{(n)}| + const$$

Regularized least squares

Increasing the input features this way can complicate the model considerably

Aim: select the appropriate model complexity automatically

Standard approach: regularization

$$\tilde{J}(\mathbf{w}) = \sum_{n=1}^{N} \{ y(\mathbf{x}^{(n)}, \mathbf{w}) - t^{(n)} \}^2 + \alpha \mathbf{w}^T \mathbf{w}$$

The penalty on the squared weights is known as ridge regression in statistics

Leads to modified update rule

$$w \leftarrow w + 2\lambda[(t^{(n)} - y(x^{(n)}))x^{(n)} - \alpha w]$$