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Statistics of natural images

Statistics of coefficients of wavelet bases are 
non-Gaussian

Marginal densities have heavy tails
Joint densities have variance dependencies

Images contain 
smooth regions 

small filter responses => peak at zero

localized features (lines, edges, corners) 
Large amplitude response => heavy tails



Main ideas

Neighborhoods of wavelet coefficients (adjacent 
positions, scales, orientations) are modeled as a 
product of Gaussian vector and scalar multiplier. 
Multiplier modulates local variance of 
coefficients within neighborhood
Such models are variance-adaptive (e.g., ARCH)
Building a Markov tree with hidden multiplier 
nodes can explain global image statistics



Gaussian scale mixtures (GSMs)

Random vector x is a GSM iff it can be 
expressed as a product of normal 
vector u (with 0 mean) and an 
independent positive scalar random 
variable √z

x = √z u
z is the multiplier
x is an infinite mixture of Gaussian 

vectors



GSMs (cont.)

GSM density is determined by
covariance matrix Cu

mixing density pz(z)



GSMs (cont.)

GSMs include
α-stale family (e.g., Cauchy distribution)
Generalized Gaussian (or Laplacian) family
Symmetric Gamma family

GSM properties:
Symmetric
Zero-mean
Leptokurtotic marginal densities (heavy tails)
x is Gaussian when conditioned on z
x/sqrt(z) is Gaussian 



Gamma distribution

z is a gamma variable:
p(z) = (1/Γ(a)) za-1 exp(-z)
z ~ Gamma(a,1)



Gamma distribution



Gamma distribution



Symmetrized Gamma (log plot)

K is a Bessel function 



Symmetrized Gamma



Symmetrized Gamma (log plot)



Symmetrized Gamma (log plot)



Symmetrized Gamma (log plot)



Estimating z
N=11 neighbors (4 adjacent 

positions, 5 orientations, 2 scales)
Observe coefficients Y
Estimate hidden z:



Normalized coefficient

x = √z u
x0 /√z is a normalized coeff.



Joint statistics

Coefficients are nearly decorrelated, (to 
second-order) but not independent 
Dependency of coefficients across scales, 
positions, orientations
GSMs can model such random fields with 
spatially fluctuating variance
Local variance is governed by a continuous 
multiplier variable
Peaks and cusps can be explained by 
presence of “objects” in images (sharp 
discontinuities)



Joint statistics



Joint statistics



Markov structure

Dependency between coefficients 
decreases as their spatial separation 
increases; therefore GSM is not enough 
Need graphical model to specify 

relations between multipliers 
Coefficients are linked by hidden 

scaling variables which govern local 
image structure
Random cascades on a multiresolution 

tree



Markov structure

At node s: 



Issues, questions

Applications: denoising, compression
Can GSM fully model image statistics?
GSM is still state-of-the-art 
Joint coefficient distribution shapes not 

well explained
How would you learn a tree of hidden 

scaling variables?
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