
A Declarative Semantics

of a Subset of PDDL

with Time and Concurrency

November 22, 2006

Type of Thesis

Master Thesis

Title of Thesis

A Declarative Semantics of a Subset of PDDL

with Time and Concurrency

Author

Hu, Yuxiao

Matriculation Number 262104

Program

Software Systems Engineering

Department

Department of Computer Science,

RWTH Aachen University, Germany

Thesis Supervisor

Jens Claßen

Knowledge-Based Systems Group,

Department of Computer Science

First Examiner

Professor Gerhard Lakemeyer, Ph. D.

Knowledge-Based Systems Group,

Department of Computer Science

Second Examiner

Professor Matthias Jarke, Doctor

Chair V: Information Systems and Databases

Department of Computer Science

Place and Date of Submission

Aachen, 22 November 2006

Declaration

I hereby promise that this master thesis is completed by myself alone,

referring to no sources or materials other than those explicitly specified.

(Hu, Yuxiao)

A Declarative Semantics

of a Subset of PDDL

with Time and Concurrency

by

Hu, Yuxiao

Matriculation Number 262104

Master Thesis

in the Program of Software Systems Engineering

Department of Computer Science

RWTH Aachen University, Germany

November 2006

Typeset in Computer Modern and AMSFonts using LATEX2ε

Hu, Yuxiao

Rütscher Str. 121

Room 0202

52072 Aachen

Germany

Email: Yuxiao.Hu@rwth-aachen.de

c©2006 Yuxiao Hu

All rights reserved

Acknowledgments

First of all, I would like to express my special gratefulness to Prof. Gerhard

Lakemeyer. As head of the master program and my academic advisor, he has

been offering me advice and help since my application phase three years ago,

and throughout my study in the master program. Without him, I would not

have been able to get the chance to do this project, nor to further my study

in this area in the University of Toronto.

I would also like to thank Jens Claßen for his suggestions and advice to

my work in this thesis. He helped me the most in this project. The dozen of

in-depth discussions provided me with new ideas, and identified many obvious

mistakes that I had made in the drafts. Besides, he also offered me the LATEX

skeleton, which I am using for the final version of this thesis.

The Germany Academic Exchange Office (DAAD) and the Siemens Cor-

poration have helped me the most in terms of finance. It is the scholarship

from them that supported the whole duration of my stay in Germany. With-

out their fund, I would not have got the chance to fulfill my dream in the

best engineering university in Germany. Special thanks to Mrs. Heike Gabler.

As the direct correspondence in the DAAD, she has been so kind to me, and

offered me lots of help in the scholarship program.

Thanks to my parents, and to my girlfriend, Chen. They always under-

stand me, and supports me with their love. Their company and encouragement

has been the source of my confidence to overcome the difficulties on the way.

iii

iv

Contents

Contents v

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Project Goals . 2

1.3 Outline . 3

2 The Planning Domain Definition Language 5

2.1 The Development of PDDL . 5

2.1.1 STRIPS . 5

2.1.2 ADL . 6

2.1.3 PDDL . 8

2.2 The Language . 9

2.2.1 The Basics . 9

2.2.2 Numerics and Metrics 12

2.2.3 Durative Actions . 13

2.2.4 Timed Initial Literals 15

2.3 A Structural Representation . 16

2.3.1 Functional updates . 17

2.3.2 Duration and temporal annotation 19

3 The Situation Calculus 23

3.1 The Language . 23

3.2 The Basic Action Theory . 24

3.3 Regression . 28

3.4 Progression . 30

3.5 Time and Concurrency . 32

3.5.1 Time . 33

3.5.2 Durative actions . 34

v

vi Contents

3.5.3 Concurrency . 34

3.5.4 Continuous effects . 38

3.5.5 Natural actions . 39

3.6 Complex Actions and Golog . 40

4 The Logic ES 43

4.1 The Language . 43

4.1.1 The Alphabet . 43

4.1.2 Terms and Formulas . 44

4.1.3 The Semantics . 45

4.2 Basic Action Theories . 46

4.3 Regression . 47

4.4 Progression . 48

5 The Extensions to ES 49

5.1 Executability . 49

5.2 Numerics . 50

5.2.1 An example . 53

5.3 Temporal Extension . 54

5.4 Durative Actions and Concurrency 56

5.5 Modeling Continuous Changes 60

5.6 Coercive Actions . 64

6 The Semantic Mapping between PDDL and ES 67

6.1 Existing Work . 67

6.1.1 STRIPS as Progression in the Situation Calculus 67

6.1.2 ADL as Progression in the Logic ES 70

6.2 Numerical Expressions and Plan Metrics 73

6.2.1 Numerical Expressions 73

6.2.2 Metrics . 75

6.2.3 An Example . 75

6.3 Durative Actions . 80

6.3.1 Discretized Durative Actions 80

6.3.2 Inter-Temporal Property Reference 86

6.3.3 Continuous Effects . 89

6.4 Timed Initial Literals . 92

7 Correctness 95

7.1 The Interpretation of the State 95

7.2 The Non-Durative Subset . 98

7.3 Durative Actions . 117

Contents vii

7.3.1 Duration Constraint . 120

7.3.2 Invariant Conditions . 121

7.3.3 Conditional Effects . 123

7.3.4 Continuous Effects . 124

7.4 Timed Initial Literals . 129

7.5 Conclusion . 130

8 Conclusion and Future Work 131

8.1 The Result . 131

8.2 Future Work . 131

8.2.1 The Reoccurance Problem 132

8.2.2 Integrating True Concurrency 133

8.2.3 Embedding External Planners in Golog 135

Bibliography 137

viii Contents

List of Figures

2.1 The blocks world defined using Strips. 7

2.2 The domain description of the briefcase world with Pddl 10

2.3 A problem description in the briefcase world domain with Pddl . 10

2.4 Jug-pouring problem with numerical expressions 13

2.5 Producer-consumer example with discrete durative actions 14

2.6 Shop opening hours expressed with timed initial literals 16

3.1 An example of concurrent actions 35

5.1 Basic action theory of the producer-consumer domain 58

5.2 Linear change modeled by discretized durative actions 59

5.3 Successor state axioms of a continuous fluent 62

6.1 Domain and problem description with numerics and metrics 76

6.2 Action definitions for a simple light-tunnel problem. 84

6.3 The full version of light tunnel problem. 88

ix

Chapter 1

Introduction

1.1 Background

Planning, as one of the main branches in artificial intelligence, involves finding

a sequence of actions that achieves a specific goal from an initial state [RN03].

Ever since the introduction of the Strips planning system [FN71], there has

been a great improvement in the efficiency and powerfulness of planners. With

the right heuristics, modern planners are able to generate a plan of thousands

of actions within one second. In order to compare the behavior of different

planners and to share plan resources among them, it is essential to have a

uniform language for describing planning problems.

Based on the Strips and the Adl [Ped89] formalisms, McDermott et

al. defined the Planning Domain Definition Language (Pddl) [GHK+98],

which served as the standard language for the first international planning

competition (IPC’98). This language has roughly equivalent expressiveness as

the Adl, and is capable of concisely modeling the classical planning problems.

With the recent fast development in the planning community, the research

interest goes far beyond finding a sequence of actions, but focus on modeling

the reality that a planning domain resides in. This includes the temporal prop-

erties of actions and the resource constraints in solving the problem. With this

trend, Fox and Long extended the Pddl with durative actions [FL03], which

is further improved by Edelkamp and Hoffmann to integrate derived predi-

cates and timed initial literals [EH04]. Instead of considering the actions as

immediate and duration-free changing operators of states, the new language,

Pddl 21, is able to model durative actions and the continuous change of the

1In this paper, we use Pddl 2 to stand for Pddl 2.1 by Fox and Long and Pddl 2.2 by

Edelkamp and Hoffmann as a whole. Similarly, we use Pddl 1 to stand for McDermott’s

Pddl 1.2.

1

2

states. Meanwhile, parallel execution of actions is also allowed in it. As a

result, it is a language for realistically describing planning problems, and has

become a standard language in the planning community.

Since the introduction of Strips, the semantics of planning languages

has been a problem. Lifschitz proposed a definition with the state transition

model [Lif86]. Fox and Long extended his idea to define the semantics for their

language Pddl 2.1. Both of the two works rely on meta-theoretic operations

on logical theories, and it is interesting to define the semantics declaratively.

For this purpose, a language capable of representing and reasoning about

dynamic worlds is needed. A popular candidate is the situation calculus. Orig-

inally proposed by McCarthy [McC63], it is an expressive dialect of first-order

logic, especially suitable for modeling the dynamics of the changing world. Its

second-order extension, formalized by Reiter [Rei01], serves as the theoreti-

cal foundation of the powerful action language Golog [LRL+97]. However,

since the essential properties of situations are asserted by axioms, the proofs

are usually complicated and lengthy in the language. Recently, Lakemeyer

and Levesque proposed a new logic ES, which reasons about situations with-

out situation terms in the language [LL04]. Unlike the situation calculus,

situational properties are embedded in the semantics of the language, so it

is shown that ES simplifies semantic definitions and proofs while preserving

similar expressiveness to the situation calculus [LL05].

As a result, both the situation calculus and the logic ES can serve as the

logic foundation for defining the declarative semantics of planning languages.

As an early attempt, Lin and Reiter formalized progression in the situation

calculus, and showed that state updates in Strips can be modeled by first

order progression. Recently, Claßen et al. extended this result to the Adl

subset of Pddl with the logic ES, and illustrated how the semantic mapping

helps embed external planners to Golog programs [CELN07]. These are

exciting results, since they bring together the research on planning and action

formalisms, such that the two may benefit from each other.

1.2 Project Goals

With the existing work at hand, it is interesting to extend their results along

the development of Pddl. In particular, defining a declarative semantics of

the temporal extensions to Pddl is so far an open problem, although there

have been quite a few literature on extending the classical situation calculus

with concurrency and durative actions [Pin94, Rei96, DGLL00, GL00, GL01].

In this thesis, we shall study the temporal extensions to the situation

calculus, and investigate the possibility to define a declarative semantics for

1.3 Outline 3

the subset of Pddl with time and concurrency. When building the mapping,

instead of using the classical situation calculus, we rely on the new logic ES.

