
Temporally-Expressive Planning as Constraint Satisfaction Problems

Yuxiao Hu
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4, Canada

yuxiao (a) cs toronto edu

Abstract

Due to its important practical applications, temporal
planning is of great research interest in artificial intelli-
gence. Yet most of the work in this area so far is limited
in at least two ways: it only considers temporally sim-
ple domains and it has restricted decision epochs as the
potential happening time of actions. Because of these
simplifying assumptions, existing temporal planners are
in fact not complete.

In this paper, we focus on these limitations, and pro-
pose an alternative view of temporal planning by inves-
tigating a new declarative semantics of PDDL. We then
show a natural encoding of this semantics in a constraint
programming setting. It turns out that this encoding uni-
fies planning and scheduling, and captures most of the
temporal expressiveness of PDDL. The resulting CSP-
based temporal planner can solve more general planning
problems than the currentstate-of-the-art.

Introduction
In recent years, much work has been done in temporal plan-
ning, e.g. (Smith & Weld 1999; Bacchus & Ady 2001;
Vidal & Geffner 2004; Chen, Wah, & Hsu 2006). However,
as Cushinget al. (2007) recently show, most of them only
deal with a limited subset of all temporal planning problems.
Typically, they make the following assumptions:

1. Actions can only have temporally annotated preconditions
and effects in a restricted form,e.g.preconditions always
hold over the whole duration of an action, and effects only
take place at the end;

2. Actions may only happen at certain decision epochs,e.g.
immediately after some other action is starting or ending.

These restrictions simplify the planning problem, but unfor-
tunately, they also render the planners incomplete, as they
cannot find plans for temporally expressive problems, such
as the ones shown in Figure 1, even though plans obviously
do exist (Cushinget al. 2007).

PDDL (Fox & Long 2003; Edelkamp & Hoffmann 2004),
on the other hand, offers much more expressiveness for de-
scribing temporal planning domains and problems, making
it possible to express that an action’s precondition must hold

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: “Temporally expressive” planning problems.
Examples (a)–(d) are taken from (Cushinget al. 2007) and
(e) will be our running example. Numbers in brackets after
the action names indicate the duration constraint; precondi-
tions and effects are labeled above and below the actions,
respectively, at the time points they are enforced.

at the start, at the end or within the (open) interval of the
duration, and that its effect must take place at the start or at
the end of the action. Moreover, there is no restriction on
the happening time of actions, since an action can happen at
any positive time point, provided that its preconditions are
satisfied and no mutex violation arises.

As a running example, the “happy birthday-boy” domain
in Figure 1(e) graphically represents a temporal PDDL prob-
lem, where the goal is to become “Happy”. It has three
durative actions and a simple (instantaneous) action. Intu-
itively, burning a match, lasting for 3 time units, requires
the birthday-boy to not be occupied (Occ) with other things,
and as an effect, he is occupied and has match flame (MF)
throughout the duration. Burning a candle needs the match
flame to start with, and lasts forat most10 time units; can-
dle fire (CF) is produced at the start, and stays all through
the duration of this action, but if the burning time reaches 10

time units, the fire is out automatically. Making a wish is an
action with arbitrary duration, requiring his non-occupancy
at the start and candle fire within the duration; as an effect,
the number of wishes (NW) is increased by the number of
time units the action spans. Finally, the simple action of
blowing out the candle requires that candle fire exist, and
the effects include, apart from putting out the fire, becoming
happy if he has successfully made no less than 3 wishes.

This toy example has “required concurrency” (Cushing
et al. 2007), since burning a candle must start while the
match is burning, and making a wish must be contained in
the candle-burning process. Beyond the notion of temporal
expressiveness of Cushinget al., it also illustrates the use
of duration inequality (e.g. “≤ 10”) and duration-related
effects (e.g. number of wishes depends on the duration).
All these features contribute to prevent most existing PDDL
planners from finding a solution to the problem.

A gap thus exists between the potential breadth of prob-
lems that PDDL can represent and the actual narrowness that
existing PDDL planners can solve. This gap may seem in-
evitable at first glance, but in the rest of this paper, we shall
show that this is not the case.

We do so by first investigating a declarative semantics for
the temporal subset of PDDL, recently proposed by Claßen,
Hu and Lakemeyer (2007). Based on this, we then present
a way to directly encode the semantics in the language of
constraint programming. Finally we show that the resulting
CSP-based planner is general and powerful enough to solve
planning problems in temporally expressive domains that al-
most no other existing PDDL planner is able to solve.

The Temporal Subset of PDDL
The target subset of PDDL we discuss here includes all fea-
tures in PDDL 2.1 (Fox & Long 2003) and 2.2 (Edelkamp &
Hoffmann 2004), except for continuous effects and derived
predicates. Following (Claßen, Hu, & Lakemeyer 2007), in-
stead of using the somewhat clumsy LISP-like syntax, we
appeal to the following more compact representation. A
PDDL planning problemP consists of1

1. A finite set of typesτ1, · · · , τl;

2. A finite set of predicatesFj with arguments~xj of type~τj ,
e.g. Occ,MF , Happy;

3. A finite set of functionsfj with arguments~xj of type ~τj ,
e.g.NW ;

4. A finite set of typed objectso1 :τo1 , · · · , ok :τok
;

5. A finite set of operatorsAi (described below);

6. A finite set of timed initial literals〈t1, L1〉, · · · , 〈tr, Lr〉,
whereti is a number andLi is a ground literal (predicate
instance or its negation).

