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In this tutorial...

● We will focus on two examples of clustering
● I will try to limit the math and focus on building 

intuition



  

Clustering

● In classification, we are given data with 
associated labels

● What if we aren't given any labels? Our data 
might still have structure

● We basically want to simultaneously label 
points and build a classifier



  

Tomato sauce

● A major tomato sauce company wants to tailor 
their brands to sauces to suit their customers

● They run a market survey where the test 
subject rates different sauces

● After some processing they get the following 
data

● Each point represents the preferred sauce 
characteristics of a specific person



  

Tomato sauce data

More Sweet

More Garlic

This tells us how much different customers like different flavors



  

Some natural questions

● How many different sauces should the 
company make?

● How sweet/garlicy should these sauces be?
● Idea: We will segment the consumers into 

groups (in this case 3), we will then find the 
best sauce for each group



  

Approaching k-means

● Say I give you 3 sauces whose garlicy-ness 
and sweetness are marked by X

More Sweet

More Garlic



  

Approaching k-means

● We will group each customer by the sauce 
that most closely matches their taste

More Sweet

More Garlic



  

Approaching k-means

● Given this grouping, can we choose sauces that 
would make each group happier on average?

More Sweet

More Garlic



  

Approaching k-means

● Given this grouping, can we choose sauces that 
would make each group happier on average?

More Sweet

More Garlic

● Given this grouping, can we choose sauces that 
would make each group happier on average?

Yes!



  

Approaching k-means

● Given these new sauces, we can regroup the 
customers

More Sweet

More Garlic



  

Approaching k-means

● Given these new sauces, we can regroup the 
customers

More Sweet

More Garlic



  

The k-means algorithm

● Initialization: Choose k random points to act as 
cluster centers

● Iterate until convergence:

– Step 1: Assign points to closest center 
(forming k groups)

– Step 2: Reset the centers to be the mean of 
the points in their respective groups



 

Viewing k-means in action

● Demo...

● Note: K-Means only finds a local optimum!

● Questions:

– How do we choose k?
● Couldn't we just let each person have their own sauce?

(Probably not feasible...)

– Can we change the distance measure?
● Right now we're using Euclidean

– Why even bother with this when we can “see” the

groups? (Can we plot high-dimensional data?)



  

A “simple” extension

● Let's look at the data again, notice how the groups 
aren't necessarily circular?

More Sweet

More Garlic



  

A “simple” extension

● Also, does it make sense to say that points in this 
region belong to one group or the other?

More Sweet

More Garlic



  

Flaws of k-means

● It can be shown that k-means assumes the 
data belong to spherical groups, moreover it 
doesn't take into account the variance of the 
groups (size of the circles)

● It also makes hard assignments, which may 
not be ideal for ambiguous points

– This is especially a problem if groups overlap

● We will look at one way to correct these 
issues



  

Isotropic Gaussian mixture models

● K-means implicitly assumes each cluster is an 
isotropic (spherical) Gaussian, it simply tries to 
find the optimal mean for each Gaussian

● However, it makes an additional assumption 
that each point belongs to a single group

● We will correct this problem first by allowing 
each point to “belong to multiple groups”

– More accurately, that it belongs to each group 
with probability    , where 



  

Isotropic Gaussian mixture models

● Demo isotropic GMM...



  

Gaussian mixture models

● Given a data point x with dimension D:
● A multivariate isotropic Gaussian PDF is given 

by:

● A multivariate Gaussian in general is given by:

● We can try to model the covariance as well to 
account for elliptical clusters



Gaussian mixture models

● Demo GMM with full covariance...
● Notice that now it takes much longer to

converge
● Can be much faster convergence by first 

initializing with k-means



  

The EM algorithm

● What we have just seen is an instance of the 
EM algorithm

● The EM algorithm is actually a meta-algorithm, 
it tells you the steps needed in order to derive 
an algorithm to learn a model

● The “E” stands for expectation, the “M” stands 
for maximization

● We will look more closely at what this 
algorithm does, but won't go into extreme 
detail



  

EM for the Gaussian Mixture Model

● Recall that we are trying to put the data into 
groups, while simultaneously learning the 
parameters of that group

● If we knew the groupings in advance, the 
problem would be easy

– With k groups, we are just fitting k separate 
Gaussians

– With soft assignments, the data is simply 
weighted (i.e. we calculate weighted means 
and covariances)



  

EM for the Gaussian Mixture Model

● Given initial parameters
● Iterate until convergence:

– E-step:
● Partition the data into different groups (soft 

assignments)

– M-step:
● For each group, fit a Gaussian to the weighted 

data belonging to that group



  

EM in general

● We specify a model that has variables (x,z) with 
parameters  , denote this by

● We want to optimize the log-likelihood of our data

–  
● x is our data, z is some variable with extra information

– Cluster assignments in the GMM, for example

● We don't know z, it is a “latent variable”

● E-step: infer the expected value for z given x

● M-step: maximize the “complete data log-likelihood”          
                     with respect to  



  

A pictorial view of EM

● The E-step constructs a lower bound on the 
log-probability of the data 

Bishop, 2006



  

A pictorial view of EM

● The M-step maximizes this lower bound

Bishop, 2006



  

A pictorial view of EM

● We are guaranteed to converge to a local 
optimum, but it can be very slow!

Bishop, 2006



Thank You
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