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Knowledge Representation and Reasoning

What is Knowledge Representation and Reasoning

1. Symbolic encoding of believed facts about the environment,

2. Manipulating symbols to produce meaningful inference.

Planning: an instance of KR&R in dynamic environment
I Knowledge base encodes dynamics of environment:

I available actions (precondition/effect)
I facts about current state
I some goal to be achieved

I The reasoning task: find actions to achieve the goal!
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Planning: A Simple Example

A cleaning robot is able to perform the follow-
ing actions:

I move(x) moves the robot to object x .

I observe(x , r) senses the type of object x ,
and discovers that the type is r .

I throw(x) throws x out of the room, when x is garbage.

I recycle(x) puts x into a recycle bin, when x is glass or paper.

The goal is to put all glass and paper into the recycle bin and
throw away all garbage.

e.g., Suppose we have four waste objects in the room, w1 being
glass, w2 being paper, w3 being garbage, and w4 being paper.



Classical Planning

(define (domain cleaning-robot)
(:predicates (at ?x) (garbage ?x) (paper ?x) ... )
(:action recycle

(:parameters ?x)
(:precondition (and (at ?x) (or (glass ?x) (paper ?x))))
(:effect (in-bin ?x)))

(:action move ...)
... ...)
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A plan:
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Classical Planning

(define (domain cleaning-robot)
(:predicates (at ?x) (garbage ?x) (paper ?x) ... )
(:action recycle

(:parameters ?x)
(:precondition (and (at ?x) (or (glass ?x) (paper ?x))))
(:effect (in-bin ?x)))

(:action move ...)
... ...)

(define (problem cleaning-instance-37251)
(:domain home-robot)
(:objects w1 w2 w3 ... w9453)
(:init (paper w1) (paper w2) (garbage w3) ... (glass w9453))
(:goal (and (in-bin w1) (in-bin w2) (thrown w3) ... (in-bin w9453))))

A plan:

move(w1), observe(w1, paper), recycle(w1),
move(w2), observe(w2, paper), recycle(w2),
move(w3), observe(w3, garbage), throw(w3),

.........
move(w9453), observe(w9453, glass), recycle(w9453).



Regularities in Plans

Although the specific instance may vary,

I all cleaning-robot problems have similar structure, and

I the solution plans contain regular patterns.

Does there exist a generalized solution that solves all such
problems?

No matter how many objects and what objects, the finite-state
controller above solves the problem.
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Planning with Loops: Challenges

It is intriguing to automatically generate such Finite-State
Automaton-like Plans (FSA plans).

Unfortunately, with unbounded number of objects, there can be
infinitely many initial states, so plan generation and verification
can be infinite too.

I When the cleaning robot wakes up, it maybe given 3 waste
objects, or may be 30, or may be 3000, or ...

I Each object may be glass, paper or garbage.
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Planning with Loops: Our Approach

A simple solution: generate plans that work for finitely many cases,
and hopefully it also works for all other cases!

In the cleaning robot example, we can generate with the
assumption that there are only one or two waste objects to be
handled, and verify its correctness only after we get some plan.

The resulting FSAPLANNER alternates between a generation
phase and a testing phase:

1. Generation Phase: Generate a plan that works for finitely
many cases

2. Testing Phase: Test the plan to see if it also works for other
cases:

I If it works, then a solution is found;
I Otherwise, go to Step 1, and generate a different plan.
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Generation of Plans with Loops

Search in the space of FSA plans

1. Start with the smallest FSA plan with
only one non-final state.

2. If the current plan state is final, then the
goal must be satisfied.

3. Otherwise, execute the action associated
to the current plan state,
non-deterministically pick one if none is
associated.

4. For each possible sensing result of the
action, follow the transition and update
the current state. If no transition is
associated to the sensing result,
non-deterministically pick one for it, add
new states as necessary.

5. Repeat from step 2.

? mh

The testing phase is responsible for eliminating the false plans.
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Search in the space of FSA plans

1. Start with the smallest FSA plan with
only one non-final state.

2. If the current plan state is final, then the
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The testing phase is responsible for eliminating the false plans.
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Verification of Plans with Loops

Any candidate plan should be rejected in the testing phase, unless
it really works in general.

I Ideally, we need to test against all of the infinitely many
possible initial states, but this is impractical.

I One solution: test the plan against a finite subset of them.
I In the cleaning-robot example, we may test if the plan works

for 3 and 4 waste objects too.

I This method appears to work well, but in theory, it is unsound.

Can we have correctness guarantee with practical computation?

I Not in general: FSA plans can simulate Turing machines!
I For restricted problem classes: we can!

I e.g. One-Dimensional Problems...
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I Not in general: FSA plans can simulate Turing machines!
I For restricted problem classes: we can!

I e.g. One-Dimensional Problems...
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Finite Verification of One-Dimensional Problems

One-dimensional problems: (roughly speaking)

I the only unbounded property is a non-negative integer fluent p

I the only test on p is whether p = 0

I the only effect on p is to increase or decrease it by one

Theorem (Finite Verifiability of One-Dimensional Problems)

Given a one-dimensional problem with unbounded integer fluent p,
m other fluents taking l possible values, and a plan with k nodes,

if the plan works for p = 0, 1, · · · , k ·ml + 1,
then it works for all p ∈ N.

Proof Sketch.
The proof uses the pigeon hole’s principle over configurations in
the execution trace, in a somewhat similar flavor to the proof of
the pumping lemma.
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Conclusions

1. Building intelligent agents is a long-lasting goal of AI

2. Planning, or more generally, knowledge representation and
reasoning, plays a central role in such agents.

3. (Re)planning for each new problem in a problem class is often
inefficient

4. Plans with loops represents a generalized solution to planning
domains

5. Generating and verifying plans with loops is undecidable in
general, but for restricted classes of problems, efficient
algorithms exist.



Related Research

Generation and verification of plans with loops is not an isolated
KR problem. It also relates to

I program synthesis and verification

I automata theory and computability

I inductive reasoning and machine learning

Good potential for collaboration and cooperation!

Thank you for your attention!

Questions?
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