7. The initial state description, consisting of a finite collec-
tion of literals and formulas of the formf(~o) = c wherec
is a number,e.g. HasCake,NW = 0;

8. A goal descriptionG, which is a precondition formula,
e.g. Happy∧ ¬Occ.

1Our running example does not use all features introduced here,
e.g.objects, typing, arguments to fluents and actions,etc.

There are two kinds of action operators: simple ones and
durative ones. Asimple actionA is represented by a triple
〈~z : ~τ , πA, ǫA〉, where~z areA’s arguments and~τ their cor-
responding types,πA is its precondition, andǫA is its effect,
the latter being a conjunction of conditional effects of the
form

∀ ~xj : ~τj . γ
+
Fj ,A(~xj , ~z) ⇒ Fj(~xj)

∀ ~xj : ~τj . γ
−

Fj ,A(~xj , ~z) ⇒ ¬Fj(~xj)

∀ ~xj : ~τj . γ
v
fj ,A(~xj , yj, ~z) ⇒ fj(~xj) = yj

(1)

Here,γ ⇒ ψ means that ifγ holds before the action, then
ψ holds afterwards. Without loss of generality, we assume
that there is at most one single effect of each form for any
givenFj or fj in ǫA, and that there is at most one value for
yj to satisfyγv

fj ,A(~xj , yj , ~z) for any instance of~xj and~z.
For example, the “blowCandle” action is represented by

〈{}, ¬Occ∧CF, [TRUE ⇒ ¬CF]∧[(NW ≥ 3) ⇒ Happy]〉

A durative actionA is represented by a four-tuple
〈~z :~τ , δA, πA, ǫA〉, where~z :~τ is the same as before, and

• δA = 〈δs
A, δ

e
A〉 whereδs

A andδe
A are the start and end du-

ration constraints, respectively, each being an (in)equality
between arithmetic formulas whose numerical terms are
either numbers, functions or the special variableduration.

• πA = 〈πs
A, π

o
A, π

e
A〉 are the preconditions at the start, dur-

ing theopeninterval and at the end ofA, respectively.

• ǫA = 〈ǫsA, ǫ
e
A〉 are the start and end effects. Start effects

are represented by a conjunction of conditional effects in
the form of (1); End effects are a conjunction of condi-
tional effects of the form〈γs, γo, γe〉 ⇒ ψ, whereγs,
γo andγe are the start, overall and end premises, respec-
tively. ψ takes place only if all premises hold at their cor-
responding time points.

For example, “burnCandle” is represented by
〈

{}, duration≤ 10, 〈MF,CF, TRUE〉,
〈

[TRUE ⇒ CF], [〈TRUE, TRUE, duration= 10〉 ⇒ ¬CF]
〉

〉

Declarative Semantics for Temporal PDDL
Lifschitz (1986) was the first to define a state-transitional
semantics for STRIPS. PDDL (McDermott & the AIPS’98
Planning Competition Committee 1998) did not have a for-
mal semantics until Fox and Long (2003) extended Lifs-
chitz’ definition to their PDDL 2.1. Later versions of PDDL
adapted this semantics for the new features (Edelkamp &
Hoffmann 2004; Gerevini & Long 2005).

However, this state-transitional semantics is purely meta-
theoretic, in that it is not directly clear how it may help un-
derstand a planning problem in terms of logic theories. The
latter is interesting to us, since it allows us to logically an-
alyze and encode the dynamics of planning problems. As a
result, a declarative semantics is also highly desirable.

The pioneering work on defining a logic-based semantics
for planning languages owes to Lin and Reiter (1997), who
showed that state updates in relational STRIPS is equiva-
lent to first order progression of the corresponding basic ac-
tion theory (BAT) in the situation calculus (Reiter 2001).

Claßenet al. (2007) extended this result to the ADL sub-
set of PDDL. Recently, Claßen, Hu and Lakemeyer (2007)
further added the temporal features, so that the declarative
semantics captures roughly PDDL 2.1 plus timed-initial lit-
erals.

In the rest of this section, we shall briefly review the se-
mantic definition in (Claßen, Hu, & Lakemeyer 2007) (c.f.
the literature for technical details), identify its limitations,
and propose some modifications to it to solve the problems.

ES-Based Semantics for PDDL
In (Claßen, Hu, & Lakemeyer 2007), the semantics is de-
fined in terms of BATs in the logicES (Lakemeyer &
Levesque 2004), a first-order modal logic for reasoning
about dynamic domains. The two modal operators are2 and
[], with 2α meaning thatα always holds and[a]α meaning
thatα holds after actiona. As a convention, the last param-
eter to an action term represents the happening time, and
2time

(

A(~x, t)
)

= t extracts it. The BAT is defined as
Σ = Σ0 ∪ Σpre ∪ Σpost (2)

whereΣ0 is the initial database consisting of a finite set of
fluent sentences.2 Σpre is a precondition axiom of the form3

2Poss(a) ≡ π (3)
whereπ is a fluent formula witha being the only free vari-
able. For example,4

2Poss(move(x , y, t)) ⊃ Clear (x) ∧ Clear(y)

says that in any situation, it is possible to movex ontoy at
time t only if bothx andy are clear on the top.

