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Statistics of natural images

# Statistics of coefficients of wavelet bases are
non-Gaussian
= Marginal densities have heavy tails
= Joint densities have variance dependencies

# Images contain
= Smooth regions
small filter responses => peak at zero

= |ocalized features (lines, edges, corners)
Large amplitude response => heavy tails



Main ideas

# Neighborhoods of wavelet coefficients (adjacent
positions, scales, orientations) are modeled as a
product of Gaussian vector and scalar multiplier.

# Multiplier modulates local variance of
coefficients within neighborhood

# Such models are variance-adaptive (e.g., ARCH)

# Building a Markov tree with hidden multiplier
nodes can explain global image statistics



Gaussian scale mixtures (GSMs)

# Random vector x is a GSM iff it can be
expressed as a product of normal
vector u (with 0 mean) and an
Independent positive scalar random
variable \z

X =z U
@ 7 is the multiplier

# X IS an infinite mixture of Gaussian
vectors



GSMs (cont.)

# GSM density is determined by
= covariance matrix C,
= Mixing density p,(z)
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GSMs (cont.)

# GSMs include
= o-Stale family (e.g., Cauchy distribution)
= Generalized Gaussian (or Laplacian) family
= Symmetric Gamma family

# GSM properties:
= Symmetric
= Zero-mean
= Leptokurtotic marginal densities (heavy tails)
= X IS Gaussian when conditioned on z
s X/sqrt(z) is Gaussian



Gamma distribution

Z IS a gamma variable:

p(z) = (1/T(a)) 22+ exp(-z)
z —~ Gamma(a,l)



Gamma distribution
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Gamma distribution
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Symmetrized Gamma (log plot)
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Symmetrized Gamma
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Symmetrized Gamma (log plot)
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Symmetrized Gamma
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Log probability

Symmetrized Gamma (log plot)
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Figure 1. GSMs (dashed lines) fitted to empirical histograms (solid lines). Below
each plot are the parameter values, and the relative entropy between the histogram
(with 256 bins) and the model, as a fraction of the histogram entropy.



Estimating z

# N=11 neighbors (4 adjacent
positions, 5 orientations, 2 scales)
# Observe coefficients Y

# Estimate hidden z:

3

argmax { log p(Y|z) }
arg min {Nlog(z) + YTQ_lY/sz}

JYTQ1Y/N,




Normalized coefficient

& X =1z u

@ X, /\z is a normalized coeff.
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Figure 2. Marginal log histograms (solid lines) of the normalized coefficient v for a
single subband of four natural images. Each shape is close to an inverted parabola,
in agreement with Gaussians (dashed lines) of equivalent empirical variance. Below
each plot is the relative entropy between the histogram (with 256 bins) and a
variance-matched Gaussian, as a fraction of the total histogram entropy.



Joint statistics

# Coefficients are nearly decorrelated, (to
second-order) but not independent

# Dependency of coefficients across scales,
positions, orientations

# GSMs can model such random fields with
spatially fluctuating variance

# Local variance is governed by a continuous
multiplier variable

# Peaks and cusps can be explained by
presence of “objects” in images (sharp
discontinuities)



Joint statistics
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Figure 3. Top row: joint conditional histograms of raw wavelet coefficients for
four natural images. Bottom row: joint conditional histograms of normalized pairs
of coefficients. Below each plot is the relative entropy between the joint histogram
(with 256 x 256 bins) and a covariance-matched Gaussian, as a fraction of the total
histogram entropy.



Joint statistics
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Markov structure

# Dependency between coefficients
decreases as their spatial separation
Increases; therefore GSM Is not enough

# Need graphical model to specify
relations between multipliers

# Coefficients are linked by hidden
scaling variables which govern local
Image structure

# Random cascades on a multiresolution
tree



Markov structure

o atnode s Y(8) 2 ||lz(s)|| u(s)

y(s) = 0D (s A 1) + o1 (s)]] u(s)
y(t) = [0 (s A 1) + va(t) | u(t)



Issues, questions

# Applications: denoising, compression
# Can GSM fully model image statistics?
# GSM is still state-of-the-art

# Joint coefficient distribution shapes not
well explained

# How would you learn a tree of hidden
scaling variables?
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