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Brief Review of SVMS



Geometric Intuition



Margin Derivation



Margin Derivation

Compute the distance  of an arbitrary point  in the (+) class to the separating hyperplane.

If we let  denote the class of , then the distance becomes
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SVM Problem

But scaling  and  doesn't change .w → κw b → κb =dn
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Non-linear SVMs

For a linear SVM, .y(x) = x + bwT

We can just as well work in an alternate feature space: .(x) = ϕ(x) + by~ wT

http://i.imgur.com/WuxyO.png



Non-linear SVMs

http://www.youtube.com/watch?v=3liCbRZPrZA



SVMs vs Logistic Regression



Logistic Regression

[<matplotlib.lines.Line2D at 0x4558310>]



Logistic Regression

Assign probability to each outcome

Train to maximize likelihood

Linear decision boundary

P (y = 1|x) = σ( x + b)wT

L(w) = σ( + b (1 − σ( + b)∏
n=1

N
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= I[ x + b ≥ 0]ŷ wT



SVMs



SVMs

Enforce a margin of separation

Train to find the maximum margin

Linear decision boundary

( + b) ≥ 1,  for n = 1 … Nyn wT xn
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Comparison

Logistic regression wants to maximize the probability of the data.
The greater the distance from each point to the decision boundary, the better.

SVMs want to maximize the distance from the closest points to the decision boundary.
Doesn't care about points that aren't support vectors.



A Different Take

Consider an alternate form of the logistic regression decision function:

= {ŷ
1
0

if P (y = 1|x) ≥ P (y = 0|x)
 otherwise

P (y = 1|x) ∝ exp( x + b)wT

P (y = 0|x) ∝ 1



A Different Take

Suppose we don't actually care about the probabilities. All we want to do is make the right decision.

We can put a constraint on the likelihood ratio, for some constant :c > 1
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A Different Take

Take the log of both sides:

log P (y = 1| ) − log P (y = 0| ) ≥ log cxn xn

Recalling that  and :P (y = 1| ) ∝ exp( + b)xn wT xn P (y = 0| ) ∝ 1xn

+ b − 0 ≥ log cwT xn

+ b ≥ log cwT xn

But  is arbitrary, so set it s.t. :c log c = 1

+ b ≥ 1wT xn



A Different Take

So now we have . But this may not have a unique solution,
so put a quadratic penalty on the weights to make the solution unique:

By asking logistic regression to make the right decisions instead of maximizing the probability of the data, we
derived an SVM.
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Likelihood Ratio

The likelihood ratio drives this derivation:

Different classifiers assign different costs to .

r = = = exp( x + b)
P (y = 1|x)
P (y = 0|x)

exp( x + b)wT

1
wT
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LR Cost

Choose cost(r) = log(1 + )1
r

<matplotlib.text.Text at 0x58bae10>



LR Cost

Minimizing  is the same as minimizing the negative log-likelihood objective for logistic regression!

log(1 + ) = log(1 + exp(−( x + b)))1
r

wT

= − log
1

1 + exp(−( x + b))wT

= − log σ( x + b)wT

cost(r)



SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.
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SVM with Slack Variables



SVM Cost

Choose cost(r) = max(0, 1 − log(r)) = max(0, 1 − ( x + b))wT

<matplotlib.text.Text at 0x624fed0>



Plotted in terms of r

<matplotlib.legend.Legend at 0x6dfe390>



Plotted in terms of x + bwT

<matplotlib.legend.Legend at 0x7b36c90>



Exploiting the Connection between LR and SVMs



Kernel Trick for LR

In the dual form, the SVM decision boundary is

y(x) = ϕ(x) + b = K(x, ) + b = 0wT ∑
n=1

N

αntn xn

We could plug this into the LR cost:

log(1 + exp(− K(x, ) − b))∑
n=1

N

αntn xn



Multi-class SVMS

Recall multi-class logistic regression

P (y = i|x) =
exp( x + )wT
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k
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Multi-class SVMS

Suppose that we just want the decision rule to satisfy

≥ c,  for k ≠ i
P (y = i|x)
P (y = k|x)

Taking logs as before,
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Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.
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LR and SVMs are closely linked

Both can be viewed as taking a probabilistic model and miminizing some cost associated with the
likelihood ratio.

This allows use to extend both models in principled ways.



Which to Use?

Logistic regression

Gives calibrated probabilities that can be interpreted as confidence in a decision.
Unconstrained, smooth objective.
Can be used within Bayesian models.

SVMs

No penalty for examples where the correct decision is made with sufficient confidence, which can lead
to good generalization.
Dual form gives sparse solutions when using the kernel trick, leading to better scalability.