Σpost is a finite set of successor state axioms (SSAs) of
the form (4) for predicates and (5) for functions.

2[a]F (~x) ≡ γF (~x) (4)

2[a]f(~x) = y ≡ γf (~x, y) (5)
For example,

2[a]On(x, y) ≡ ∃t. a = move(x , y, t) ∨

On(x , y) ∧ ¬∃z , t . a = move(x , z , t) (6)
says that in any situation,x is directly ony after actiona if
and only ifa is an action to movex ontoy, or x was ony
anda is not an action that moves it elsewhere.

Each durative actiona is represented by its start event
start(a, t) and end eventend(a, t), denoting the correspond-
ing happenings at timet. A fluent predicatePerforming(a)
is used to remember whethera is in progress (started but not
yet ended), and a fluent functionsince(a) stores the happen-
ing time ofa’s start event. They are captured by the SSAs

2[a]Performing(a′) ≡ ∃t. a = start(a′, t) ∨

Performing(a′) ∧ ∀t. a 6= end(a′, t) (7)

2[a]since(a′) = t ≡ a = start(a′, t) ∨

since(a′) = t ∧ ∀t. a 6= start(a′, t) (8)

2A fluent formula is one with no2, [] and the special predicate
Poss; a fluent sentence is a fluent formula without free variables.

3[] has a higher priority than logical connectives, and2 has a
lower priority than logical connectives.

4In BAT, precondition axioms for primitive actions are of the
form 2Poss(a) ≡ π; in this paper, “⊃” is used in many places, and
“≡” can be obtained by making a completeness assumption.

Additionally, the following precondition axioms ensure that
a’s start event can happen only whena is not running, and
its end event can occur only when it is in progress:

2Poss(start(a, t)) ⊃ ¬Performing(a) (9)

2Poss(end(a, t)) ⊃ Performing(a) (10)

Finally, they define the notion of executability with the
special predicateExecutableas

Executable (11)

2[a]Executable≡ Executable∧ Poss(a) (12)

(11), belonging toΣ0, says that the initial situation is exe-
cutable (reachable through an executable plan); (12) inΣpost

inductively ensures that a situation is executable if and only
if the sequence of actions is.

With these logical foundations, they define the mapping
from PDDL to BAT as follows.

The ADL subset The cases forΣ0 andΣpre are straight-
forward and thus omitted here. As forΣpost, the SSAs for
predicates are obtained by extracting the positive and nega-
tive conditions for each predicateFj as

γ+
Fj

def
=

∨

Fj(~xj) effect inǫAi

∃~zi, t. a = Ai(~zi, t) ∧ γ
+
Fj ,Ai

(13)

γ−Fj

def
=

∨

¬Fj(~xj) effect inǫAi

∃~zi, t. a = Ai(~zi, t) ∧ γ
−

Fj ,Ai
(14)

and then integrating them into an SSA

2[a]Fj(~xj) ≡ γ+
Fj

∧ ~τFj
(~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

(15)

where ~τFj
(~xj) are typing constraints ensuring that only in-

stances with correct argument types can become true.

Functional fluents The SSAs for functional fluentsfj are
constructed similarly by first extracting the update condition

γv
fj

def
=

∨

fj(~xj) effect inǫAi

∃~zi, t. a = Ai(~zi, t) ∧ γ
v
fj ,Ai

(16)

and then integrating it into the SSA5

2[a]fj(~xj) = yj ≡γv
fj

∧ ~τfj
(~xj) ∨

fj(~xj) = yj ∧ ¬∃y′. (γv
fj

)
yj

y′ (17)

Durative actions For durative actions, the start precondi-
tions πs

A and effectsǫsA of a PDDL durative actionA are
mapped to the simple actionstart(A, t) in the BAT. Simi-
larly, πe

A andǫeA are mapped toend(A, t).
For the end duration constraintδe

A, the duration of action
A is obtained by(t − since(A)) whenend(A, t) is about to
happen, soδe

A is ensured by the precondition axiom

2Poss(end(A, t)) ⊃ (δe
A)duration

t−since(A)
(18)

5In this paper,(α)x1···xm
o1···om denotes the formula obtained by si-

multaneously replacing all free occurrences ofxi in α with oi.

The test of start duration constraintδs
A is postponed to the

end event when the duration becomes available. For this pur-
pose, a functional fluentfs

i is introduced for each functional
fluentfi appearing inδs

A, so thatfs
i stores the value offi at

the start, and can be used at the end to test the satisfiability
of δs

A. Formally, this is realized by the following SSA forfs
i

and an additional precondition forend(A, t):

2[a]fs
i (~x) = y ≡ ∃t. a = start(A, t) ∧ y = fi(~x) ∨

fs
i (~x) = y ∧ ¬∃t. a = start(A, t) (19)

2Poss(end(A, t)) ⊃ (δs
A)

fi(~x) duration
fs

i (~x) t−since(A)
(20)

In domains with only discretized action effects, invariant
conditions can be protected by disallowing actions to hap-
pen, if their effects will violate the invariant condition of
running durative actions. Formally, this is achieved by

2Poss(a) ⊃
∧

a′∈A

R
[

a,
(

Performing(a′) ⊃ πo
a′

)]

(21)

whereA is the set of all durative actions,πo
a′ denotes the in-

variant condition ofa′, andR[a, φ] is the regressed formula
of φ througha (Lakemeyer & Levesque 2004).