There are at least two reasons for this decision. For one, the formulation in ES
is more succinct, especially in our case where progression is intensively used

in the proofs; for the other, the existing version of ES does not support time

or concurrency, and it is interesting to see how the results in the situation

calculus can be reproduced in ES in a similar manner.

At the end of this thesis, we shall obtain a semantic mapping between a

subset of Pddl and and the basic action theories in the logic ES. This subset

is roughly the one defined by Fox and Long in the version 2.1, along with the

timed initial literals defined by Edelkamp and Hoffmann in the version 2.2.

Moreover, the correctness of our semantics will be proved.

1.3 Outline

The rest of this thesis is organized as follows: Chapter 2 briefly introduces

the Pddl language, including an informal account of its syntax and its state-

transitional semantics. Then we have an overview of the situation calculus

in Chapter 3 and the logic ES in Chapter 4. In Chapter 5, we discuss some

extensions to ES, which will enable us to reason about, among other things,

numerical and temporal properties in the logic. The main focus of this thesis

is Chapter 6, where we actually define the semantic mapping. This is accom-

panied with a formal proof of correctness in Chapter 7. Finally, we conclude

and suggest some directions for future research in Chapter 8.

Chapter 2

The Planning Domain

Definition Language

This chapter offers a brief introduction to the Planning Domain Definition

Language (Pddl), a standard language in the planning community for repre-

senting planning problems. We start with an overview of the developmental

history of Pddl in Section 2.1. This is followed by the elaboration of the its

syntax and semantics in Section 2.2. Finally, Section 2.3 defines a structure

for concisely representing Pddl problem descriptions, for the benefit of later

discussion.

2.1 The Development of PDDL

2.1.1 STRIPS

Planning had been an active area in artificial intelligence for almost 30 years

before the introduction of Pddl. An early influential work owes to Fikes and

Nilsson, who invented Strips, a mechanism for describing planning problems,

and developed a problem solver with the same name built upon this mecha-

nism [FN71].

A Strips problem definition consists of an initial state description, a set of

operators and a goal description. A state is represented by a set of formulas

in first-order logic; an operator corresponds to an action that changes the

states. Each action operator consists of, besides its name and parameter list,

a precondition, an add list and a delete list. It is possible to execute an

action in a state, only if its precondition is satisfied in that state. The actual

execution of the action changes the state to a new one by deleting the formulas

in the operator’s delete list and adding the ones in its add list. The task of

5

6 The Planning Domain Definition Language

a Strips planner is then to find an executable sequence of operators that

transforms the initial state to a state that satisfies the goal formula.

This definition of Strips is a general one, in a sense that arbitrary first-

order formulas are allowed in the language. In practice, however, only a

restricted form is used, since many versions of Strips that go beyond a certain

restriction get semantical problems, and thus lead to “unreasonable” behavior,

as pointed out by Lifschitz [Lif86].

One of the typical restricted forms of Strips requires that state descrip-

tions, condition formulas (e.g. action preconditions, goal description, premises

for conditional effects), the add lists and the delete lists are all represented

with conjunctions of grounded positive literals. The closed-world assumption

is used in this case, indicating that all the conditions that cannot be derived

from a state description is assumed to be false. For example, Figure 2.1 il-

lustrates a problem definition in Strips in the blocks world. As we shall

later see, this highly restricted form of Strips is called relational Strips, and

defines the most basic subset, namely, the Strips subset, of the Pddl.

2.1.2 ADL

In order to extend the expressiveness of Strips with well-defined semantics,

Pednault developed the Action Description Language (Adl) [Ped89, Ped94],

which explores the middle ground between the highly expressive situation

calculus and the computationally more beneficial Strips.

The syntax of Adl resembles that of Strips, augmented with conditional

add and delete lists, which make it possible to describe situation-dependent

effects. However, the semantics of Adl is quite different from that of Strips.

While Strips operators define transformations on formulas, Adl schema de-

fine transformations on the algebraic structures representing the states.

The details of the syntax and semantics of the original Adl are out of

the scope of this thesis. Here, we are interested in the Adl subset of Pddl,

which, compared with the Strips subset, has the following new features:

• Objects are typed.

For example, one may assert that obj1 is a Block, and the single param-

eter to the action moveToTable must be of type Block.

• Negation, disjunction and quantification are allowed in conditions.

For example, one may express

¬∃y.On(y, x)

2.1 The Development of PDDL 7

Init (

On(A, Table) ∧On(B, Table) ∧On(C, Table)∧
Clear(A) ∧ Clear(B) ∧Clear(C)

)

Goal (

On(A,B) ∧On(B,C)

)

Action (Move(b, x, y)

PRE: On(b, x) ∧ Clear(b) ∧ Clear(y)
ADD: On(b, y) ∧ Clear(x)
DEL: On(b, x) ∧ Clear(y)
)

Action (MoveFromTable(b, x)

PRE: On(b, Table) ∧ Clear(b) ∧ Clear(x)
ADD: On(b, x)

DEL: On(b, Table) ∧ Clear(x)
)

Action (MoveToTable(b, x)

PRE: On(b, x) ∧ Clear(b)
ADD: On(b, Table) ∧ Clear(x)
DEL: On(b, x)

)

Figure 2.1: The blocks world defined using Strips.

as a precondition of moveToTable(x) (which has the same meaning as

Clear(x)), and

∀(x : Block).¬Fragile(x) ∨ ¬(∃y : Block).On(y, x)

as a goal condition.

• Equality is a built-in predicate.

For example, for the precondition of move(x, y), one may explicitly re-

quire that ¬(x = y).

8 The Planning Domain Definition Language

• Conditional effects are allowed.

For example,

∀z.Above(y, z) ⇒ Above(x, z)

says that the effect Above(x, z) takes place only if Above(y, z) is true in

the current state.

2.1.3 PDDL

The first version of the Planning Domain Definition Language, Pddl 1.2,

was defined by McDermott et al. in 1998 for the AIPS’98 planning competi-

tion [GHK+98]. It supports the following features:

• Basic Strips-style actions

• Conditional effects

• Universal quantification over dynamic universes

• Domain axioms over stratified theories

• Specification of safety constraints

• Specification of hierarchical actions composed of sub-actions and sub-

goals

• Management of multiple problems in multiple domains using different

subsets of language features

The language is intended to express the physics of planning domains with-

out specific advice for planners. As a unification of different existing for-

malisms at that time, the language brought a boom in the availability of

shared planning resource, and soon became a standard language in the plan-

ning community to represent and exchange planning domains and problems.

With the rapid progress in the area of planning, researchers soon found

the toy domains of propositional puzzles inadequate, and start to move their

focus towards solving more realistic problems. This includes reasoning about

numerical properties, resource constraints, time and concurrency, among other

things. This trend led to the revisions and extensions of Pddl in the following

years. Specifically, Fox and Long introduced numerical expressions, metrics

and durative actions in the version 2.1, and defined a formal transitional

semantics for the language [FL03]; Edelkamp and Hoffmann later extended

the language again to formalize (reintroduce) the derived predicates (originally

called domain axioms in Pddl 1.2), and introduced timed initial literals in the

2.2 The Language 9

version 2.2 [EH04]; finally in 2005, Gerevini and Long proposed the version

3.0, where constraints and preferences on plans are incorporated [GL05].

In the following section of this chapter, we shall present a more detailed

introduction to the syntax and semantics of a subset of the Pddl language

that is interesting to the topic of this thesis. This is roughly the subset of

Pddl 2.1 along with the timed initial literals in Pddl 2.2. Instead of giving

all the formal definitions, we only do it in an intuitive way for space and scope

reasons. We advise the readers to refer to the literatures for the formal details

in the original definitions.

2.2 The Language

According to the definition by Fox and Long, the features in the Pddl are

grouped into five levels with increasing expressiveness power. Level 1 is the

Strips and Adl fragment of the language, where all properties are relational

and all actions are non-durative; Level 2 extends Level 1 with numerical ex-

pressions; Level 3 enables the use of discretized durative actions; Level 4 fur-

ther enables continuous durative actions; and Level 5 supports spontaneous

events and physical processes. In the following subsections, our discussion will

mainly follow this level definition.

2.2.1 The Basics

This subsection concerns with the basic structure of Pddl definitions and the

features in the first level of the language.

A planning problem is described in two parts: the domain description and

the problem description. The former defines how the framework of the world

is like, e.g. what types of objects are there, what actions are available, what

are their preconditions and effects, and so on. The latter defines the specific

task in this framework, e.g. what are the objects concerned in the problem,

what is the initial and goal state, and so on. The separation of the general

domain description and the specific problem description simplifies the reuse

of defined domains for several problems.

Let us illustrate the syntax of Pddl with an example in [GHK+98]. Fig-

ure 2.2 defines the domain of a briefcase world. Words starting with a colon

(:) are key words, and those starting with a question mark (?) are variables.

Notice that all the logical sentences are written in prefix format for simplicity

in the parsing phase.

Each domain begins with a :requirements field, which contains all the

required features for solving problems in this domain. A planner that does

10 The Planning Domain Definition Language

(define (domain briefcase-world)

(:requirements :strips :equality :typing :conditional-effects)

(:types location physob)

(:constants (B - physob))

(:predicates (at ?x - physob ?l - location)

(in ?x - physob))

(:action mov-b

:parameters (?m ?l - location)

:precondition (and (at B ?m) (not (= ?m ?l)))

:effect (and (at b ?l) (not (at B ?m))

(forall (?z)

(when (and (in ?z) (not (= ?z B)))

(and (at ?z ?l) (not (at ?z ?m)))))))

(:action put-in

:parameters (?x - physob ?l - location)

:precondition (not (= ?x B))

:effect (when (and (at ?x ?l) (at B ?l))

(in ?x)))

(:action take-out

:parameters (?x -physob)

:precondition (not (= ?x B))

:effect (not (in ?x)))

Figure 2.2: The domain description of the briefcase world with Pddl

(define (problem get-paid)

(:domain briefcase-world)

(:objects home office - location P D B - physob)

(:init (at B home) (at P home) (at D home) (in P))

(:goal (and (at B office) (at D office) (at P home))))

Figure 2.3: A problem description in the briefcase world domain with Pddl

2.2 The Language 11

Requirement Description

:strips Basic Strips-style adds and deletes

:typing Allow type names in declarations

of variables

:negative-preconditions Allow not in goal descriptions

:disjunctive-preconditions Allow or in goal descriptions

:equality Support = as built-in predicate

:existential-preconditions Allow exists in goal descriptions

:universal-preconditions Allow forall in goal descriptions

:quantified-preconditions =:existential-preconditions

+:universal-preconditions

:conditional-effects Allow when in action effects

:adl = :strips + :typing

+ :negative-preconditions

+ :disjunctive-preconditions

+ :equality

+ :quantified-preconditions

+ :conditional-effects

:durative-actions Allow durative actions

Note that this does not imply :fluents.

