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Dimensionality Reduction 
  We have some data 

  D may be huge, etc. 

  We would like to find a new representation 
where K << D. 
  For computational reasons. 
  To better understand (e.g., visualize) the data. 
  For compression. 
  … 

  We will restrict ourselves to linear transformations 
for the time being. 



Example 
  In this dataset, there are only 3 degrees of  

freedom: horizontal and vertical translations, and 
rotations. 

  Yet each image contains 784 pixels, so X will be 
784 elements wide. 



Abstract Visualization 



What is a Good 
Transformation? 

  Goal is to find good directions u 
that preserves “important” aspects of  
the data. 

  In a linear setting: 

  This will turn out to be the 
top-K eigenvalues of  the 
data covariance. 

  Two ways to view this: 
1.  Find directions of  maximum variation 

2.  Find projections that 
minimize reconstruction error 



Principal Component Analysis 
(Maximum Variance) 

where the sample mean and covariance are given by: 

i.e.,
variance of  
the projected 
data 



Finding u1 
We want to maximize

subject to  
(since we are finding a direction) 

 Use Lagrange multiplier  to express this as 



Finding u1 
  Take derivative and set to 0 

  So      is an eigenvector of  S with eigenvalue 

  In fact it must be the eigenvector with maximum 
eigenvalue, since this minimizes the objective. 



Finding u2 

Lagrange form: 

Finding β: 



Finding u2 

0 

Lagrange form: 

Finding α2: 

So α2 must be the second largest eigevalue of  S. 



PCA in General 
  We can compute the entire PCA solution by just 

computing the eigenvectors with the top-k 
eigenvalues. 

  These can be found using the singular value 
decomposition of  S. 



  How do we choose the number of  components? 

  Look at the spectrum of  covariance, pick K to capture most of  
the variation. 

  More principled: Bayesian treatment (beyond this course). 



Demo 
  Eigenfaces 



Principal Component Analysis 
(Minimum Reconstruction Error) 
  We can also think of  PCA as minimizing the 

reconstruction error of  the compressed data. 

  We will omit the details for now, but the key is that we 
define some K-dimensional basis such that: 

  The solution will turn out to be the same as the 
minimum variance formulation. 



Reconstruction 
  PCA learns to represent vectors in terms of  sums 

of  basis vectors. 

  For images, e.g., 



PCA for Compression 

D in this slide is the same as K in the previous slides 



Summary



Thank You ;-)
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