Finally, for each inter-temporal conditional effect of ac-
tion Aj of the form∀~xi : ~τi. 〈γ

s
i , γ

o
i , γ

e
i 〉 ⇒ ψi, new fluent

predicatesCs
i (~zj , ~xi) andCo

i (~zj , ~xi) are introduced, so as to
remember the truth values of the premises, with SSAs

2[a]Cs
i (~zj , ~xi) ≡ ∃t. a = start(Aj(~zj , t)) ∧ γ

s
i ∨

Cs
i (~zj , ~xi) ∧ ¬∃t. a = start(Aj(~zj), t) (22)

2[a]Co
i (~zj , ~xi) ≡ ∃t. a = start(Aj(~zj), t) ∧R[a, γo

i] ∨

Cs
i (~zj , ~xi) ∧ ¬∃t. a = start(Aj(~zj), t) ∧R[a, γo

i] (23)

such that the effect becomes a local one ofend(Aj , t):

∀~xi : ~τi. C
s
i (~zj , ~xi) ∧ C

o
i (~zj , ~xi) ∧ γ

e
i ⇒ ψi (24)

(24) is an instance of (1), so the construction of SSA forψi

follows from (13)–(17).

Incorporating True Concurrency
One limitation of the semantic definition above is that it is
based onES, which only supports interleaved concurrency.
This mean that although actions may literally happen at the
same time, there is actually an ordering among them. This
notion of concurrency is weaker than the standard semantics
of PDDL 2.1. So in this section, we present some modifica-
tions to their definition to incorporate true concurrency.

We base the new semantics upon BATs in the concur-
rent temporal situation calculus (Chapter 7 of (Reiter 2001)),
but using a syntax similar to that ofES. Syntactically, the
biggest change is that the[] operator has a set of actions, in-
stead of a single action, as its parameter, and the parameter
to Possmay be either a set or a single action. For example,

[{turnKnob(t), push(t)}](DoorOpen∧Poss({goOut(t ′)}))

says that if we turn the knob and push the door simultane-
ously at timet in the initial situation, the door opens and it
is possible to go out at timet′.

In the concurrent temporal situation calculus, the BAT is
Σ = Σ0 ∪ Σpre ∪ Σpost ∪ Σuna ∪ FA

where

• Σ0 is the same as before;

• Σpre is like before, except that Axiom (21) is adapted to6

2Poss(c) ⊃
∧

a∈A

R
[

c,
(

Performing(a) ⊃ πo
a

)]

(25)

• Σpost is like before, except that in each SSA,[a] is re-
placed by[c] to denote a set of actions, all sub-formulas
of the forma = Ai are replaced byAi ∈ c, andR[a, φ] by
R[c, φ]. In the rest of this paper, when we refer to SSAs,
we always mean those adapted to true concurrency with
this substitution. For example, Axiom (6) becomes

2[c]On(x, y) ≡ ∃t.move(x , y, t) ∈ c ∨

On(x , y) ∧ ¬∃z , t .move(x , z , t) ∈ c (26)

• Σuna is a set of unique names axioms for constants and
action names.

• FA is a set of foundational axioms (c.f. Chapter 7 of
(Reiter 2001) for details), including (but not limited to)

2Poss(c) ⊃ ∃a. a ∈ c (27)

saying that a concurrent happening must contain at least
one action, and

2Poss(c) ⊃ ∃t.
(

∀a. a ∈ c ⊃ time(a) = t
)

(28)

saying that actions in a concurrent step happen at the same
time. A unique functional fluentnow is used to represent
the time of the most recent happening7 with the SSA

2[c]now= time(c) (29)

Finally, the following axiom inFA ensures that actions
happen chronologically:

2Poss(c) ⊃ now< time(c) (30)

Timed initial literals
In (Claßen, Hu, & Lakemeyer 2007), timed initial literals
(TILs) are handled with “obligatory actions,” which needs
extra mechanism to implement in practice. Here, we use
flag predicates to simulate the coerciveness of these actions,
and thus realize the timed initial literals.

To be specific, for each timed initial literal〈tk, Lk〉, we
add a new and unique asserting actionAk(t) along with a
flag predicateAchvdk. Ak(t) can only happen at timetk:

2Poss(Ak(t)) ⊃ t = tk (31)

The only effect of actionAk(t) is to makeLk andAchvdk
hold, whereas the flagAchvdk, initialized to FALSE, indi-
cates whether the asserting actionAk(t) is executed:

2[c]Achvdk ≡ ∃t. Ak(t) ∈ c ∨ Achvdk (32)

To enforce the timed initial literals, we need the axiom

2Poss(c) ⊃
(

∀k. (tk ≤ time(c)) ⊃ Achvdk
)

(33)

This forces all the asserting actions that should happen be-
fore the concurrent actionsc to be executed, and thus the
corresponding timed initial literals asserted.

6Without going into detail,R[c, φ] denotes the regressed for-
mula ofφ through the set of concurrent actionsc (Reiter 2001).

7Equivalently,now is the starting time of the current situation.
In Reiter’s formalism, this is denoted by the functionstart(s).

Correctness and Remarks
We have the following correctness result for the declarative
semantics defined in this section.