:duration-inequalities Allow duration constraints in durative

actions using inequalities.

:continuous-effects Allow durative actions to affect fluents

continuously over the duration of action.

:timed-initial-literals Allow timed initial literals

Table 2.1: Requirements in Pddl

not satisfy all of the requirements in the list can simply stop without trying to

solve the problem. Table 2.1 lists the frequently-used requirements and their

meanings in the language.

There are two built-in types in the language, namely, object (the default

and super type of all objects) and number. In the example of Figure 2.2,

however, due to the presence of the :typing requirement, objects in the do-

main may be typed with user-defined types. This example involves two such

types: location for locations and physob for physical objects. An object in

a domain that is invariant in all its problem instances is a constant. In the

example, B is a constant denoting the (unique) briefcase.

Finally in a domain description, all the predicate, function and action

12 The Planning Domain Definition Language

symbols that may be used in the domain are declared. As shown in Fig-

ure 2.2, there are two predicate symbols, At(x, l) (whether physical object x

is at location y) and In(x) (whether x is in the briefcase), and three actions

symbols, mov b(m, l) (which moves the briefcase from location m to location

l), put in(x, l) (which puts physical object x into the briefcase if both are

at location l) and take out(x) (which takes the physical object x out of the

briefcase).

The way in which action operators are defined in Pddl is similar to Strips.

Each definition has three sections. The first is a list of parameters and their

corresponding types. When executing an action, these parameters are instan-

tiated with ground terms of the correct types. The second is the precondition.

For an action to execute in a state, its precondition must be satisfied in the

state. The third section is the effect formula. It is a combination of the add

and delete lists in Strips, and defines how the state should be modified after

the execution of the action.

Figure 2.3 shows an example of a problem instance in the briefcase-world

defined in Figure 2.2. It specifies which domain the problem belongs to, what

objects there are, what the initial state is, and which goal is to be achieved.

With the definition of the problem and its corresponding domain, a planner

has full information about the planning problem, and can therefore proceed

to generate a plan as solution.

2.2.2 Numerics and Metrics

The use of numerics and plan metrics comprises the second level of the Pddl.

Numerical expressions are formally integrated to Pddl in the version

2.1, although number is already a built-in type since Pddl 1.2. According

to [FL03], numbers always have real values, and their possible roles are not

distinguished. Following the old convention, all numerical expressions, includ-

ing comparison predicates, are written in prefix format. Three operations can

be used to update a numerical variable: assign, increase and decrease,

with their obvious functionalities.

There are two important restrictions to the use of numerical expressions.

First, they are not terms in the language. In particular, numerical expressions

cannot appear as arguments to predicate, function or action parameters. This

restriction helps keep the instantiation of predicates and actions finite. Second,

all function values in the language are numbers, rather than objects, i.e. all

functions are of the form Objectn → <. This eliminates the identity problem

that would raise if functions of the form Objectn → Object were allowed.

2.2 The Language 13

(define (domain jug-pouring)

(:requirement :typing :fluents)

(:types jug)

(:functions

(amount ?j - jug)

(capacity ?j -jug)

(:action pour

:parameters (?jug1 ?jug2 - jug)

:precondition (>= (- (capacity ?jug2) (amount ?jug2))

(amount ?jug1))

:effect (and (increase (amount ?jug2) (amount ?jug1))

(assign (amount ?jug1) 0))

)

Figure 2.4: Jug-pouring problem with numerical expressions

Figure 2.4 is an example in [FL03] to illustrate the use of numerical ex-

pressions in Pddl 2.1.

With a stable extension of numerics to the Pddl core, Fox and Long

further introduced the plan metric to the language. It is a field in the problem

definition, indicating on which basis the quality of the plan is evaluated.

For example, the sentence

(:metric minimize (+ (* 2 (fuel-used car)) (fuel-used truck)))

says that a good plan has a smaller weighted sum of the fuel used by the car

and the truck. As we can see, the metric is simply a numerical expression,

under the condition that all the numerical functions in the expression is in-

strumented in the domain, i.e. they must be initialized and each action must

specify how it may change the their values.

The way a planner deals with metrics is not specified in the standard.

The planner has the freedom to either use the metrics as a guideline when

producing a plan, or simply ignore them during plan generation, and only

evaluate the plan with them post hoc.

2.2.3 Durative Actions

One of the most important contributions of [FL03] is the definition of durative

actions in the Pddl language. Domains with durative actions that allow for

14 The Planning Domain Definition Language

(:durative-action produce

:parameters(?p - product)

:duration(= ?duration 5)

:condition()

:effect(at end (increase (quantity ?p)

(* ?duration ?produce-rate)))

)

(:durative-action consume

:parameters(?p - product)

:duration(= ?duration 7)

:condition(>= (quantity ?p)

(* ?duration ?consume-rate))

:effect(at start (decrease (quantity ?p)

(* ?duration ?consume-rate)))

)

Figure 2.5: Producer-consumer example with discrete durative actions

at most discretized effects reside in Level 3 of the Pddl, whereas the ones

with continuous durative actions reach Level 4.

To describe a durative action, two time points and an interval have to be

taken into account, namely, at the start, at the end and during the happen-

ing of the action. As a result, temporally annotated conditions and effects

are used in the representation of a durative action schema. Syntactically,

(at start p), (at end p) and (over all p) are used to assert that

p holds at the three time points, respectively. Note that (over all p) as-

serts that p holds in the open interval between the start and end time points,

which makes it possible to accommodate different conditions within the inter-

val and at the end points of an action, and thus allows for a higher degree of

expressiveness.

From the perspective of Pddl 2.1, time is point-based rather than interval-

based. Action end points are the only places where the world state is changed.

Propositions hold their values over the half-open interval that is closed on the

left (when the event asserting it occurs) and open on the right (when an event

negates it).

As already mentioned, there are two kinds of durative actions: discretized

durative actions and continuous durative actions.

Discretized durative actions provide a simplified view of numerical changes,

in that all the numerical updates are modeled with step functions, as if the

2.2 The Language 15

change happens only at the end points of the action. Figure 2.5 shows how

discrete durative action can be used to model the producer-consumer problem.

While the quantity of a resource increases and decreases gradually in the

producing and consuming process, it is modeled as an instant increase at the

end and an instant decrease at the beginning, respectively, with the discretized

durative actions. Note that a conservative resource consumption model is used

here, since the total amount of consumption is subtracted at the beginning

and the total amount of production is added only in the end. This ensures

the validity of a plan, but also eliminates the case where the resource is not

enough at the beginning but is soon supplied sufficiently with a production

action.

In order to model a continuous change, continuous durative actions can

be used. A continuous durative action has an internal variable #t referring

to the current time after the start of an action. As a result, it is possible to

calculate the value of any variable that has a fixed changing rate with a linear

function. In the producer-consumer example, for instance, we can assert in

the effect section of the producer

(increase (quantity ?p) (* #t produce-rate))

and in that of the consumer

(decrease (quantity ?p) (* #t consume-rate))

Unlike the discrete case, we have the correct value for the quantity of the

product at any time point during the interval of the producing and/or the

consuming actions.

2.2.4 Timed Initial Literals

Timed initial literals are integrated to Pddl in the version 2.2 by Edelkamp

and Hoffmann [EH04], as a means to represent simple predetermined exoge-

nous events.

Like the initial state description, timed initial literals also specify how the

world is like, not initially, but at a certain time point in the future. Figure 2.6

shows an example problem definition with timed initial literals, saying that

the shop opens at 9 and closes at 20.

According to their definition, timed initial literals is only used in Level 3

in combination with discretized durative actions.

16 The Planning Domain Definition Language

(:init

(at 9 (shop-open))

(at 20 (not (shop-open)))

)

Figure 2.6: Shop opening hours expressed with timed initial literals

2.3 A Structural Representation

As a mentioned in Section 2.2, Pddl has a strict and well-defined syntax.

However, when we later discuss the semantic mapping in this thesis, it is not

so convenient to always use the original syntax. For notational benefits, we

extract the essential information from the problem specification, and define a

structure to express it in a succinct way.

In building this structure, we only concentrate on the semantic aspect, i.e.

how to shuffle the formulas in a way that can be easily addressed to, when

we later talk about the semantical mappings. We simply omit the syntactical

details in the translation from the Pddl style to the abstract representation.

For instance, a precondition formula for an action

(>= (- (capacity ?jug2) (amount ?jug2)) (amount ?jug1))

may be simply translated to

capacity(jug2) − amount(jug2) ≥ amount(jug1)

and an effect formula

increase (energy ?robot) (* (recharge-rate ?robot) ?duration)

may be rewritten as

energy′(robot) = energy(robot) + recharge rate(robot) × duration

where energy(robot) is the energy level before the action, and energy ′(robot)

is the one after.

Definition 2.1 (The planning problem). A planning problem D in Pddl is

a tuple 〈T,F, f ,O,A, I, T I,G〉, where

- T is a finite list of τ1, · · · , τl. If the domain does not have the :typing

requirement, then T only contains one single type Object.

- F is a finite list of fluent predicates F1, · · · , Fn.

2.3 A Structural Representation 17

- f is a finite list of fluent functions f1, · · · , fm. This field is non-empty

only if the domain has the :fluents requirement.

