Lecture 2

Non-Gaussian Statistics:
Scene properties & models



Sounds

analogous work in domain of natural sounds (e.g., Attias &
Schreiner, 1997)

examined low-order statistics of several sound ensembles (cat
vocalizations, bird songs, wolf cries, environmental sounds, sym-

phonic music, jazz, pop music, speech)

represent sound: 30 sec segments, sampled, represented in fre-
quency bands — convolve with square non-overlapping filters, cen-
ter frequencies r = 100 — 11025 Hz

focus on spectrotemporal amplitude (STA) z,(t):

sp(t) = zu(t) cos(vt + du(t))



Sounds: Amplitude distribution

normalize amplitude distribution for given band (freq v):
<logzy(t) >=0: < (logz,(¢)2 >=1

Symphonic music

Enwvironmeantal sounds
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note:

e histograms for different bands agree
e exponential decay at high amplitudes

e long tail for low amplitudes (non-Gaussian) — abundance of
soft sounds



Sounds: Scale invariance

process is scale-invariant if any statistical quantity on given scale
does not change as scale changed

look at different temporal resolutions:
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histogram at v = 800Hz;, n = 1,20,50, 100, 200: no central limit
theorem

o
a=log 10{x)



Relevance to sensory systems

both natural sounds and images highly redundant

beneficial for auditory and visual systems to adapt representa-
tions to these statistics — improve discrimination ability

now look at early visual system, methods of characterizing cell
responses

then relate to natural statistics



Early visual system
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neurons in retina, LGN, and V1 (primary visual cortex) respond
to light stimuli in restricted regions of visual fig: receptive field
(RF)

probed with spots, moving gratings — what causes cell to spike??



Spike triggered average

method of describing stimulus that causes cell to respond
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average over many spikes, many trials, stimuli
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Simple cell receptive fials

STA — spatial RF structure for cat primary visual cortex

fit by Gabor functions (product of sinusoid and Gaussian):




Wavelets of Gabors

wide range of transforms capable of representing information in
n dimensional data space (e.g., Fourier, Gabor)

wavelet: transform in which bandwidths increase proportionally
to frequency; arrays of basis functions differ only by translations,
dilations, and rotations of single function

wavelets based on Gabors are popular models of early visual cor-
tex:

1. RFs |localized in space, bandpass in frequency

2. frequency bandwidths constant when measured on log axes
(octaves), so self-similar RFs (bandpass)

3. orientation selective (oriented)



VWhoa

many properties of cortical simple cells not captured by this
model:

1. end-stopping
2. cross-orientation inhibition

3. non-negative responses

only rough approximations to cells in visual cortex



Response to natural scenes

apply filters to natural images, examine statistics of responses

Fig. 6. Examples of the six images (A—F) in this study. Each image consists of 256 X 286 pixels with 256 gray levels (8 bits), However, only
the central region was directly analyzed (160 X 160). See the text or details.

non-Gaussian responses — heavy tails, high prob of no response
and large response relative to normal



Sparse responses

high probability of no response: sparseness (few of many possible
units participate in coding of stimulus)
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one property of distributions of sparse codes — high kurtosis
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Reverse engineering: Efficient coding

Can filters be learned from images? Can we understand response
properties of units in terms of strategy for processing natural
images?

Barlow hypothesized that efficient coding of visual information
is fundamental constraint on neural processing

maximize information that neural responses provide about visual
environment

e responses of individual neurons to natural environment should
fully utilize output capacity

e responses of different neurons to natural environment should
be statistically independent of each other

translates into aim of reducing redundancy between neurons



What filters reduce redundancy?

one proposal — Principal Components Analysis (PCA): computes
eigenvectors of covariance matrix of data (e.g., covariance of pix-
els in image), produces orthogonal vectors, coefficients ordered
by portion of covariance accounted for

retain top few vectors — minimaloSs in data representation

removing low-probability regions reduces redundancy

many similarities between principal components of natural scenes
and RFs of visual cells, but not localized nor oriented
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PCA inadequate

PCA based on covariance between pixels — only capable of learn-
ing pairwise correlations

pairwise correlations characterize only power spectrum, not phase
alignment: cannot find phase alignment that occurs at edges,
lines in images

a. b.

Synthesize
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instead try to learn simple filters (linear) that can still capture
higher-order dependencies



Learning objective

hypothesize generative model of image I(z,y):

I(.CI], y) — Z aini(IE, y)

¢;() are filters, basis functions that form code for images; a; are
coefficients (filter responses)

objective or cost functional to minimize (gradient descent):

E(a,0) =Y [I(z,9) — > a;¢:(x,y)]° + 8S(a;/a;)
x,y )

combines reconstruction cost with activity cost

expect a; to be sparse, kurtotic, heavy-tailed, etc. — log prior
S(z) can correspond to Cauchy (log(1 + z2)); exponential (|z|):
Laplacian



Results

train on 12x12 image patches extracted from natural scenes

learned filters are bandpass, localized, oriented:
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but note these are projective fields, not receptive fields



Corresponding probabilistic model

choice of basis functions ¢;() determine image code:

I(x) = Z a;¢;(x)

receptive fields determined by linear transform of image with
other functions v;():

b; = Z%(Xj)f(xj)b = WI

J

if ¢ linearly independent and same number as inputs, then ¢;(x) =
(W),

if ¢ form orthonormal basis, then code is self-inverting: ¢;(x) =

Vi (x)

image model is over-complete if more basis functions than effec-
tive dimensions of input