Theorem 1. LetΣ be the basic action theory obtained from
a PDDL problemP andG be the goal formula. Further let
S = {c1, · · · , cn} be a sequence of ground instantaneous
concurrent actions. Then the corresponding PDDL plan8 of
S is valid if and only if

Σ |= [c1] · · · [cn](Executable∧ G ∧ ¬∃a.Performing(a))

Proof. (Sketch)
The correctness for a variant of this theorem in the
interleaved-concurrency setting is given in (Hu 2006). The
idea of proof here is similar. We introduce auxiliary predi-
cates and functions in the PDDL problem definition to char-
acterize the process-related properties, which correspond
to the auxiliary fluents in the BAT, likePerforming(a),
since(a), Ci, etc.Then we show that the PDDL state update
due to each happening, including the update of the process-
related properties, corresponds to the progression of the BAT
through the concurrent actions.

The nice property of the declarative semantics introduced
here is that it breaks durative actions down into simple ones,
such that reasoning about durative actions is reduced to that
about simple actions. Furthermore, time is treated as a nu-
merical property. The benefit is that classical non-temporal
planners, with minor modifications (e.g. to handle non-
deterministic increase ofnow), may be used for planning in
temporal domains that are as expressive as the above-defined
subset of PDDL can represent. In the next section, we use
this observation and propose a simple encoding of temporal
planning problems as constraint satisfaction problems.

Encoding Temporal Planning as a CSP
The idea of planning as a constraint satisfaction problem
stems from (Kautz & Selman 1992), who encode planning
into SAT. This is generalized by (Lopez & Bacchus 2003) by
encoding propositional planning as a CSP and showing that
their encoding subsumes GraphPlan (Blum & Furst 1995).
Actually, Lopez and Bacchus implicitly utilize a declara-
tive semantics of STRIPS, since they appeal to the precon-
dition axioms and successor state axioms obtained from the
problem description. Given the declarative semantics for the
temporal subset of PDDL, extending their result with tem-
poral features follows naturally.

The Variable Structure
To encode a temporal planning problem as a CSP, we impose
a bound on the length of the plan (in terms of concurrent
happenings). We start with the search for a plan of length
n = 1. If a plan of lengthn is found, then we return it and
stop; otherwise, we incrementn by 1 and repeat, until either
a plan is found, orn exceeds a limit in which case we declare
that no plan exists and abort.

8S represents durative actions by their start and end happenings;
A corresponding PDDL plan restores all happenings of durative
actionst1 :a[t2 − t1] from start(a, t1) andend(a, t2) in S.

In search of a plan of lengthn, we createn variablesA(s)
j

for each ground9 actionAj , where0 ≤ s ≤ n−1, andn+1

variablesφ(s)
i for each ground fluentφi, where0 ≤ s ≤ n.

Each action variableA(s)
j is binary, and denotes the hap-

pening of either a simple action or a start or end event of a
durative action.A(s)

j is true if and only if the action instance
Aj happens in thesth set of concurrent actions.

We use two sorts of variables for fluent instances: Pred-
icates are modeled with binary variables. They include the
original ones in the domain likeHappy, along with auxiliary
ones used in the previous section for capturing the seman-
tics of the temporal features, likePerforming(burnMatch).
Functions are modeled with integer variables,10 to represent
the numerical functions in the domain, likeNW , as well as
the auxiliary ones, likenowandsince(makeWish).

Figure 2 shows the conceptual structure of the variables in
the search for a plan of length 6 to our running example. (Ig-
nore for now the lines and value assignments.) Notice that
we do not use an action’s last argument to denote its hap-
pening time. Instead, the variablenow(s+1) is used directly
to represent the happening time of the actions in thesth step,
as indicated by the thick gray arrow in Figure 2. (See also
Rule 5 of the definition of(s∗) below.) In this way, we inte-
grate Axioms (28) and (29) in the variable structure, so as to
keep the number of ground actions finite despite the infinite
number of possible happening times.

The Constraints
To ensure that all and only valid plans can be generated,
we encode the axioms in the declarative semantics into con-
straints of a CSP. This involves mapping ground terms in
the axioms to constraint variables defined above, which is
achieved by the(s∗) operator defined inductively as

1. (¬α)(s
∗) = ¬(α)(s

∗);

2. (α⊙ β)(s
∗) = (α)(s

∗) ⊙ (β)(s
∗),

where⊙ ∈ {∧,∨,⊃,≡, arithmetic operators};

3. (R[c, α])(s
∗) = (α)

(

(s+1)∗
)

;

4. (~τ(~x))(s
∗) = TRUE, where~τ (~x) are typing predicates;11

5. t(s
∗) = (time(c))(s

∗) = now(s+1);

6. X(s∗) = X̄(s), whereX is a ground fluent other thant
andtime(c), andX̄ its corresponding constraint variable;

7. (A ∈ c)(s
∗) = Ā(s) and(A 6∈ c)(s

∗) = ¬Ā(s), whereA
is a ground action and̄A its corresponding variable;

8. x(s∗) = x, wherex is a number or a free variable.

With this (s∗) operator, we define the following constraints.

9Grounding for both actions and fluents follows the typing spec-
ification. For action terms, we ignore the time parametert; the
representation of time will be made clear below.

10Some constraint solvers like Choco (Choco) also support real
numbers.

11Typing is handled in the grounding phase, and thus does not
appear as constraints.

