Support Vector Machines

CSC 411 Tutorial

November 10, 2015

Tutor: Renjie Liao

Many thanks to Jake Snell, Yujia Li and Kevin Swersky for much of the following material.
Brief Review of SVMS

Out[40]: Click here to toggle on/off the raw code.
Geometric Intuition

$$\text{Out}[48]:$$

![Diagram of geometric intuition with decision boundaries and support vectors highlighted.](image)
Margin Derivation

Out[57]:

\[y > 0 \]
\[y = 0 \]
\[y < 0 \]

\[\mathcal{R}_1 \]
\[\mathcal{R}_2 \]

\[\mathbf{w} \]
\[\frac{y(x)}{||\mathbf{w}||} \]

\[\mathbf{x} \]

\[\mathbf{x}_\perp \]

\[-\frac{w_0}{||\mathbf{w}||} \]
Margin Derivation

Compute the distance d_n of an arbitrary point x_n in the (+) class to the separating hyperplane.

$$w^T \left(x_n - d_n \frac{w}{||w||}\right) + b = 0$$
$$w^T x_n - d_n \frac{w^T w}{||w||} + b = 0$$
$$w^T x_n + b = d_n ||w||$$
$$d_n = \frac{w^T x_n + b}{||w||}$$

If we let $t_n \in \{1, -1\}$ denote the class of x_n, then the distance becomes

$$d_n = \frac{t_n(w^T x_n + b)}{||w||}$$

We can set $d_n = \frac{1}{||w||}$ for the point x_n closest to the decision boundary, leading to the problem:

$$\max \frac{1}{||w||}$$
$$s.t. \ t_n(w^T x_n + b) \geq 1, \ for \ n = 1 \ldots N$$
SVM Problem

But scaling $w \rightarrow \kappa w$ and $b \rightarrow \kappa b$ doesn't change $d_n = \frac{t_n(w^T x_n + b)}{\|w\|}$.

or equivalently:

$$\min \frac{1}{2} \|w\|^2$$

s.t. $t_n(w^T x_n + b) \geq 1$, for $n = 1 \ldots N$
Non-linear SVMs

For a linear SVM, \(y(x) = w^T x + b \).

We can just as well work in an alternate feature space: \(\tilde{y}(x) = w^T \phi(x) + b \).

http://i.imgur.com/WuxyO.png

Out[29]:

Input Space **Feature Space**
Non-linear SVMs

http://www.youtube.com/watch?v=3liCbRZPrZA
SVMs vs Logistic Regression
Logistic Regression

Out[32]: [<matplotlib.lines.Line2D at 0x109413090>]

![Logistic Regression Curve](image.png)
Logistic Regression

- Assign probability to each outcome
 \[P(y = 1 | x) = \sigma(w^T x + b) \]

- Train to maximize likelihood
 \[
 \mathcal{L}(w) = \prod_{n=1}^{N} \sigma(w^T x_n + b)^{y_n} (1 - \sigma(w^T x_n + b))^{1-y_n}
 \]

- Linear decision boundary
 \[\hat{y} = I[w^T x + b \geq 0] \]
SVMs

Out[33]:

\[
\begin{align*}
\text{Out[33]}: & \quad y = -1 \\
& \quad y = 0 \\
& \quad y = 1
\end{align*}
\]
SVMs

- Enforce a margin of separation
 \[y_n(w^T x_n + b) \geq 1, \text{ for } n = 1 \ldots N \]
- Linear decision boundary
 \[\hat{y} = I[w^T x + b \geq 0] \]
- Train to find the maximum margin
 \[\min \frac{1}{2}\|w\|^2 \]
 s.t. \((2y_n - 1)(w^T x_n + b) \geq 1, \text{ for } n = 1 \ldots N \)
Comparison

- **Logistic regression** wants to maximize the probability of the data.
 - The greater the distance from each point to the decision boundary, the better.

- **SVMs** want to maximize the distance from the closest points to the decision boundary.
 - Doesn't care about points that aren't support vectors.
A Different Take

Consider an alternate form of the logistic regression decision function:

\[
\hat{y} = \begin{cases}
1 & \text{if } P(y = 1|x) \geq P(y = 0|x) \\
0 & \text{otherwise}
\end{cases}
\]

\[P(y = 1|x) \propto \exp(w^T x + b)\]

\[P(y = 0|x) \propto 1\]
A Different Take

Suppose we don't actually care about the probabilities. All we want to do is make the right decision.

