Probability Basics for
Machine Learning

CSC411

*Based on many other people’s slides and resource from Wikipedia.
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Why Represent Uncertainty?

 The world is full of uncertainty
— “What will the weather be like today?”
— “Will I like this movie?”

— “Is there a person in this image?”

 We're trying to build systems that understand
and (possibly) interact with the real world

 We often can’t prove something is true, but
we can still ask how likely different outcomes
are or ask for the most likely explanation



Why Use Probability to Represent
Uncertainty?

* Write down simple, reasonable criteria that
you'd want from a system of uncertainty
(common sense stuff), and you always get
probability.

 We will restrict ourselves to a relatively
informal discussion of probability theory.



Notation

A random variable X represents outcomes or
states of the world.

We will write p(x) to mean Probability(X = x)

Sample space: the space of all possible
outcomes (may be discrete, continuous, or
mixed)

p(x) is the probability mass (density) function
— Assigns a number to each point in sample space
— Non-negative, sums (integrates) to 1

— Intuitively: how often does x occur, how much do
we believe in x.



Joint Probability Distribution

* Prob(X=x, Y=vy)
— “Probability of X=x and Y=y”
_ p(xr y)

Conditional Probability Distribution

* Prob(X=x]|Y=y)
— “Probability of X=x given Y=y”
— p(x|y) = p(x,y)/ply)



Example

* Consider a bag of 3 red and 5 blue marbles

 We will take two marbles out of the bag, one
at a time, without replacement.

— Let X=(x1, x2) denote the event that the first

marble has color x1 and the second marble has
color x2. Both x1 and x2 can be R(Red) or B(Blue)

 Sample space: {(R,R), (R,B), (B,R), (B,B)}



Example

* Consider a bag of 3 red and 5 blue marbles

 We will take two marbles out of the bag, one
at a time, without replacement.

— Let X=R1 denote the event of drawing a red
marble first, B1 a blue marble first, and R2, B2 of
drawing a red and blue marble second

respectively.
 Sample space: {R1,R2}, {B1,B2}, {R1,B2},
{B1,R2}



Example: Conditional Probability

P(x1,x2) x1=R x1=B
x2=R 3/28 15/56
x2=B 15/56 5/14

Now assume x1=R
What are the conditional probabilities P(x2=R|x1=R), P
(x2=B |x1=R)?
P(x2=R|x1=R) = (3/28)/((3/28)+(15/56)) = (2/7)
P(x2=B|x1=R) = (15/56)/((3/28)+(15/56)) = (5/7)
We “slice” the table by choosing column x1=R, and
then renormalize

Alternatively: What are P(R) and P(B) after we remove
a red marble from the bag?



The Rules of Probability

* Sum Rule (marginalization/summing out):
p(x) = Ep(x, »)
p(x,) = EE Ep(xl X,

. Product/Cham RuIe

p(x,y)=p(y|x)p(x)
p(xp---»xzv) = p(x,) p(x, |X1)...p(xN |x19"°9xN—1)



Example: Marginalizing and Chaining

P(x1,x2) x1=R x1=B
x2=R 3/28 15/56
x2=B 15/56 5/14

* Marginalization:
P(x1=R) = P(R,R) + P(R,B) = (3/28) + (15/56) = 3/8
* Chaining:
P(x2=R)
= P(R,R)+P(B,R)
= P(x2=R|x1=R)P(x1=R) + P(x2=R|x1=B)P(x1=B)
= (2/7)*(3/8)+(3/7)*(5/8)=3/8



Bayes’ Rule

* One of the most important formulas in
probability theory

p(ylx)p(x)  p(y|x)p(x)
p(») D, P [¥)p(x)

* This gives us a way of “reversing” conditional
probabilities

p(x|y)=



Independence

e Two random variables are said to be
independent iff their joint distribution factors

p(x,y)=p(y|x)p(x)=px|y)p(y)= p(x)p(y)
p(x)=p(x|y) or p(y)=py|x)

 Two random variables are conditionally

independent given a third if they are
independent after conditioning on the third

p(x,y|z)=p(y|x,z)p(x|z)=p(y|z)p(x|z)



Example: Independence

P(x1,x2) x1=R x1=B
x2=R 9/64 15/64
x2=B 15/64 25/64

Now we sample with replacement

The joint distribution has been changed
accordingly

P(R,B) = (3/8)*(5/8) = 15/64

Notice that P(R,B) = P(x1=R)P(x2=B), the two
trials are independent



Continuous Random Variables

* Qutcomes are real values. Probability density
functions define distribution.