Figure 2: Conceptual variable structure and constraint network of the CSP encoding for the happy birthday-boy problem.
(Occ = Occupied, MF = MatchFlame, CF = CandleFire, HP = Happy, NW = NumberOfWishes, PBM = Performing(burnMatch), PBC = Performing(burnCandle), PMW =

Performing(makeWish), TBM = since(burnMatch), TBC = since(burnCandle), TMW = since(makeWish), SBM = start(burnMatch), EBM = end(burnMatch), SBC = start(burnCandle),

EBC =end(burnCandle), SMW =start(makeWish), EMW =end(makeWish) andBC =blowCandle.)

The initial state and goal constraints The fluent vari-
ables in the0th step represent the initial situation, hence must
be set according to the initial databaseΣ0 in the BAT. In par-
ticular, all variables for auxiliary fluents (e.g. now(0), P (0)

BM ,

T
(0)
BC , etc.) are set to 0 (or FALSE).
The fluent variables in thenth step describe the final sit-

uation. According to Theorem 1, for a valid plan, the goal
formula must be satisfied in this situation and allPerforming
fluents must be FALSE. As an example, the goal constraint
for our running example can be encoded as

Happy(6) ∧ ¬P
(6)
BM ∧ ¬P

(6)
BC ∧ ¬P

(6)
MW

The action precondition constraint For each precondi-
tion axiom of the form2Poss(Aj) ⊃ πAj

in Σpre, includ-
ing Axioms (9), (10), (18), (20) and (31), we assert in each
concurrent step0 ≤ s ≤ n− 1

(Aj ∈ c)(s
∗) ⊃ π

(s∗)
Aj

For example, the precondition forend(burnMatch) involves
2Poss(end(burnMatch, t)) ⊃

Performing(burnMatch) ∧ t− since(A) = 3

so the corresponding constraint is

E
(s)
BM ⊃ P

(s)
BM ∧ (now(s+1) − T

(s)
BM = 3)

for s = {0, · · · , 5}, among which the constraint forE(2)
BM is

highlighted by lines between related variables in Figure 2.

Invariant constraints and TIL enforcement
Notice that Axioms (25) and (33) are not handled as an pre-
condition constraint, since the argument toPoss(c) is a set.
To encode axioms of the form

2Poss(c) ⊃ Ψ (34)

we simply assert the constraintΨ(s∗), sinceΨ is required to
hold for the concurrent step to be possible.

For example, the invariant axiom formakeWishrequires
2Poss(c) ⊃ R

[

c,
(

Performing(makeWish) ⊃ CF
)]

so the corresponding constraint isP (s+1)
MW ⊃ CF (s+1) for

s = {0, · · · , 5} (Highlighted in Step 4 of Figure 2).

The successor state constraint For each SSA of fluent
predicate of the form2[c]Fi ≡ ΦFi

, including Axioms (7),
(15), (22), (23) and (32), we assert for0 ≤ s ≤ n− 1

F

(

(s+1)∗
)

i ≡ (ΦFi
)(s

∗) (35)
For example, the SSA for fluentCF is

2[c]CF ≡ ∃t. start(burnCandle, t) ∈ c ∨
CF ∧ ¬∃t.

(

blowCandle(t) ∈ c ∨

end(burnCandle, t) ∈ c ∧ t− since(burnCandle) = 10
)

which is encoded into the constraint
CF (s+1) ≡

(

S
(s)
BC ∨ CF (s)∧

¬(E
(s)
BC ∧ (now(s+1) − T

(s)
BC = 10) ∨BC(s))

)

for s = {0, · · · , 5} (Highlighted in Step 5 of Figure 2).
For each SSA of fluent functions2[c]fi = y ≡ Φfi

, in-
cluding (8), (17) and (19), we assert for0 ≤ s ≤ n− 1

(

(Φfi
)(s

∗)
) y

f
((s+1)∗)
i

. (36)

For example, the SSA forsince(burnMatch) is
2[c]since(burnMatch) = y ≡

∃t. start(burnMatch, t) ∈ c ∧ y = time(c) ∨
since(burnMatch) = y ∧ ∀t. start(A, t) 6∈ c

so the corresponding successor state constraint is

S
(s)
BM ∧ (T

(s+1)
BM = now(s+1)) ∨ (T

(s)
BM = T

(s+1)
BM) ∧ ¬S

(s)
BM

for s = {0, · · · , 5} (Highlighted in Step 0 of Figure 2).

Non-null step constraints Axiom (27) ensures that no
concurrent happening is an empty one. This can be encoded
as12

∨

j A
(s)
j for 0 ≤ s ≤ n−1. These constraints help prune

impossible branches when solving the CSP, since without
them, a null step may exist, and the effective length of plan
reduces ton− 1, which has been proved impossible.

12Equivalent high-level constraints like “at-least-one” should be
used for efficiency, whenever possible.

Problem PDDL Plan
(a) (1:A[4]), (3:B[2])
(b) (1:A[4]), (4:B[2])
(c) (1:A[4]), (4:B[2])
(d) (1:A[5]), (3:B[4]), (4:C[1])
(e) (1:burnMatch[3]), (2:burnCandle[7]),

(5:makeWish[3]), (9:blowCandle)

Figure 3: Experimental results for problems in Figure 1

Mutex action constraints For each pair of actionsAj1

andAj2 that is mutex according to the PDDL semantics, we

add the constraint¬A(s)
j1

∨ ¬A
(s)
j2

. For example,¬E(s)
BM ∨

¬S
(s)
MW , sinceend(burnMatch) asserts¬Occ while Occ is

a start precondition ofmakeWish, violating theno moving
targetrule (Fox & Long 2003) for non-interference.

