
 

 1 

2016 Research Papers Competition  
Presented by: 

Classifying NBA Offensive Plays Using Neural Networks 
 

Kuan-Chieh Wang, Richard Zemel 
University of Toronto 

Toronto, Ontario, Canada 
wangkua1@cs.toronto.edu, zemel@cs.toronto.edu 

 

Abstract 
 
The amount of raw information available for basketball analytics has been given a 
great boost with the availability of player tracking data.  This facilitates detailed 
analyses of player movement patterns.  In this paper, we focus on the difficult 
problem of offensive playcall classification. While outstanding individual players are 
crucial for the success of a team, the strategies that a team can execute and their 
understanding of the opposing team’s strategies also greatly influence game 
outcomes. These strategies often involve complex interactions between players.  We 
apply techniques from machine learning to directly process SportVU tracking data, 
specifically variants of neural networks.  Our system can label as many sequences 
with the correct playcall given roughly double the data a human expert needs with 
high precision, but takes only a fraction of the time. We also show that the system 
can achieve good recognition rates when trained on one season and tested on the 
next. 

 

1. Introduction 
 
An untrained spectator would have difficulty recognizing the many different offensive play calls in 
an NBA game. While the slam dunks, long-range 3-pointers, and buzzer-beaters make the highlight 
reels, what leads to these exciting events and victories are often complicated movements and 
interactions between all five players.  Traditionally, human annotators such as assistant coaches or 
scouts recognize these plays in real-time by reading players’ movements and the signaling gestures 
on and off the court. Annotating these plays provides useful scouting information, and also helps a 
team evaluate its own strategy.  However, offensive strategies are complex and dynamic, and can be 
executed with multiple variations as the defense reacts.  Unlike recording a shot outcome, a 
rebound, or other simple events, this task requires a high-level understanding of the game. 
Automating the process of detecting plays in video would not only reduce the considerable work 
involved but could also give rise to more detailed scouting reports, and other advanced statistics. 

In this paper, we tackle the challenging problem of classifying NBA offensive playcalls directly from 
SportVU’s tracking data.  We use deep neural networks to build classifiers that can recognize plays, 
learning based on a small training set of annotated plays.  We take two further innovative steps. 
First, unlike traditional analytics methods that depend on static location information, we analyze 
the stream of location information over time, employing state-of-the-art recurrent neural network 
(RNN) models. We show that this leads to significant improvements in play recognition.  Second, we 
evaluate our system in the scenario of transfer to a new season.  Given the models developed using 
2013-2014 season’s data, we study how well the algorithms help us classify plays from the 
beginning of the 2014-2015 season. 
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Figure 1: Pictorial Representation. 2 sets of 3 images from 2 different instances of the same playcall. The 
thinner red trajectory is the ball. The leftmost of the 3 is single-colored representation for all 5 players. The 
middle is players colored by the order of sequences in SportVU raw data. The rightmost is colored after we 
disambiguate on court position. Looking at the position-ordered images, both instances the PG initiated from 
halfcourt while the same positions occupy similar regions on the court, but in the raw SportVU data we see a 
random ordering of player positions. 

 
From a machine learning perspective, this task is most similar to that of action recognition. 
Typically, models are developed to watch video such as movies or Youtube clips, and classify what 
type of video clip it is (e.g., a romantic movie, or a tennis match) [1, 2].  However, these approaches 
typically employ very complicated computer vision algorithms, specifically crafted for the given set 
of videos.  Here we have the advantage of using the SportVU tracking data which contains all the 
players’ coordinates on the court.  Even though players’ appearance could add information useful to 
deciding what play it is, most playcalls can be identified with just the evolution of their coordinates.  
Experiments with human experts showed that on 100 test sequences, unless the play breaks down 
due to time-outs, fouls, or ended prematurely, looking at moving dots from SportVU data 
representing player positions was enough for nearly perfect classification. 