- O is a finite list of objects, possibly with associated primitive types o1 :

τo1
, · · · , ok : τok

. If the domain does not have the :typing requirement,

then each τoi
is either empty or the type object.

- A is a tuple 〈A, Ã〉 of Pddl operators, where A is a finite list of simple ac-

tions A1, · · · , Ap, and Ã is a finite list of durative actions Ã1, · · · , Ãq (see

below). Ã is non-empty only if the domain has the :durative-actions

requirement.

- I is the initial state description.

- TI is a finite list of timed initial literals 〈t1, ϕ1〉, · · · , 〈tr, ϕr〉. This field

is non-empty only if the domain has the :timed-initial-literals

requirement.

- G is the goal description

With the above definition, the Adl subset of Pddl, for example, can be

represented by 〈
T,F, ∅,O, 〈A, ∅〉, I, ∅, G

〉

Indeed, Claßen et al. defined such a structure for representing problems

defined with the Adl subset of Pddl [CELN07]. Our definition here is simply

an extension to their work. So, exception for the new items f , TI and A, all

the elements have the old meanings.

For the new items, it is not difficult to understand the elements f and TI:

the set f is similar to F except that it defines the fluent functions instead of

predicates; the timed initial literals 〈ti, ϕi〉 asserts that ϕi starts to hold at

time ti.

Now, we shall elaborate the normal forms of the action operators in A.

Compared with the Adl subset, the action operators are extended in two

important ways. First, with the introduction of numerical expressions, both

the precondition and the effects may involve functional fluents. Second, ac-

tions may be durative. So in the following, Section 2.3.1 is devoted to adding

functional fluents to the representation of simple actions, followed by the spec-

ification of the normal form of durative actions in Section 2.3.2

2.3.1 Functional updates

In [CELN07], each action is defined by a triple 〈~z : ~τ, πA, εA〉, where ~z and

~τ are the arguments and their corresponding types, πA is the precondition

18 The Planning Domain Definition Language

formula specifying what conditions must hold before A may be activated, and

εA is the effect formula specifying what facts are to be added or deleted in the

state description after the execution of A.

Here, ~z : ~τ is to be understood as a list of pairs zi : τi. Both πA and εA
have all their free variables among ~z, and are constructed with only the ~z and

symbols in T, F, f and O. Precondition formulas are defined like follows:

every atomic formula and every equality atom (t1 = t2), where ti is either a

variable, a constant or an instance from f , is a precondition formula; if φ1 and

φ2 are precondition formulas, then so are φ1 ∧ φ2, ¬φ1 and ∀x : τ.φ1.

The normal form of εA is a conjunction of effects of the following forms,

at most one of each kind for each fluent Fj :
∧

Fj
∀ ~xj : τFj

.
(
γ+

Fj ,A(~xj , ~z) ⇒ Fj(~xj)
)

∧
Fj

∀ ~xj : τFj
.
(
γ−Fj ,A(~xj , ~Z) ⇒ ¬Fj(~xj)

) (2.1)

Here, γ+
Fj ,A(~xj, ~z) is the add condition, which makes Fj(~xj) true; and

γ−Fj ,A(~xj , ~z) is the delete condition, which makes Fj(~xj) false.

Compared with the original work of Pednault, it does not contain the

update conditions for function symbols, because no fluent functions exist in

their subset of the language. However, our target language, Pddl 2, allows

for (numerical) fluent functions in the domain, so we have to return to the

more general definition of the normal form of actions.

Formally, a simple action A is defined by a triple 〈~z : ~τ, πA, εA〉 where ~z

and ~τ are the arguments and their typing constraints, respectively, as usual;

πA is the precondition that may involve numerical formulas; and εA is the

effect formula with the form
∧

Fj
∀ ~xj : τFj

.
(
γ+

Fj ,A(~xj , ~z) ⇒ Fj(~xj)
)
∧

∧
Fj

∀ ~xj : τFj
.
(
γ−Fj ,A(~xj , ~z) ⇒ ¬Fj(~xj)

)
∧

∧
fj
∀ ~xj : ~τfj

, y : R.
(
γv

fj ,A(~xj, y, ~z) ⇒ fj(~xj) = y
) (2.2)

Compared with Equation (2.1), we add a new condition γv
fj ,A(~xj , y) here

to denote the necessary and sufficient condition to change the value of fj(~xj)

to y. We sometimes need a weaker condition that the value of fj(~xj) changes

at all. We denote this condition as

γfj ,A(~xj , ~z) ≡ ∃y.γv
fj ,A(~xj, y, ~z)

In many cases, this is equivalent to removing all sub-formulas mentioning y

from γv
fj ,A(~xj , y, ~z).

For example, if for some action Heat, γv
temperature,Heat(x1, x2, y) is the

formula

Heater(x2) ∧On(x1, x2) ∧ y = 100

2.3 A Structural Representation 19

then γtemperature,Heat(x1, x2) is simply the formula

Heater(x2) ∧On(x1, x2)

2.3.2 Duration and temporal annotation

Apart from the numerics, an important extension in Pddl 2.1 is the intro-

duction of durative actions. The set of durative actions is denoted with Ã,

the second component of A. Compared with simple actions, the normal form

of durative actions looks more complicated, since it has the extra duration

constraints, and the preconditions and effects are temporally annotated.

To take these changes into consideration, our proposal is to represent a

durative action Ã ∈ Ã with a four-element tuple 〈~z : ~τ, δ eA
, π eA

, ε eA
〉, where

δ eA
is the duration constraint, and π eA

and ε eA
are the precondition and effect

formulas respectively.

Here, δ eA
is a tuple 〈δs

eA
, δe

eA
〉, where δs

eA
is the duration constraint with

temporal annotation at start and δe
eA

is the one with annotation at end. For

a condition without temporal annotation, we assume that all the functional

values in the formula are constants, so it is not important whether we place it

in δs
eA

or δs
eA
. However, for simplicity that will soon become obvious, we choose

to put it in δe
eA
.

Both δs
eA

and δe
eA

are a direct rewriting of the corresponding sub-formula in

the :duration section. For example, if the duration constraint of action Ã is

(:duration (and (≥ ?duration 5) (< ?duration 10)))

then δs
eA

is simply the formula true and δe
eA

is

5 ≤ duration ∧ duration < 10

As a more complex case, for the the duration constraint

(:duration (and (at start (>= ?fuel-left (∗ ?duration ?consume-rate)))

(at end (= ?distance (∗ ?velocity ?duration)))))

we have {
δs

eA
≡ (fuel left ≥ duration× consume rate)

δe
eA
≡ (distance = velocity × duration)

Due to the temporal annotations, the form of π eA
and ε eA

have also changed

a lot, compared with πA and εA for a simple action A. π eA
is now a triple of

〈πs
eA
, πo

eA
, πe

eA
〉, where πs

eA
, πo

eA
and πe

eA
are the conditions that must hold at the

start, within the interval and at the end of the durative action, respectively.

20 The Planning Domain Definition Language

All the conditions at the same temporal point are combined to form one single

condition.1 For example, if the precondition for a durative action Ã is

and (at start φ1)

(at start φ2)

(over all φ3)

then we have 



πs
eA

≡ φ1 ∧ φ2

πo
eA

≡ φ3

πe
eA

≡ true

The effect formula ε eA
consists of a triple 〈εs

eA
, εo

eA
, εe

eA
〉.

Here, εs
eA

is the start effect, consisting of all the effect formulas in the

Pddl description with the temporal annotation at start. Each single effect

formula has the form

ϕi ⇒ ψi

where ϕi is the premise of the conditional effect ψi. When ψi is an absolute

(non-conditional) effect, ϕi is simply the formula true.

The end effect, εe
eA
, is more subtle to define. Unlike the start effect, where

all the conditional effects, if any, always have the premise annotated with at

start, the end effect may have conditional effects with premise annotated

with at start, over all, at end or any combination of the three.

As a result, we define the normal form of an end-effect formula as

〈ϕs
i , ϕ

o
i , ϕ

e
i 〉 ⇒ ψi

where ϕs
i , ϕ

o
i and ϕe

i are the conjunction of all premise of ψi annotated with

at start, over all and at end, respectively.

In the following, we call a conditional effect whose premise and effect have

the same temporal annotation an intra-temporal conditional effect, and one

whose premise and effect have different temporal annotation an inter-temporal

conditional effect. Later, we shall see that for intra-temporal conditional ef-

fects, the approach given by Claßen and Lakemeyer is sufficient, whereas we

have to resort to auxiliary properties to handle inter-temporal ones.

The so-called “overall effect”, εo
eA
, is used only when defining continuous

effects, which have the form of the Pddl description

<op> P (* #t Q)

1Remember that conditions for durative actions have been restricted to conjunctions of

temporally annotated expressions.

2.3 A Structural Representation 21

where <op> is either increase or decrease, P is the continuous fluent to be

updated, and Q is the changing rate. For example, the continuous effect

(increase (temperature ?p) (* #t (heat-rate)))

means that the action will make the temperature of p increase at a rate of

heat rate, and

(decrease ?fuel-used (* #t (use-rate ?v)))

means that the action will decrease the quantity of fuel used at a rate of the

use rate of vehicle v.

To denote a continuous effect in our structure, we use a triple 〈op, P,Q〉,
where op is either + (for increase) or − (for decrease), and P and Q are

simple syntactical transformations from their counterparts in the Pddl sen-

tence.

As an example, suppose that we have the following effects for a durative

action Ã

:effects (and (at start ψ1)

(when (at start ϕ2)

(at start ψ2))

(decrease P (∗ #t Q))

(at end ψ4)

(when (at start ϕ5)

(and (at start ψ5)

(at end ψ6)))

(when (and (at start ϕ6) (at end ϕ7))

(at end ψ7))

(when (at end ϕ8)

(at end ψ8))

(when (over all ϕ9)

(at end ψ9)))

then the normal form of it has the components




εs
eA

≡ (true ⇒ ψ1) ∧ (ϕ2 ⇒ ψ2) ∧ (ϕ5 ⇒ ψ5)

εo
eA

= {〈−, P,Q〉}
εe

eA
≡ (〈true,true,true〉 ⇒ ψ4)∧

(〈ϕ5,true,true〉 ⇒ ψ6)∧
(〈ϕ6,true, ϕ7〉 ⇒ ψ7)∧
(〈true,true, ϕ8〉 ⇒ ψ8)∧
(〈true, ϕ9,true〉 ⇒ ψ9)

Chapter 3

The Situation Calculus

In this chapter, we present an intuitive introduction to the situation calculus.