Action happening time constraint Finally, Axiom (30)
ensures the chronological order of happenings. It is of the
form in (34), so following the substitution rule there, it is
encoded asnow(s) < now(s+1) for s = 0, · · · , n − 1. No-
tice that “<” requires that the next step happen strictly later
than the current one, which ensures thenon-zero separation
condition (Fox & Long 2003).

The action happening time constraint introduced here, to-
gether with the duration constraints encoded in the precon-
dition constraints, advances the time in the plan. To ensure
that plans with short makespan are found, one needs to cus-
tomize the search algorithm to try the domain values in in-
creasing order, when solving the CSP.

Implementation and Test Results
We implement the encodings above in the Java-based con-
straint programming package Choco (Choco), due to at least
two of its nice properties. First, it supports higher-ordercon-
straints,i.e. constraints over constraints. This makes it pos-
sible to express the complicated precondition and successor
state constraints in the form of nested built-in constraints
like and,or,implies, etc. This is distinct from (Lopez &
Bacchus 2003), who encode them with non-standard multi-
ary constraints, which are far less efficient to propagate.
Second, Choco supports real numbers, so numerical fluents
may be modeled with reals in the future.

We run five test cases with the resulting CSP-based plan-
ner, which are exactly those shown in Figure 1. While most
existing temporal planners are not powerful enough to han-
dle them, our planner returns the correct plans within less
than 1 second in all cases. The variable assignments in Fig-
ure 2 shows a sample solution to our running example, from
which the PDDL plan can be extracted. Figure 3 shows the
PDDL plans for all the five cases.

We have not yet empirically compared the efficiency with
other state-of-the-art planners. However, run-time perfor-
mance is less of a concern, since our main focus here is the
temporally-expressive encoding and no optimization is ever
taken into account at the current stage. Nevertheless, our en-

coding is a general one, and is orthogonal to many existing
efficiency-improving techniques, so there are many ways to
optimize the current base encoding.

Discussion
Contribution and Related Work
Along the line of temporal planning as CSP, Mali (2002)
proposes a SAT encoding. However, it makes the TGP-like
assumption (overall-condition end-effect), and is thus tem-
porally simple. Moreover, it relies on the number of layers
for representing time, so null-steps are allowed and the net-
work becomes lengthy and inefficient when the durations of
some actions are long. In contrast, our layers represent hap-
penings, so no null-step exists, and the structure is much
more compact. Besides, representing time as a numerical
property and scheduling by solving constraints eliminates
the drawback of decision epoch planners, since the choice of
time is not predefined but instead arbitrary within the con-
straints. Finally, our encoding is derived from the formal
declarative semantics, and is thus provably correct.

The constraint network, as suggested in Figure 2, appears
similar to a planning graph (Blum & Furst 1995), but in fact
there are a few differences. First, the connection between
variables is a generalization of the edges in GraphPlan, since
each layer in a planning graph is only influenced by the layer
immediately before it, whereas in our representation, an ac-
tion layer may have constraints with fact layers both before
and after it, and a fact layer may have links with both the
fact and action layers before it and the fact layer itself. In
particular, effects are not represented as add and delete oper-
ations, but instead as successor state constraints of the form
in (35) and (36). In this way, conditional effects can be con-
cisely modeled without splitting an action into two. Second,
numbers are accommodated in the network naturally due to
the existence of numerical variables. This is crucial for our
approach, since the happening times, represented bynow(s),
are modeled as a functional fluent using numerical variables.
Finally, unlike in the planning graph, the constraints in dif-
ferent steps are the same, except for the initial and goal con-
straints. Therefore, we do not have the forward propagation
and backward search phase. Instead, only a (uniform) con-
straint network construction and a CSP solution phase exist.

The idea of breaking durative actions into simple ones is
not new. For example, Long and Fox (2003) propose LPGP,
which splits a durative action into a start, an invariant andan
end action, and uses a variant of GraphPlan to find a plan,
whose happening times are then scheduled by a linear pro-
gram solver. Unlike their approach, we only use two simple
actions for each durative action, with the invariant condition
protected by constraints derived from (25). This results ina
more compact representation.

Due to the two-part search (GraphPlan plus LP schedul-
ing), it is difficult for LPGP to handle duration-related ef-
fects, such as “the number of wishes is equal to the number
of time units for making the wishes,” since the duration of
an action is still unknown in the plan generation phase, and
thus the effect cannot be determined. Similar problems exist
in VHPOP (Younes & Simmons 2003) and Tempo (Cushing

et al. 2007). Furthermore, LPGP and Tempo do not support
duration inequalities. From this observation, it is interest-
ing to notice that although LPGP, VHPOP and Tempo are
temporally-expressive planners according to the definition
of Cushinget al., they are not PDDL-complete in that there
are PDDL problems that they cannot solve.