P(x|u,0)= raexp{ : — 2}

* Probability mass in [a b]

( f = 1{ l( f}l
I) il (:{} A — .I” (1.5




Continuous Random Variables

* Continuous joint distributions: replace sums
with integrals, and everything holds

— E.g., Marginalization and conditional probability
P(x,2) = [P(x,3,2) = [P(x,2 | $)P(y)
y y



Summarizing Probability Distributions

* |tis often useful to give summaries of
distributions without defining the whole
distribution (E.g., mean and variance)

* Mean: E[x]=(x) =fx-p(x) dx
+ Variance: var(x) = [[(x— E[x])" p(x) ds

= E[x°]- E[x]’



Example 1: Bernoulli

Binary random variable
p(heads) = u
Coin toss

p(x|p)=p (1-0)"

Mean:
Variance: p(1- )

X €1{0,1}
u€[0,1]



Example 2: Multinomial

Xel{l2,.. K} u, em,u,Zﬂk =1
* p(X=k|n) = p
* For asingle observation — die toss

— Sometimes called Categorical

-
X = (21,22, ....,0x) x; €{0,1} Pz, Toy oo x| ) = H”‘LA'

* Marginal distribution: p(x, | )=, 1-pu) ™ *!

* Mean of x,: y,

* Variance of x,: u,(1-p,)

* This is a generalization of the Bernoulli
distribution to a 1 of K distribution

* Note that the x,'s are not independent since must
sum to 1 over all k's



Example 2: Multinomial

* For multiple observations MkE[O,l],Zﬂk =1
=]
— integer counts on N trials

— Prob(1 came out 3 times, 2 came out once,...,6
came out 7 times if | tossed a die 20 times)

K
x, =N P(x,,....x
;k (1 K|/u) ka];[ﬂ




Example 3: Normal (Gaussian)
Distribution

e Gaussian (Normal)

1 1 ,
9 — Sy 2 _
X O)= 271—0- cX 20_ X
1.0 T
I p=0, 0?=0.2 —
- p=0, 0?=1.0—
0.8 p=0, 02=5.0 —1]
u=-2, 02=0.5




Example 3: Normal (Gaussian)

Distribution
(| t,0) = ———expl - (x—uy?
P U, \/ﬂO' pi 20_2 U j

* Histhe mean
e o02is the variance

e Can verify these by computing integrals. E.g.,

- | | )
X" expd — X — dx =
_foo Fyu p{ S (-n) } u




Example 3: Normal (Gaussian)
Distribution

e Multivariate Gaussian

P(x1wX)=Pay" eXp{—%(x - Y (x - u)}




Example 3: Normal (Gaussian)
Distribution

e Multivariate Gaussian

px| . 3) =3 eXp{—%(x—ﬂ)T z'%x—m}

* XIS NOW a vector
* His the mean vector
e 3 is the covariance matrix



Example: Maximum Likelihood For a
1D Gaussian

e Suppose we are given a data set of samples of
a Gaussian random variable X, D={x%,..., x\}
and told that the variance of the data is o2

x1 x? XN
What is our best guess of u?

*Need to assume data is independent and
identically distributed (i.i.d.)



Example: Maximum Likelihood For a
1D Gaussian

What is our best guess of u?

e We can write down the likelihood function:

p(D]w) = Hp(xi | u,0) = ]_[ \/%O exp{— 2(172 (x' - M)z}

 We want to choose the p that maximizes this
expression

— Take log, then basic calculus: differentiate w.r.t. y,
set derivative to O, solve for u to get sample mean

Wi = %E:xi



Example: Maximum Likelihood For a
1D Gaussian

N—

1 2 N
X X HI\/IL". X

Maximum Likelihood



Least-squares Regression

» Standard loss/cost/objective
function measures the squared
error in y [the prediction of t(x)]
from x.

N

J(w) =Y [1" -y

n=1

* The loss for the red hypothesis is
the sum of the squared vertical
errors.

from Bishop




When is minimizing the squared error equivalent to
Maximum Likelihood Learning?

Minimizing the squared residuals
is equivalent to maximizing the
log probability of the correct
answer under a Gaussian

centered at the model’s guess. t=the y=models
correct  estimate of most
y(”) — y(X(”), W) answer  probable value
1 (t(n)_y(n))z
2

20

(" 1y = p(y"™ + noise =t 1 x",w) = e
V2o

(1" — y™y?

2

~log p(t" 1y = log\27x + logo +
A 20 . .
w, can be ignored if

can be ignored if sigma is same for
sigma is fixed every case



Minimizing the absolute error

e An alternative to the least-squares objective:
min_ EI (" —wi x|
n

* This minimization involves solving a linear
programming problem.

* It corresponds to maximum likelihood estimation if
the output noise is modeled by a Laplacian instead of
a Gaussian.

—a It(")—y(")l

p™1y") = ae
~log p(t" 1y") = —alt™ =y |+ const



Regularized least squares

Increasing the input features this way can complicate the model
considerably

Aim: select the appropriate model complexity automatically

Standard approach: regularization
7 \ (n) (M) 2 T
J(w) =3y w17} + aw'w
n=1

The penalty on the squared weights is known as ridge regression
in statistics

Leads to modified update rule

w —w+2A[(" - y(x")x" —aw]