First proposed by McCarthy [McC63] and later refined by Reiter [Rei01], it is

a language for representing and reasoning about dynamically changing worlds

(Sections 3.1–3.5), and serves as the theoretical basis for the action language

Golog (Section 3.6).

3.1 The Language

The language that we introduce here is based on Reiter’s formalism, which

has the foundational axioms to define the structure of situations and uses

successor state axioms to solve the frame problem.

A domain in the situation calculus has three sorts of elements, namely,

action for actions, situation for situations, and object for everything else. The

world evolves with the execution of an action from one situation to another.

A situation is represented by a sequence of actions, with S0 denoting the ini-

tial situation where no action has occurred yet. The binary function do(a, s)

denotes the situation obtained by executing action a in situation s. For ex-

ample, do
(
drop

(
block1

)
, do

(
pickup(block1), S0

))
is the situation obtained by

first picking up block1 and then dropping it in the initial situation. In the

language, the only function symbols of sort situation are S0 and do(a, s).

Properties that may change their value from situation to situation are

called fluents. There are in general two types of fluents. A relational fluent is

a predicate that carries a situation term as its last argument. For example,

On(obj3, obj5, S0) means that obj3 is on top of obj5 in the initial situation.

Similarly, a functional fluent is a function that carries a situation term as

its last argument. For example, fuel level
(
car, do

(
drive(rome, berlin), S0

))

23

24 The Situation Calculus

may stand for the fuel level of the car after driving from Rome to Berlin from

the initial situation.

Apart from the domain specific fluents, there are two special fluent predi-

cates with a fixed meaning in all domains. The fluent Poss(a, s) means that

it is possible to execute action a in situation s, whereas s1 < s2 means that

situation s1 precedes situation s2, i.e. the sequence of actions characterizing

s1, {ai}i=1,··· ,n1
, is a proper sub-sequence of that of s2, {ai}i=1,··· ,n2

, where

n1 < n2.

In contrast to the fluents, rigid predicates and functions are the ones

that have a fixed value in all situations, and thus have no situation term

as their parameters. For example, Fragile(x), x ≤ y are rigid predicates, and

fatherOf(x), x× y are rigid fluents1.

Finally, connectives and other symbols, such as =, ¬, ∧ and ∃, and abbre-

viations, such as ∨, ∀, ⊃ and ≡ have the same meaning as in the first order

logic.

3.2 The Basic Action Theory

The dynamics of a domain is characterized by a set of axioms called the basic

action theory (BAT). In order to illustrate the form of the BAT, we need the

following definition.

Definition 3.1 (Uniform formulas). A formula is uniform in σ if and only if it

does not mention the predicates Poss or <, does not quantify over variables

of sort situation, does not mention equality on situations and whenever it

mentions a term of sort situation, the term is σ and appears in the situation

argument position of a fluent.

With the concept of uniform formulas, the basic action theory is defined

in the form

Σ = FA ∪ Σpost ∪ Σpre ∪ Σuna ∪ Σ0

where2

1 Like in most literatures, we use numbers, their operations and their relations freely

in the language without explicitly axiomatizing them. Instead, the standard interpretation

is used. We shall make a short discussion on how the axiomatization may be done, when

we later extend the logic ES in Chapter 5. Following the conventions, we write numerical

expressions in an infix way here, e.g. x < y and x × y instead of < (x, y) and ×(x, y),

respectively. While < is considered a binary predicate symbol, >, x ≤ y and x ≥ y are

abbreviations.
2All free variables are assumed to be universally quantified, unless otherwise specified.

3.2 The Basic Action Theory 25

• FA is the following foundational axioms in the situation calculus

S0 6= do(a, s) (3.1)

do(a1, s1) = do(a2, s2) ⊃ (a1 = a2 ∧ s1 = s2) (3.2)

(∀P).P (S0) ∧ (∀a, s)
[
P (s) ⊃ P (do(a, s))

]
⊃ (∀s)P (s) (3.3)

¬(∃s.)(s < S0) (3.4)

s < do(a, s′) ≡
(
Poss(a, s′) ∧ s v s′

)
(3.5)

Here, (3.1) and (3.2) are the unique names assumption for actions; (3.3)

is second-order induction saying that every valid situation results from

executing a number of actions from S0; (3.4) and (3.5) form the inductive

definition of the relation <, where s v s′ is the abbreviation of the

formula s < s′ ∨ s = s′.

FA is domain independent, and is the only place where axiom about

the structure of situations may appear.

• Σpost is a set of successor state axioms. Proposed by Reiter [Rei91],

the successor state axiom is a simple and effective solution to the frame

problem for deterministic actions.

For each relational fluent F , it has the form

F
(
~x, do(a, s)

)
≡ Φ(~x, a, s)

and for each functional fluent f , it has the form

f
(
~x, do(a, s)

)
= y ≡ φ(~x, y, a, s)

where Φ(~x, a, s) and φ(~x, y, a, s) are formulas uniform in s.

Φ(~x, a, s) has all its free variables among ~x, a and s, and according to

Reiter’s approach of construction, it usually has the form

γ+
F (~x, a, s) ∨ F (~x, s) ∧ ¬γ−F (~x, a, s)

where γ+
F and γ−F are the positive and negative condition for the fluent

F , respectively. The former is the condition when F starts holding,

whereas the latter is the one where F stops holding.

Similarly, φ(~x, y, a, s) has all its free variables among ~x, y, a and s, and

usually has the form

γf (~x, y, a, s) ∨ f(~x, s) = y ∧ ¬∃y′.γf (~x, y′, a, s)

26 The Situation Calculus

Additionally, φ(~x, y, a, s) must satisfy the consistency condition

∀x.∃y.φ(~x, y, a, s) ∧
(
∀y′.φ(~x, y′, a, s) ⊃ y = y′

)

which ensures that there exists a unique y that satisfy the formula.

Otherwise, the value of f
(
~x, do(a, s)

)
becomes either undefined or in-

consistent.

As an example, consider two fluent symbols On and floor. On(x, y)

holds in the situation do(a, s) if and only if a is the action to move x

onto y, or x was initially on y in situation s, and a is not an action that

moves it away; floor = y holds in the situation do(a, s) if and only if a

is the action to move one floor upward and the elevator was originally

in floor y− 1, or a is the action to move one floor downward and it was

originally in floor y + 1, or the it was originally in floor y, and a is not

an action that moves it. Formally, the successor state axioms for the

two fluents can be written as

On
(
x, y, do(a, s)

)
≡

a = move(x, y)∨
On(x, y, s) ∧ ¬

(
(∃z).a = move(x, z) ∨ a = moveToTable(x)

)

floor
(
do(a, s)

)
= y ≡

a = moveUp ∧ floor(s) = y − 1∨
a = moveDown ∧ floor(s) = y + 1∨
floor(s) = y ∧ ¬

(
a = moveUp ∨ a = moveDown

)

• Σpre is a set of action precondition axioms, and has the form

Poss(A(~x), s) ≡ ΨA(~x, s)

where ΨA is a formula uniform in s with all free variables among ~x and

s, indicating the condition for action A to be applicable.

For example, it is possible to move a box onto another, if and only if

both boxes are clear on the top. Formally,

Poss(moveTo(x, y), s) ≡ ∀z.¬On(z, x, s) ∧ ¬On(z, y, s)

The precondition axioms may be used to determine whether a situa-

tion s is an executable one. For this purpose, we introduce a predicate

Executable(s), which is an abbreviation defined as follows:

Executable(s) , (∀a, s∗).do(a, s∗) v s ⊃ Poss(a, s∗) (3.6)

3.2 The Basic Action Theory 27

• Σuna is a set of unique names axioms for actions. For distinct action

symbols A and B,

A(~x) 6= B(~y)

and identical actions have identical arguments

A(x1, · · · , xn) = A(y1, · · · , xn) ⊃ x1 = y1 ∧ · · · ∧ xn = yn

• Σ0 is a finite set of sentences uniform in S0, characterizing the initial

situation.

For example, the following is a description of the initial state in the

blocks world, Where Blocks A,B,C form a pile and D is standing alone

on the table:

∀x.¬On(A, x, S0) ∧ ¬On(D,x, S0)

On(B,A, S0) ∧On(C,B, S0)

∀x.¬On(x,C, S0) ∧ ¬On(x,D, S0)

In addition, situation-independent facts may also be declared in Σ0, such

as On(x, y) ⊃ ¬On(y, x).

With the definition above, to see whether a basic action theory is sat-

isfiable, Pirri and Reiter further showed the following satisfiability theorem

[PR99].

Theorem 3.2 (Relative satisfiability). A basic action theory Σ is satisfiable

if and only if Σuna ∪ Σ0 is.

So far, we have talked about the representation of a dynamic domain in the

situation calculus. Now, it is interesting to reason whether a sentence, possibly

involving non-initial situations, holds or not. This is called the projection

problem. Since we only know the initial world, there are two approaches to

solve this problem. One is to regress the sentence from the current situation

through all the actions performed to the initial situation, and test whether

the regressed sentence holds in it; the other is to progress the initial database

through the actions to the current one, and test whether the current database

entails the sentence. We will briefly introduce both approaches in the following

two sections.

28 The Situation Calculus

3.3 Regression

In this and following sections, we use the abbreviations

do([], s) , s

do([a1, · · · , an], s) , do
(
an, do

(
an−1, · · · do(a1, s) · · ·

))

so that the situation terms look more compact and suggestive.

Now, let us first get some intuitive ideas about regression. Suppose that

we have the successor state axiom for F

F (~x, do(a, s)) ≡ ΦF (~x, a, s)

and we want to know whether Σ |= F (~x0, do(A,S0). For this purpose, we

can simply test whether Σ |= ΦF (~x0, A, S0), since the two are equivalent.