In contrast, our approach unifies temporal planning and
scheduling, and searches for actions and their happening
times simultaneously in a single CSP. As a result, no mat-
ter how time, fluents and actions interact with one another,
the search remains neutral and complete. This means that
our planner is general enough to capture all of the problems
that can be expressed within the target subset of PDDL.

Of course, there are “temporally expressive” planners out-
side PDDL, such as Zeno (Penberthy & Weld 1994), AS-
PEN (Fukunagaet al. 1997), IxTeT (Laborie & Ghallab
1995),etc. How they may generally handle PDDL prob-
lems, however, is yet to be further investigated.

Problems
One limitation of our approach is that the returned plan is
optimal with respect to the number of concurrent steps, but
not necessarily makespan optimal. One possible solution
to this problem is to enforce a boundN on the length of
plan, and let the planner find all plans of lengthn ≤ N , and
return the one with shortest makespan, as has been suggested
in (Long & Fox 2003).

Ongoing and Future Research
We are implementing a general-purpose temporal planner
based on the encoding introduced in this paper. We plan
to investigate different optimization techniques to make it
efficient and competitive.

We are also interested in applying our declarative seman-
tics to state-space search planners, as well as finding more
effective heuristics from the deeper insight that this brings.

Another possible research topic involves the definition of
a declarative semantics, as well as the corresponding CSP
encoding, for PDDL 3.0 (Gerevini & Long 2005) with con-
straints and preferences on the trajectory of plans.

Conclusion
In this paper, we introduced a new and general declarative
semantics to the temporal subset of PDDL. Using it as the
logical foundation, we defined a method to encode tempo-
ral planning problems directly into CSPs. This encoding
captures most of the expressiveness of PDDL. Besides, our
planner unifies plan generation and scheduling in one pro-
cess. Both these properties contribute to the resulting plan-
ner being complete for temporal PDDL domains, which, to
the best of our knowledge, no existing planner ever achieves.

Acknowledgment
The author would like to thank the anonymous reviewers,
as well as Fahiem Bacchus, Jorge Baier, Jens Claßen and
Christian Fritz for their comments. Special thanks to Hector
Levesque for his revision suggestions and financial support.

References
Bacchus, F., and Ady, M. 2001. Planning with resources and
concurrency: A forward chaining approach. InIJCAI-01.
Blum, A., and Furst, M. 1995. Fast planning through planning
graph analysis. InIJCAI-95.
Chen, Y.; Wah, B.; and Hsu, C. 2006. Temporal planning using
subgoal partitioning and resolution in SGPlan.JAIR26:323–369.
Choco. http://choco.sourceforge.net.
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007. To-
wards an integration of Golog and planning. InIJCAI-07.
Claßen, J.; Hu, Y.; and Lakemeyer, G. 2007. A situation-calculus
semantics for an expressive fragment of PDDL. InProceedings
of AAAI-07.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S. 2007.
When is temporal planning really temporal? InIJCAI-07.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the classical part of the 4th international planning competition.
Tech. rep. 00195, Universität Freiburg.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains.JAIR20:61–124.
Fukunaga, A.; Rabideau, G.; Chien, S.; and Yan, D. 1997.
Towards an application framework for automated planning and
scheduling. InProc. of IEEE Aerospace Conference.
Gerevini, A., and Long, D. 2005. Plan constraints and preferences
in PDDL3. Tech. rep., RT 2005-08-47, Dept. of Electronics for
Automation, University of Brescia, Italy.
Hu, Y. 2006. A declarative semantics for a subset of PDDL with
time and concurrency. Master’s thesis, RWTH Aachen, Germany.
Kautz, H., and Selman, B. 1992. Planning as satisfiability. In
ECAI-92.
Laborie, P., and Ghallab, M. 1995. Planning with sharable re-
source constraints. InIJCAI-95.
Lakemeyer, G., and Levesque, H. J. 2004. Situations, si! situation
terms, no! InKR-04. AAAI Press.
Lifschitz, V. 1986. On the semantics of STRIPS. In Georgeff,
M. P., and Lansky, A. L., eds.,Reasoning about Actions and
Plans: Proceedings of the 1986 Workshop.
Lin, F., and Reiter, R. 1997. How to progress a database.Artificial
Intelligence92:131–167.
Long, D., and Fox, M. 2003. Exploiting a GraphPlan framework
in temporal planning. InICAPS-03.
Lopez, A., and Bacchus, F. 2003. Generalizing GraphPlan by
formulating planning as a CSP. InIJCAI-03.
Mali, A. D. 2002. On temporal planning as CSP. InProc. of IEEE
International Conference on Tools with Artificial Intelligence (IC-
TAI), 75–82.
McDermott, D., and the AIPS’98 Planning Competition Commit-
tee. 1998. PDDL — the planning domain definition language.
Tech. rep. www.cs.yale.edu/homes/dvm.
Penberthy, J. S., and Weld, D. S. 1994. Temporal planning with
continuous change. InProceedings of AAAI-94.
Reiter, R. 2001.Knowledge in Action. MIT Press.
Smith, D. E., and Weld, D. S. 1999. Temporal planning with
mutual exclusion reasoning. InIJCAI-99.
Vidal, V., and Geffner, H. 2004. CPT: An optimal temporal POCL
planner based on constraint programming. InICAPS-04.
Younes, H. L., and Simmons, R. G. 2003. VHPOP: Versatile
heuristic partial order planner.JAIR20:405–430.