 

2. Method 
 
2.1. Pictorial representation of player location sequences 
SportVU data contains each player’s coordinates on the court and the 3D position of the ball at 25 
frames per second.  Along with the coordinates it provides a unique player identifier.   
However, (x,y) coordinates are not sensible representations for our model.  We are trying to learn a 
mapping between the input sequence and the type of play. (10, 10) is twice of the value of (5,5) in 
the number system, but that does not mean (10,10) contains 2 times the signal for a certain playcall 
than that of (5,5).  We therefore adopt a pictorial representation of the player and ball positions, 
where each position is a small circle in the image. To simplify our input representation further, we 
combined player position sequences to form a single image containing player ‘foot-prints’ 
throughout the play (see Figure 1). This converts the problem into one of image classification. 
 

2.2. Standard neural network (NN) for play classification 
Neural networks refers to a family of algorithms from the machine learning community, which has 
attracted a lot of attention over the last decade [3].  They have broken records in many challenges 
that  researchers have worked on for decades, in fields like computer vision and speech recognition.  
For the sports analytics community, it is beneficial to use neural networks because they are 
relatively easy to apply to difficult problems, and can be easily maintained.   
 
A key question for any system is the representation of the input. One option is to utilize features 
extracted from the SportVU data that are useful for play recognition. These features could encode 
regular occurrences at different locations on the court (e.g., point guards tend to stand at the key  
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Figure 2: Sequential representation.  Time starts from left and evolves for 4 seconds at 2.5 frames per second 
towards right. They are different instances of a common strategy named ‘horns’. While the 1st row we can 
identify the ‘horns’ set up pretty earlier (from frame 1), the second row took nearly 4 seconds to reach that 
formation.   

while centers are in the paint), and also frequent patterns such as screens, cuts, drives, and pick-n-
rolls. These features are difficult to define and extract. Neural networks, on the other hand, do not 
depend on hand-coded, engineered representations of input in terms of features, but instead allow 
these features to be learned from the data. In this paper, neural network (NN) models take as input 
the pictorial representation of SportVU data as described above. 
 

2.3. Temporal information and recurrent neural networks (RNN) 
As observed in Figure 1, the foot-print images are difficult to understand because the time 
information of how players move relative to each other and the ball is lost.  We therefore separate 
the image into time steps, to encode where players are at each time step. At each step the input is 
the current pictorial representation of the player position. We also include some fainter  
representation of player positions from the previous frames, visually similar to the shadow of a 
player (See Figure 2).  Further, since our models learn by examples, due to the limited number of 
labelled sequences they could just memorize certain coordinates or timeframes that are not 
necessarily representative of the playcall.  To prevent a model from memorizing those 
uninformative features, we also add uncorrelated white noise to each frame in the sequential input.  
A recurrent neural network (RNN) is a variant of neural networks that can deal with sequential 
data of variable length (see Figure 3).  The algorithm itself is stationary across time; only the 
evidence it accumulates change over time.  Intuitively, players are governed by the same set of 
dynamics no matter when it is, but they could be at different locations doing different things given 
their previous movements.  

For the RNN, our problem can be described as mapping a sequence x = (xi,...,xT), which contains a 
representation of the SportVU coordinates from time 1 to T, to a class label y, indicating which of 
the K strategies it is. This mapping is done through a series of weights.  For a typical RNN as shown 
in Figure 1, the hidden unit at time t receives inputs from xt below and ht-1 which is the evidence 
accumulated as far through weight matrices Win and U respectively.   

ℎ𝑡 = 𝜎(𝑊𝑖𝑛𝑥𝑡 + 𝑈ℎ𝑡−1 + 𝑏𝑖𝑛) 

where σ is a non-linear activation function such as a sigmoid, or rectified linear unit (ReLU). 
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Figure 3: Recurrent neural network architecture.  The inputs correspond to the player coordinates from 
SportVU, and outputs are the class labels for the different offensive strategies.  Diagram A shows what the 
model really looks like where the hidden connections feed to itself.  Diagram B illustrates what the network 
looks like rolled out in time. For simplicity of the illustration, there is only 1 hidden layer, but in practice it 
could be of variable depth. 
 