Furthermore, the right hand side of the latter is uniform in the situation S0,

so this only involves the test whether Σ0 ∪ Σuna |= ΦF (~x0, A, S0).

In general, for an arbitrary regressible formula, we can perform this regres-

sion iteratively to convert it to an equivalent form that mentions the initial

situation only. Here is what we mean by saying that a formula is regressible.

Definition 3.3 (Regressible formula). A formula W is regressible if and only

if

1. Every term of sort situation mentioned by W has the syntactic form

do([α1, · · · , αn], S0) for some n ≥ 0, and for terms α1, · · · , αn of sort

action.

2. For every atom of the form Poss(α, σ) mentioned by W , α has the form

A(t1, · · · , tn) for some n-ary action function symbol A.

3. W does not quantify over situations.

4. W does not mention the predicate symbol <, nor does it mention any

equality atom σ = σ′ for terms σ and σ′ of sort situation.

Definition 3.3 essentially requires that all the situation terms that appear

in a regressible formula are obtained by executing a certain number of actions

from S0.

Definition 3.4 (The regression operator). For a regressible formula W , the

regression operator R is defined recursively as follows:

• R[W] = W if W is situation independent;

3.3 Regression 29

• R[W] = W if W is a relational fluent atom of the form F (~x, S0);

• R[Poss(A(~x), s)] = R[ΠA(~x, s)], where Poss(A(~x), s) ≡ ΠA(~x, s);

• R[F (~x, do(a, s))] = R[ΦF (~x, a, s)], where F (~x, do(a, s))] ≡ ΦF (~x, a, s);

• R[W] = R[(∃y.)φf (~x, y, a, s) ∧ W |f
(
~x,do(a,s)

)
y], where W is a formula

mentioning f
(
~x, do(a, s)

)
, and W |f

(
~x,do(a,s)

)
y is the formula obtained by

simultaneously substituting all occurrences of f
(
~x, do(a, s)

)
in W with

y;

• R[¬W] = ¬R[W];

• R[W1 ∧W2] = R[W1] ∧R[W2];

• R[(∃v).W] = (∃v).R[W].

The following regression theorem is the core of Reiter’s formulation of the

situation calculus [Rei01]

Theorem 3.5 (The regression theorem). Suppose W is a regressible sentence

and Σ is a basic action theory of actions, then

Σ |= W iff Σ0 ∪ Σuna |= R[W]

where R[W] is the regressed version of W that mentions only situation S0.

With Theorem 3.5, we can reason about the validity of any regressible

sentence by regressing it to an equivalent formula that is uniform in S0, and

testing whether the latter is entailed by the initial database.

For example, suppose we have the successor state axioms

At
(
x, do(a, s)

)
≡

∃x′.a = drive(x′, x)∨
At(x, s) ∧ ¬∃x′′.a = drive(x, x′′)

fuel
(
do(a, s)

)
= y ≡

∃x, x′.a = drive(x, x′) ∧ y = fuel(s) + cost(x, x′)∨
fuel(s) = y ∧ ¬∃x, x′′.a = drive(x, x′′)

then for the formula

W ≡ At
(
berlin, do

(
drive(a, b), S0

))
∧

fuel
(
do

(
drive(a, b), S0

))
> 0

30 The Situation Calculus

its regression R[W], according to Definition 3.4, is
(
∃x′.drive(a, b) = drive(x′, berlin)∨

At(berlin, S0) ∧ ¬∃x′′.drive(a, b) = drive(berlin, x′′)
)
∧(

∃y.
(
∃x, x′.drive(a, b) = drive(x, x′) ∧ y = fuel(S0) + cost(x, x′)∨

fuel(S0) = y ∧ ¬∃x, x′′.a = drive(x, x′′)
)
∧

y > 0
)

Applying the unique names axioms, to determine whether Σ |= W , it is

equivalent to test whether

Σuna ∪ Σ0 |=
(
b = berlin ∨At(berlin, S0) ∧ ¬(a = berlin)

)
∧(

∃y.y = fuel(S0) + cost(a, b) ∧ y > 0
)

3.4 Progression

Regression, as described in the previous section, is a simple and effective way

to solve the projection problem. However, when the action sequence becomes

long, such as in the case where the agent has performed a large number of

actions, it becomes computationally expensive to regress a sentence to the

initial situation. In this case, progression may be more efficient.

Definition 3.6. A set of sentences Σα is said to be a progression of Σ0 through

an action sequence α to Sα with respect to Σ = Σ0 ∪Σpre∪Σpost∪Σuna ∪FA
if and only if

• Σα is uniform in Sα;

• Σ |= Σα ∪ Σpre ∪ Σpost ∪ Σuna ∪ FA;

• For an observer standing in situation Sα and looking into the future, she

cannot distinguish between a model for the original Σ and a model for

the new theory Σα ∪ Σpre ∪ Σpost ∪ Σuna ∪ FA.

The following theorem says that the progression of a theory through an

action is unique, up to logical equivalence.

Theorem 3.7. If Σα and Σ′
α are two progressions of Σ0 to the situation Sα,

then Σα and Σ′
α are logically equivalent.

Although intuitively, the ideas of regression and progression look similar,

the latter is actually much more difficult than the former. In fact, Lin and

Reiter showed that that progression, in general, is not first-order definable,

although it is always second-order definable [FR97]. Fortunately, there are a

few useful special cases of Σ, whose progression is first order definable. The

following are two of them:

3.4 Progression 31

• Relatively Complete Initial Databases, where in Σ0, each fluent is men-

tioned once in a sentence of the form

(∀~x).F (~x, S0) ≡ ΠF (~x)

where ΠF (~x) is a situation independent formula whose free variables are

among ~x.

In this case, consider a basic action theory Σ with a relatively complete

initial database Σ0, and a successor state axiom for fluent F:

F
(
~x, do(a, s)

)
≡ Φ(~x, a, s)

Let Sα denote the situation do(α, S0), we have

F (~x, Sα) ≡ Φ(~x, α, S0) (3.7)

Remember that Φ(~x, α, S0) is a first order formula uniform in S0, with

all free variables among ~x, α and S0. Moreover, each occurrence of S0

in the formula is an argument to a fluent. Suppose that G(~t, S0) ap-

pears in Φ(~x, α, S0), since the initial database is relatively complete, we

may replace all the occurrences of G(~t, S0) with ΠG(~t). The repeated

application of this replacement eliminates all S0 in the right hand side

of Equation (3.7), which means that Φ(~x, α, S0) finally becomes inde-

pendent from S0, and thus Equation (3.7) is reduced to the form

F (~x, Sα) ≡ Ψ(~x, α)

It can be shown that the initial theory Σα built up in this way is a

progression of the Σ0 through action α. Furthermore, Σα is also rela-

tively complete, and thus this procedure of progression can be applied

repeatedly.

• Context-Free Successor State Axioms with Isolated Fluents, where all the

successor state axioms in Σpost are of the form

F
(
~x, do(a, s)

)
≡ γ+

F (~x, a) ∨ F (~x, s) ∧ ¬γ+
F (~x, a)

where γ+
F (~x, a) and γ−F (~x, a) are situation independent formulas whose

free variables are all among those in ~x and a. Meanwhile, the initial

database Σ0 contains only isolated fluents, which means that each sen-

tence in Σ0 is situation independent with the form

E ⊃ (¬)F (x1, · · · , xn, S0)

32 The Situation Calculus

where F is a fluent and E is a situation independent formula.

For a basic action theory Σ of this kind and a ground primitive action

α, we construct a new initial theory Σα, which is initially empty, and

expand it with the following procedure:

1. If φ ∈ Σ0 is situation-independent, then add φ to Σα;

2. For any fluent F , add to Σα the sentences

γ+
F (~x, α) ⊃ F (~x, Sα)

γ−F (~x, α) ⊃ ¬F (~x, Sα)

3. For any fluent F , if ∀x.E ⊃ F (~x, S0) is in Σ0, then add to Σα the

sentence (
E ∧ ¬γ−F (~x, α)

)
⊃ F (~x, Sα)

4. For any fluent F , if ∀x.E ⊃ ¬F (~x, S0) is in Σ0, then add to Σα the

sentence (
E ∧ ¬γ+

F (~x, α)
)
⊃ ¬F (~x, Sα)

Lin and Reiter proved that under the constraint that Σ0 is coherent3 and

consistent4, the new theory Σα is a progression of Σ0 through action α.

Like in the previous case, since the progressed database Σα also has the

property that all fluents are isolated, this procedure of progression can

be applied repeatedly, and thus an initial database can be progressed

through arbitrary sequence of ground primitive actions.

As a brief introduction, we stop our dig into progression here. In Sec-

tion 6.1.1 we shall return to this topic again, and show that the Strips subset

of Pddl can be given a declarative semantics by relating its update to first-

order progression in the situation calculus.

3.5 Time and Concurrency

The discussion so far is a non-temporal one, in the sense that actions are

instant state changing operators, and the happening of them is abstracted

into a sequence, i.e. only the action names and their ordering matter. In

the real world, however, actions always happen at certain time points, usually

have a duration, and may sometimes happen concurrently. With the hope to

3A database is coherent iff whenever (∀~x).E1 ⊃ F (~x, S0) and (∀~x).E2 ⊃ ¬F (~x, S0) are

both in Σ0, then
˘

φ|φ ∈ Σ0is situation independent
¯

|= (∀~x).¬(E1 ∧ E2)
4A database is consistent iff Σ0 ∪ Σuna |= ¬(∃~x, a).γ+

F (~x, a) ∧ γ−

F (~x, a)

3.5 Time and Concurrency 33

enable the situation calculus to reason about time and concurrency, Pinto and

Reiter have had a study along this direction [Pin94, Rei96]. In this section,

we shall conduct a rough survey on their work and results. In fact, many

new approaches to the formulation of time and concurrency in the situation

calculus have emerged in the recent years, such as [DGLL00, GL00]. However,

we choose to use Pinto and Reiter’s formalism, due to its close similarity to

the semantics of Pddl (e.g. both are off-line), which is our focus in this thesis.

