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Dimensionality Reduction

We have some data X € RV*P
D may be huge, etc.

We would like to find a new representation , - pNxK
where K << D.

® For computational reasons.

® Jo better understand (e.g., visualize) the data.
® For compression.
[

We will restrict ourselves to linear transformations
for the time being.



Example

® |n this dataset, there are only 3 degrees of
freedom: horizontal and vertical translations, and

rotations.

®* Yet each image contains 784 pixels, so X will be
/84 elements wide.
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Abstract Visualization




What i1s a Good
Transformation?

® Goal is to find good directions u ’ /m
that preserves “important” aspects of **
the data. X

® |n a linear setting: z = rlu o
® This will turn out to be the
top-K eigenvalues of the

data covariance.

® Two ways to view this: —

1. Find directions of maximum variation

2. Find projections that
minimize reconstruction error




Principal Component Analysis
(Maximum Variance)
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where the sample mean and covariance are given by:
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Finding ul
*We want to maximize ui Su;

subject to |ui]| =1
(since we are finding a direction)

e Use Lagrange multiplier &y to express this as

ui Sup + a1 (1 — uiug)




Finding ul
® Take derivative and setto O

Su1 — X1Uq =0

S”U,l =X1Uq

® So u1 is an eigenvector of S with eigenvalue o1

® |n fact it must be the eigenvector with maximum
eigenvalue, since this minimizes the objective.




Finding u?2

maximize ua Sus

subject to ||usz|| =1
us u; =0
Lagrange form: ugSug + 042(1 — ugUQ) — Bugul
| 0
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Finding u?2

maximize ua Sus

subject to ||usz|| =1
us u; =0 0
Lagrange form: ugSug + 042(1 — ugug) — ﬂu%lv
0
Finding a: By, =5uz — agup =0

— Sus = s

@, must be the second largest eigevalue o




PCA In General

® We can compute the entire PCA solution by just

computing the eigenvectors with the top-k
eigenvalues.

® These can be found using the singular value
decomposition of S.




® How do we choose the number of components?
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Number of eigenvectors

® Look at the spectrum of covariance, pick K to capture most of
the variation.

® More principled: Bayesian treatment (beyond this course).



Demo

® Eigenfaces
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Principal Component Analysis
(Minimum Reconstruction Error)

® We can also think of PCA as minimizing the
reconstruction error of the compressed data.

N
nimize = 5o 3 [z —
minimize — —— —
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e We will omit the details for now, but the key is that we
define some K-dimensional basis such that:

x = Wax 4+ const

® The solution will turn out to be the same as the
minimum variance formulation.




Reconstruction

PCA learns to represent vectors in terms of sums
of basis vectors.

For images, e.g.,




PCA for Compression

321x481 image, D is the number of basis vectors used

D in this slide is the same as K in the previous slides



Summary
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Thank You ;-)
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