We can put a constraint on the likelihood ratio, for some constant $c > 1$:

$$\frac{P(y = 1|x_n)}{P(y = 0|x_n)} \geq c$$
A Different Take

Take the log of both sides:

$$\log P(y = 1|x_n) - \log P(y = 0|x_n) \geq \log c$$

Recalling that $P(y = 1|x_n) \propto \exp(w^T x_n + b)$ and $P(y = 0|x_n) \propto 1$:

$$w^T x_n + b - 0 \geq \log c$$
$$w^T x_n + b \geq \log c$$

But c is arbitrary, so set it s.t. $\log c = 1$:

$$w^T x_n + b \geq 1$$
A Different Take

So now we have \((2y_n - 1)(w^T x_n + b) \geq 1\), for \(n = 1 \ldots N\). But this may not have a unique solution, so put a quadratic penalty on the weights to make the solution unique:

\[
\min \frac{1}{2} \|w\|^2
\]

s.t. \((2y_n - 1)(w^T x_n + b) \geq 1\), for \(n = 1 \ldots N\)

By asking logistic regression to make the right decisions instead of maximizing the probability of the data, we derived an SVM.
Likelihood Ratio

The likelihood ratio drives this derivation:

\[r = \frac{P(y = 1|x)}{P(y = 0|x)} = \frac{\exp(w^T x + b)}{1} = \exp(w^T x + b) \]

Different classifiers assign different costs to \(r \).
LR Cost

Choose \(\text{cost}(r) = \log \left(1 + \frac{1}{r} \right) \)

Out[34]: <matplotlib.text.Text at 0x109348810>
LR Cost

\[
\log \left(1 + \frac{1}{r}\right) = \log \left(1 + \exp(-(w^T x + b))\right) = -\log \frac{1}{1 + \exp(-(w^T x + b))} = -\log \sigma(w^T x + b)
\]

Minimizing \(\text{cost}(r)\) is the same as minimizing the negative log-likelihood objective for logistic regression!
SVM with Slack Variables

If the data is not linearly separable, we can introduce slack variables.

\[
\min \frac{1}{2} \|w\|^2 + C \sum_{n=1}^{N} \xi_n
\]

s.t. \((2y_n - 1)(w^T x_n + b) \geq 1 - \xi_n\), for \(n = 1 \ldots N\)

and \(\xi_n \geq 0\), for \(n = 1 \ldots N\)
SVM with Slack Variables

Out[58]:

\[y = -1 \]
\[y = 0 \]
\[y = 1 \]
\[\xi > 1 \]
\[\xi < 1 \]
\[\xi = 0 \]
\[\xi = 0 \]
SVM Cost

Choose $\text{cost}(r) = \max(0, 1 - \log(r)) = \max(0, 1 - (w^T x + b))$

Out[59]: <matplotlib.text.Text at 0x109d2fd90>
Plotted in terms of r
Plotted in terms of $w^T x + b$
Exploiting the Connection between LR and SVMs
Kernel Trick for LR

In the dual form, the SVM decision boundary is

\[y(x) = w^T \phi(x) + b = \sum_{n=1}^{N} \alpha_n t_n K(x, x_n) + b = 0 \]

We could plug this into the LR cost:

\[\log \left(1 + \exp \left(- \sum_{n=1}^{N} \alpha_n t_n K(x, x_n) - b \right) \right) \]
Multi-class SVMS

Recall multi-class logistic regression

\[P(y = i | x) = \frac{\exp(w_i^T x + b_i)}{\sum_k \exp(w_k^T x + b_k)} \]
Multi-class SVMS

Suppose that we just want the decision rule to satisfy

\[
\frac{P(y = il | x)}{P(y = k | x)} \geq c, \quad \text{for } k \neq i
\]

Taking logs as before,

\[
(w_i^T x + b_i) - (w_k^T x + b_k) \geq 1, \quad \text{for } k \neq i
\]
Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

\[
\min \frac{1}{2} \|w\|^2 \\
\text{s.t. } (w_{y_n}^T x_n + b_{y_n}) - (w_k^T x_n + b_k) \geq 1, \text{ for } n = 1 \ldots N, k \neq y_n
\]
LR and SVMs are closely linked

- Both can be viewed as taking a probabilistic model and minimizing some cost associated with the likelihood ratio.
- This allows us to extend both models in principled ways.
Which to Use?

Logistic regression

- Gives calibrated probabilities that can be interpreted as confidence in a decision.
- Unconstrained, smooth objective.
- Can be used within Bayesian models.

SVMs

- No penalty for examples where the correct decision is made with sufficient confidence, which can lead to good generalization.
- Dual form gives sparse solutions when using the kernel trick, leading to better scalability.