3.5.1 Time

Pinto and Reiter’s proposal for adding time to the situation calculus is to add

a new temporal argument to all instantaneous actions, denoting the hap-

pening time of the action. For example, refuel(car) is now extended to

refuel(car, 5.5), to mean that the action of refueling the car happens at time

5.5. As previously mentioned, real numbers like 5.5, their operations like +,∗,
and their relations like ≤ are used in the language without axiomatization,

and the standard interpretation of them is assumed.

With this extension, the foundational axioms need to be modified to cap-

ture the meaning, and ensure correct semantics of the time.

First, a new function symbol time : action→ number is needed to denote

the happening time of an action. Formally,

time
(
A(~x, t)

)
= t

For example, time
(
refuel(car, 5.5)

)
= 5.5.

Then, it is necessary to also denote the starting time of the current situa-

tion. This is handled with a new function symbol start : situation→ number.

start(s) stands for the time when the situation s begins. The value of start(s)

function is captured by the axiom

start
(
do(a, s)

)
= time(a)

With these two functions, it is now possible to rule out some counter-

intuitive situations. For example, it makes little sense, if any, to have a situ-

ation like

do
(
turn on

(
light, 4

)
, do

(
refuel(car, 5.5), S0

))

since after doing the refueling action at time 5.5, it is not possible to go back

to the past and turn on the light at time 4. In order to identify this kind of

“impossible” situations, the executability of a state is redefined:

Executable(s) , (∀a, s∗).do(a, s∗) v s ⊃
Poss(a, s∗) ∧ start(s∗) ≤ time(a)

34 The Situation Calculus

Notice that the case start(s∗) = time(a) is allowed. This is the case when an

action happens exactly the same as its predecessor. For instance,

do
(
turn on

(
light, 5.5

)
, do

(
refuel(car, 5.5), S0

))

may be an executable situation, since the actions of turning on the light and

refueling the car conceptually happen concurrently at time 5.5. We shall

introduce concurrency in more detail in Section 3.5.3.

3.5.2 Durative actions

A durative action is one that has a duration. In real life, many actions are

durative. For example, it takes 9 hours for a passenger plane to fly from

Frankfurt to Beijing, and volume(tank)
refuel rate to fill an empty tank with oil. In this

subsection, we investigate Pinto and Reiter’s approach for representing such

durative actions.

According to them, each durative action is represented by a relational

fluent and two instantaneous (non-durative) actions to denote the start and

the end event of the durative action.

For example, the durative action to walk from position x to position y,

walk(x, y), is represented with two instantaneous actions, startWalk(x, y, t)

and endWalk(x, y, t). Meanwhile, a fluent predicate symbol Walking(x, y, s)

is introduced. Walking(x, y, s) is true if and only if the agent is walking from

x to y in situation s. This is equivalent to saying that startWalk(x, y, t) has

been executed in s, but endWalk(x, y, t) has not.

In this example, the walk(x, y) durative action can be axiomatized as

follows:

Poss
(
startWalk(x, y, t), s

)
≡¬(∃u, v).Walking(u, v, s) ∧ location(s) = x

Poss
(
endWalk(x, y, t), s

)
≡Walking(x, y, s)

Walking
(
x, y, do(a, s)

)
≡(∃t).a = startWalk(x, y, t)∨
Walking(x, y, s) ∧ ¬∃(t′).a = endWalk(x, y, t′)

location
(
do(a, s)

)
= y ≡(∃x, t).a = endWalk(x, y, t)∨

location(s) = y∧
¬(∃x, y′, t′).a = endWalk(x, y′, t′)

3.5.3 Concurrency

Concurrency means the simultaneous happening of more than one action.

For instantaneous actions, this means that the actions happen at exactly the

3.5 Time and Concurrency 35

Figure 3.1: An example of concurrent actions

same time; for durative ones, this means that there is a temporal overlap in

the durations of the actions.

In this subsection, we introduce two popular models for concurrency. The

interleaved concurrency is the simpler one. It is based on the classical situation

calculus, and the basic action theory need not to be changed. However, the

expressiveness of this approach is limited, in that there are some cases which

are not representable with it. In contrast, true concurrency is more general,

but to accommodate it, one needs to extend the basic action theory with

happenings of sets of actions.

Interleaved concurrency

In interleaved concurrency, actions that happen concurrently are serialized.

So although they happen at the same time in concept, there is an ordering

among them.

Let us illustrate the use of interleaved concurrency with an example in

Figure 3.1.

In this example, the durative actions walk(x, y) and chew(gum) start at

the same time at t1. The former has a longer duration, ending at time t5,

whereas the latter only lasts till t2. So the period between t1 and t2 is the inter-

val of the concurrent happening. As we can see, the durative action sing(song)

happening between t3 and t6 also overlaps partially with walk(x, y). Further-

more, the simple action shoot happens when the durative actions walk(x, y)

and sing(song) are in progress.

With interleaved concurrency, these happenings may be modeled with the

following action sequence

[startWalk(x, y, t1), startChew(gum, t1),

endChew(gum, t2), startSing(song, t3), shoot(t4), (3.8)

36 The Situation Calculus

endWalk(x, y, t5), endSing(song, t6)]

Notice that we write startWalk(x, y, t1) before startChew(gum, t1), although

nothing prevents us from writing it the other way round as

[startChew(gum, t1), startWalk(x, y, t1),

endChew(gum, t2), startSing(song, t3), shoot(t4), (3.9)

endWalk(x, y, t5), endSing(song, t6)]

Ideally, we would like to consider (3.8) and (3.9) as equivalent happening

sequences, but in fact, the situations resulting from executing the two in a

same situation are distinct, since the actions sequences are different. Fortu-

nately, under the condition that the actions that happen at the same time are

independent from each other, it can be shown that conclusions drawn on the

resulting situations are the same. So, the interleaving account for modeling

concurrency is usually considered appropriate, if the outcome is independent

of the order in which the actions are interleaved.

A typical example where interleaved concurrency fails is the scenario of a

duel, where the precondition for shooting the gun is that the duelist is alive. It

is possible for both duelists to shoot each other at exactly the same time, since

before the shooting, they are still alive, and immediately afterward, both dies.

Unfortunately, this setting cannot be modeled with interleaved concurrency,

since however we serialize the shootings, only one death can occur. In the

next subsection, we shall see that this example can be dealt with correctly

with true concurrency.

True concurrency

In order to accommodate true concurrency, each of the happenings is no longer

represented by a single action, but instead, by a set of simple actions. For

instance, in order to denote the situation after concurrently executing A1 and

A2 in situation s, we use the situation term

do
(
{A1, A2}, s

)

Like for numbers, we do not axiomatize sets, but simply use the standard

semantics for sets, their operations like ∪ and ∩, and their relations like ⊆
and ∈.

Now, let us see how the foundational axioms should be modified in order

to capture the notion of true concurrency with sets of actions. Neglecting the

time dimension for actions for the moment, this is done by defining the new do

3.5 Time and Concurrency 37

function and Poss predicate with their first parameter being a set of actions.

Specifically, we have

S0 6= do(c, s) (3.10)

do(c, s) = do(c′, s′) ⊃ c = c′ ∧ s = s′ (3.11)

(∀P).P (S0) ∧ (∀c, s).[P (s) ⊃ P (do(c, s))] ⊃ (∀s).P (s) (3.12)

¬s < S0 (3.13)

s < do(c, s′) ≡ s v s′ (3.14)

Poss(c, s) ⊃ (∃a).a ∈ c ∧ (∀a).[a ∈ c ⊃ Poss(a, s)] (3.15)

where (3.10)–(3.14) are the counterparts of (3.1)–(3.5) with concurrency ex-

tension, and (3.15) says that if a concurrent action set is possible, then it

contains at least one action, and all its simple actions must themselves be

possible. Note that the reverse direction of (3.15) need not hold, due to the

precondition interaction problem [Pin94].

With these foundational axioms, if we have the precondition for shoot(x, y)

as

Poss
(
shoot(x, y), s

)
≡ ¬Dead(x, s)

and the successor state axiom for Dead as

Dead
(
x, do(c, s)

)
≡ ∃y.shoot(y, x) ∈ c ∨Dead(x, s)

then it is easy to prove that both duelists may die due to simultaneous shoot-

ings, e.g.

Poss
(
{shoot(d1, d2), shoot(d2, d1)}, S0

)
∧

Dead
(
d1, do

(
{shoot(d1, d2), shoot(d2, d1)}, S0

))
∧

Dead
(
d2, do

(
{shoot(d1, d2), shoot(d2, d1)}, S0

))

Now, let us consider the more complicated case where actions are temporal,

i.e. the happening times of actions are taken into account.

First, recall that in Section 3.5.1, we introduced the function time to

denote the happening time of an action. Now, however, since a happening is

a set of actions, we need to modify the definition of time accordingly. Notice

that the time of a concurrent happening is meaningful, only if there is at least

one action in the happening, and all actions in it happen at the same time.

We call this property coherence. Formally,

coherent(c) , (∃a).a ∈ c ∧ (∃t)(∀a′).[a′ ∈ c ⊃ time(a′) = t] (3.16)

38 The Situation Calculus

With this condition, the time of a concurrent happening can be defined as

coherent(c) ⊃ [time(c) = t ≡ (∃a).(a ∈ c ∧ time(a) = t)]

Second, it is natural to extend the definition of the start function as

start
(
do(c, s)

)
= time(c) (3.17)

and the definition for Executable(s) as

Executable(s) , (3.18)

(∀c, s∗).do(c, s∗) v s ⊃ Poss(c, s∗) ∧ start(s∗) ≤ time(c)

Finally, for the precondition of executing a concurrent set of actions, we

need to further require that the actions are coherent:

Poss(c, s) ⊃ coherent(c) ∧ (∀a).[a ∈ c ⊃ Poss(a, s)] (3.19)

In summary, (3.10)–(3.19) form the foundational axioms for the concur-

rent, temporal situation calculus.

3.5.4 Continuous effects

So far, the effects of actions are discrete. Specifically, all numerical updates

are modeled either as an assignment or as an instant increase/decrease of the

fluent function. For example, in order to model the temperature of a pot of

water that is being heated by a durative boil action, with the current model,

we assign the value 100 to the temperature function at the end of the interval.