The RNN learns to model Pr(y|x) the conditional distribution over the class labels given the input 
sequence.   

Pr(𝑦𝑡|𝑥1, … , 𝑥𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑜𝑢𝑡ℎ𝑡 + 𝑏𝑜𝑢𝑡) 

Learning for a RNN means finding a set of parameters θ= {Win, Wout,bin,bout,U} that optimizes this 
distribution given the training data {(x1,y1),...,(xN,yN)}. 

𝐶𝑜𝑠𝑡𝑐𝑙𝑎𝑠𝑠 =∏Pr(𝑦𝑛|𝒙𝒏)

𝑁

𝑛=1

 

𝜽 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐶𝑜𝑠𝑡𝑐𝑙𝑎𝑠𝑠 

In this study, we use a popular variant of RNN with long short-term memory (LSTM) units [4]. 

2.4. Ordering the sequences and player embedding 
 
Another confounding factor is the representation of the input in terms of player identifiers. The 
same play can be executed with many different players. Basketball plays are typically designed 
based on the player positions. We therefore need to infer the position of each player on the court. 
The problem of converting a player identifier to his position is complicated, due to the fact that 
depending on who is on the court, a player could change his role.  
 
In order to disambiguate player position given any line-up, we trained an autoencoder neural 

network [3] based on a  player’s shooting tendencies to map each player to a 10-dimensional 
embedding space where neighbors in this space have similar tendencies (e.g., range, movements 
prior to the shot, etc.).  We then resolve a player’s position based on his coordinates and neighbors 
in the embedding space (see Figure 4).   
 
In Table 1 we show an example where this approach successfully resolves players’ positions, taking 
into account the full set of players on the floor.   
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PG SG SF PF C 
Kyle Lowry Lou Williams Terrence Ross DeMar DeRozan Jonas Valanciunas 
Kyle Lowry Lou Williams DeMar DeRozan Amir Johnson Jonas Valanciunas 
Lou Williams Terrence Ross DeMar DeRozan Amir Johnson Jonas Valanciunas 

Table 1: Example of player position resolution.  Here are 3 possible line-ups of the Toronto Raptors where 
Lou Williams, Terrence Ross, and DeMar DeRozan were assigned different positions depending on the line-
up. 

 

 
Figure 4: A visualization of player embedding.  This show Lou Williams, Terrence Ross, and DeMar DeRozan, 
and their neighbors in the embedding.  This is a 2D compression of the 10D space, so the distance in the 
visualization does not have the same semantics as the real embedding. Still, we see that Lou Williams is closer 
to other smaller guards while DeMar DeRozan is closer to bigger guards, and Terrence being somewhere in 
between. 

 
2.5. Incorporating sequence prediction  
With a limited number of examples of each play in the training set, it is possible for a model to 
perform well on play classification without acquiring an understanding of player movements.  A 
model that does not understand movement may not generalize to unseen examples well.  We can 
explicitly test the model’s understanding of movements by asking it to predict where the players 
will be in the next frame; we call this task sequence prediction. A second motivation for sequence 
prediction is the abundance of unlabelled plays: the advantage of this task versus play classification 
is that we have as many labels as we have input data.  
 
Since our end goal is still play classification, we formulate our model to share a common encoding 
structure (i.e. from xt to ht in Figure 1), which is then fed into two decoders: one for the play 
classification task as formulated before, another for sequence prediction.  Given sequence x = (x1, … 
, xt), the model is a function F that predicts  𝑥𝑡+1which is the (x,y) coordinate for the t+1th timestep: 

𝑥𝑡+1 = 𝐹(𝑥1, … 𝑥𝑡) 
 
The objective is to minimize the Euclidean distance between the prediction and ground truth. 

𝐶𝑜𝑠𝑡𝑠𝑒𝑞 = ∑ ∑||𝑥𝑡
𝑛 − 𝑥𝑡

𝑛||
2


𝑁

𝑛=1

𝑇

𝑡=𝑘+1

 

where k is the frame that we want to model to start sequence prediction.  In this study we let the 
model start sequence prediction after 2 seconds from the start frame. Now when we find our best 
model, we optimize both objectives jointly: 

𝜽 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃(𝑤 ∗ 𝐶𝑜𝑠𝑡𝑠𝑒𝑞 + 𝐶𝑜𝑠𝑡𝑐𝑙𝑎𝑠𝑠) 

where w is a scalar weight to control how much emphasis we place on sequence prediction. 
 
2.6. ‘Anytime’ prediction 
Basketball is a dynamic sport.  Even though the shot-clock is always 24-seconds in the NBA, a play 
can start at any time.  The same play may take a varying amount of time to set up and execute,  
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Figure 5: Training history of RNN.  This figure show that upon random initialization, the model is not 
accurate. Thus at the beginning of training, it delays its prediction to maximize the accumulated evidence. As 
learning progresses, it requires less evidence and time to make good predictions.  

 
depending on teammates’ readiness and defensive pressure.  Also, for different strategies, the 
distinguishing aspect can occur at different times.  For example, while the play HORNS is easily 
spotted by its initial set-up, other plays can only be disambiguated by the last few frames. Hence, for 
the RNN, a natural solution is to allow prediction at any frame (see Figure 5). 
 

3. Experiments 
The data used for this study was drawn primarily from the SportVU dataset for the regular season 
games from the 2013-2014 season.  The labeled play dataset was provided by the Toronto Raptors, 
for the offensive strategies used in that season.  A total of 11 play classes were selected. The original 
number of play sequences was 7481, but after filtering down for the 11 classes, we were left with 
1435 sequences.  Many of the discarded sequences were transition offense, after timeout, in-bound 
plays and other less frequent plays.  After timeout and in-bound plays both have distinct markers in 
the SportVU raw data, hence it is reasonable to segregate them from normal half-court plays.  
Transition offense is fairly easy to identify, and its nature differs from other half-court strategies 
quite drastically, so both technically and conceptually there are good reasons to dismiss them.   

We kept 95 labelled sequences as an unseen test set. The remaining 1340 examples were split into 
10 equal batches for training and validation.  All of these batches and the test batch were balanced 
for their class distribution after randomization. 

In Section 3.1, we will first report the performance characteristics of the models on the dataset 
described.  In Section 3.2, we explore an interesting real-world setting where the model trained on 
the 2013-2014 dataset is used to make predictions about the 2014-2015 dataset. 

3.1. Classification performance 
In order to assess our approach, we evaluate the different models based on several metrics for 
evaluation. The first metric is top-1 accuracy, which compares the single highest-scoring class by 
the model to the correct answer, on each test example. Top-k accuracy considers the k classes that 
attain the highest scores for the model on that example.  Another valuable metric is precision and 
recall, which depends on a threshold; if the score of the model’s highest scoring class is below the 
threshold the model outputs “don’t-know” for that example. 

We examine three different models. A baseline is the most naive approach, which simply guesses 
the same class for each example, which is the most likely class in the training set.  For top-k  
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Models top-1 accuracy top-3 accuracy Precision/ 

Recall at T=.4 
Precision/ 
Recall at T=.7 

base-rate .137 .390 n/a n/a 
NN .547 .779 .724/.412 .909/.196 
RNN .656 .806 .727/.918 .900/.590 

Table 2: Classification performance. 

accuracy, we just predicted based on the top-k most likely classes in our training set. For our 11-
class dataset, the top-1 base-rate was 13.7% in the test set.   

A neural net (NN) trained on the pictorial representation achieved 54.7% top-1 accuracy on the test 
set.  After incorporating the extensions discussed in the method sections, the sequential model 
achieved 65.6% accuracy.  At a threshold T of 70% (i.e. only predict when Pr(y|x)>=T), RNNs 
achieved a precision of 90% and recall rate of 59%.  In practice, if a team is trying to scout their 
opponent and asked their scout to watch 3 games worth of video tapes, this algorithm could 
retrieve similarly many examples by watching about 5 games with only 10 percent erroneous 
examples.  Again, a machine can watch as many games as deemed fit without requiring many 
resources.  The speed for these algorithms at test time are all under a few second per 100 data 
entries where most time was spent in pre-processing the data. 

3.2. Adapting to a new season (transfer learning) 
Going into the next season, many strategies may remain the same (barring major coaching 
changes), but often the line-up changes.  What remains is our interest to analyze them.  We 
therefore test how well our algorithm works across seasons. In this section we investigate the first 
3 months of the 2014-2015 data.  To simulate the scenario of early in the season, the experiments 
are set up with a fraction of the data. We divide them equally into 3 batches chronologically, and we 
make only 1 batch available for training, 1 batch for validation, and test on the third batch, each 
roughly equivalent to a single month of the season.   

For our model to do this, we can directly take a trained model, trained on the previous year’s data, 
and apply it to the new data.  We call this “transfer”.  On the opposite end of the extreme, we can 
train a new model using only the new data.  We call this “new”.  A hybrid, sensible approach is to 
start with the transfer model and then “fine-tune” it with the limited new data we have.  

Using the same set of plays as trained in the previous season, there are 327 labelled strategies. Only 
109 is made available for training for the ‘new’ and ‘fine-tune’ models. This set is slightly easier 
with a top-1 base-rate of 16.5%, and top-3 of 52.3%.  

The ‘new’ model, due to the much smaller training set, only achieved 33.6% accuracy. The ‘transfer’ 
model performed slightly worse than it did in the old dataset.  Most likely the plays have evolved 
slightly.  Lastly, the ‘fine-tune’ model was able to adapt to the new dataset by just looking at the 109 
examples, and achieve 61.9% top-1 accuracy.   
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Models top-1 accuracy top-3 accuracy Precision/ 
Recall at T=.4 

Precision/ 
Recall at T=.7 

new .336 .686 .336/.978 .347/.378 
transfer .537 .821 .541/1.0 .591/.958 
fine-tune .619 .873 .629/1.0 .639/.927 

Table 3: Performance in the new season. 

4. Conclusion 
In tis paper we studied the problem of offensive strategy classification in basketball. Many factors 
affect the result of this task. Some are intrinsic to the strategies themselves such as the complexity 
of interaction, distinctiveness, and diversity of the target classes. Other extrinsic factors such as 
reactions to defense, unexpected events such as fouls, and consistency of executions also 
complicate this task.  However, the underlying dynamics, and rules of these strategies still allow 
human experts such as coaches to correctly label each sequence.   

Using variants of neural networks, we demonstrated the possibility to automate play classification 
with promising results.  With a top-1 classification accuracy of above 50%, simple NN gave us 
confidence that decent models can work well in this problem. With more understanding towards 
the data representation, and corresponding changes to a more advanced RNN model, we were able 
to achieve 66% top-1 accuracy, and 80% top-3 accuracy on unseen examples. 

As an experiment to test how transferrable this method is across seasons, we used models 
developed on the 2013-2014 season to test in the 2014-2015 season. We show that with very 
limited data, these methods can leverage the representations learned from previous year, and still 
achieve reasonable performance. 

 

Acknowledgment 

The authors would like to acknowledge the support from Mitacs, and the Toronto Raptors in the 
form of a research grant, STATS LLC, and the NBA for the raw SportVU data. We would also like to 
thank the analysts from the Toronto Raptors, Keith Boyarsky, and Eric Khoury for unselfishly 
sharing their basketball knowledge and all of their constructive feedbacks. 

  



 

 9 

2016 Research Papers Competition  
Presented by: 

References 
 
[1] J. Liu, J. Luo and M. Shah. Recognizing realistic actions from videos "in the wild", CVPR 2009, 
Miami, FL 
[2] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A Large Video Database for 
Human Motion Recognition. ICCV, 2011. 
[3] I. Goodfellow, A Courville and Y. Bengio. Deep Learning, Book in preparation for MIT Press 2015 
[4] S. Hochreiter, and J. Schmidhuber. "Long short-term memory."Neural computation 9.8 (1997): 
1735-1780. 
 