In reality, however, the heating is a gradual process, and the temperature of

the water increases (approximately) linearly to time.

In order to model continuous changes like this, Pinto introduced param-

eters and names of real functions of time to the situation calculus [Pin94].

Grosskreutz and Lakemeyer later used a similar approach under the name

“continuous fluent”, when defining their action language cc-Golog [GL00].

The idea is roughly like this: although the change of a numerical prop-

erty is continuous, and the value of it varies within a situation, the pat-

tern of its change is already determined at the start of the the situation.

For example, suppose temperature(water, S0) = 20, and in the situation

S1 = do
(
boil(water, 5), S0

)
, the temperature increases with a rate of 0.5. Al-

though the temperature of water is 20.5 at time 6 and 30 at time 25, the way

it changes precisely follows the formula

temperature(water, S1)[t] = 20 + 0.5 · (t− 5)

3.5 Time and Concurrency 39

where temperature(water, S1)[t] denotes the temperature of water in situation

S1 and at time t. As a result, the numerical function 20+0.5 ·(t−5) is defined

as an entity, and is denoted with linear(20, 0.5, 5).

Generally speaking, linear(x0, v0, t0) stands for a linear function x0 + v0 ·
(t − t0), where t is the time at which the function value is desired. In order

to obtain the function value at a specific time point, we further define an

auxiliary function eval, which takes a continuous fluent as its first argument

and the time as its second. So, we have
{
temperature(water, S1) = linear(20, 0.5, 5)

eval
(
temperature(water, S1), t

)
= 20 + 0.5 · (t− 5)

Notice that the first equation above asserts the equality between two contin-

uous fluents, whereas the second is between two numerical expressions.

3.5.5 Natural actions

The actions that we consider so far are deliberate, in the sense that the basic

action theory only says which actions are possible in a situation, and the

agent has the freedom to choose actions among all the candidates. In reality,

however, many actions happen naturally regardless of the will of the agent. For

example, if the agent releases a ball in the middle of the air, the ball naturally

falls onto the ground. Similarly, at a certain time point, it hits the ground, and

bounces back. Unlike the deliberate actions that we have considered thus far,

the cause of the happening of actions like fall and bounce is due to the laws

of the nature. Now, we shall briefly investigate Pinto and Reiter’s formulation

of the natural actions in the situation calculus.

Recall that the precondition axioms in the basic action theory only serves

as the necessary condition for an action to happen. That means, it only says

that an action may happen, but not that it must happen. In contrast, in

order to model natural actions, we need to be able to express that the action

must happen in a certain situation.

For this purpose, we first define the predicate Natural(a), which is true

if and only if a is a natural action. Then, we modify the definition of the

executability of a situation by extending 3.18 to incorporate the additional

requirement for natural actions:

Executable(s) ,

(∀c, s∗).[do(c, s∗) v s ⊃ Poss(c, s∗) ∧ start(s∗) ≤ time(c)]∧
(∀a, c, s′).[natural(a) ∧ Poss(a, s′) ∧ do(c, s′) v s ⊃

a ∈ c ∨ time(c) < time(a)]

40 The Situation Calculus

which, in addition to the old definition, requires that for any predecessor

situation s′ of s, if a is a possible natural action in s′, then either a has indeed

happened or there exists some other actions that has happened before the

expected time of a.

As a simple example, consider the natural action fall, when we release a

ball. We may have the following axioms for this action:





natural
(
fall(t)

)

Poss
(
fall(t), s

)
≡ ¬Holding(s)

Poss
(
release(t), s

)
≡ true

Holding
(
do(a, s)

)
≡ Holding(s) ∧ a 6= release(t)

Holding(S0)

Then, we have

do
({
fall

(
5
)}
, do

(
{release(5)}, S0

))

is an executable situation, but

do
({
fall

(
7
)}
, do

(
{release(5)}, S0

))

is not, since in the situation do
(
{release(5)}, S0

)
, the natural action fall(5) is

possible, but neither is it actually executed, nor another action happen before

its expected happening time 5.

3.6 Complex Actions and Golog

The Golog language is a logic programming language for the high-level con-

trol of intelligent agents [LRL+97]. It is based on the formal basic action

theory in the situation calculus, as introduced in the previous sections of this

chapter. An explicit representation of the dynamics of the world is maintained

in the language with axioms on preconditions, effects and the initial state, so

it is possible to project the possible futures with different candidate primitive

actions before committing to one of them. As a result, Golog programs en-

joys a high level of abstraction, and thus much flexibility and powerfulness in

reasoning about dynamic domains.

The language offers the possibility to express complex actions with basic

control structures, such as if · · · then · · · and while · · ·do · · · , which are sim-

ilar to the constructs in other programming languages. Meanwhile, it allows

for the specification of nondeterministic behavior. All of these features are

treated as macros which finally expand to formulas in the situation calculus.

3.6 Complex Actions and Golog 41

For simplicity, we only introduce the most basic version of Golog here.

The central definition is the abbreviation Do(δ, s, s′), where δ is a complex

action, and s and s′ are situations. Intuitively, Do(δ, s, s′) holds if it is possible

to execute δ in situation s, resulting in the situation s′. The formal definition

is an inductive one on the structure of δ:

1. Primitive actions

Do(a, s, s′) , Poss(a[s], s) ∧ s′ = do(a[s], s)

where a[s] is the formula obtained by restoring the situation arguments

s for all fluents in a.

2. Test action

Do(φ?, s, s′) , φ[s] ∧ s = s′

3. Sequence

Do
(
[δ1; δ2], s, s

′
)

, (∃s∗).
(
Do(δ1, s, s

∗) ∧Do(δ2, s∗, s′)
)

4. Non-deterministic choice between two actions

Do
(
(δ1|δ2), s, s′

)
, Do(δ1, s, s

′) ∨Do(δ2, s, s′)

5. Non-deterministic choice of action arguments

Do
(
(πx)δ(x), s, s′

)
, (∃x).Do

(
δ(x), s, s′

)

6. Non-deterministic iteration

Do(δ∗, s, s′) ,

(∀P).
{
(∀s1).P (s1, s1)∧

(∀s1, s2, s3).[P (s1, s2) ∧Do(δ, s2, s3) ⊃ P (s1, s3)]
}

⊃ P (s, s′)

7. Procedure call

Do
(
P (t1, · · · , tn), s, s′

)
, P (t1[s], · · · , tn[s], s, s′)

42 The Situation Calculus

Based on these constructs, we can further define the abbreviation of the

following common control structures

Do(if φ then δ1 else δ2 endIf , s, s′) ,

Do([φ?; δ1]|[¬φ?; δ2], s, s
′)

Do(whileφdo δ endWhile, s, s′) ,

Do([[φ?; δ]∗;¬φ?], s, s′)

Do([procP1(~v1)δ1 endProc, · · · ,procPn(~vn)δn endProc,], s, s′) ,

(∀P1, · · · , Pn).[

n∧

i=1

(∀s1, s2, ~vi).Do(δi, s1, s2) ⊃ Do(Pi(~vi), s1, s2)]

Do(δ0, s, s
′)

As a small example, suppose we want to write a program to empty a

briefcase, then we may define the following procedure:

proc emptyBriefcase

while ∃x.In(x) do

πx.In(x)?; takeOut(x)

endWhile

endProc

Chapter 4

The Logic ES

The logic ES, introduced by Lakemeyer and Levesque [LL04], is a dialect of

the situation calculus. While it reasons about situations, it does not explicitly

mention a situation term in the language. Instead, the future situations are re-

ferred to with the help of modal operators in the language, and their meanings

are defined in the semantics. One consequence is that ES is more succinct,

and simplifies the proofs of theorems in the situation calculus. Meanwhile, as

shown in [LL05], the simplification does not lead to a loss of expressiveness in

that the second order extension of ES captures the non-epistemic fragment of

the situation calculus.

In Section 4.1, we first introduce the syntax and semantics of ES. Then, the

development of the following sections resembles what we did in the previous

chapter. Section 4.2 presents the basic action theories, and Sections 4.3 and 4.4

discusses the regression and progression, respectively, in the logic ES.

The standard version of ES does not consider time or concurrency, so we

postpone the discussion on how to rebuild these features to Chapter 5.

4.1 The Language

The language that we introduce here is a subset of the general one defined

in [LL05]. Compared with their definition, we do not consider second-order

variables or the modal operators for denoting the epistemic state.

4.1.1 The Alphabet

The language of ES consists of formulas over symbols from the following vo-

cabulary:

• First order variables: x1, x2, · · · , y1, y2, · · · , a1, a2, · · · ;

43

44 The Logic ES

• Fluent function symbols of arity k: f k
1 , f

k
2 , · · · , for example temperature,

bestAction;

• Rigid function symbols of arity k: gk
1 , g

k
2 , · · · , for example fatherOf ,

moveTo;

• Fluent predicate symbols of arity k: F k
1 , F

k
2 , · · · , for example AtHome,

Happy;

• Rigid predicate symbols of arity k: Gk
1 , G

k
2 , · · · , for example Human,

Fragile;

• Connectives and other symbols: =, ∧, ¬, ∀, 2, round and square paren-

theses, period, comma.

Here, variables and function symbols have two sorts, action for actions

(like bestAction and moveTo) and object for everything else (like temperature

and fatherOf). Instead of distinguishing them in their possible roles in the

semantics, we lump them together, and allow to use any term as an action or

an object.

4.1.2 Terms and Formulas

The terms of the language are of sort action or object, and form the least set

of expressions such that

1. Every first-order variable is a term of the corresponding sort;

2. If t1, · · · , tk are terms and h is a k-ary (rigid or fluent) function symbol,

then h(t1, · · · , tk) is a term of the same sort as h.

A primitive term is one with the form h(n1, · · · , nk), where h is a function

symbol of arity k, and all of the ni are ground terms. We let N denote the

set of all ground terms, and Z denote the set of all sequences of ground action

terms, including 〈 〉, the empty sequence.

The well-formed formulas of the language form the least set such that

1. If t1, · · · , tk are terms, andH is a k-ary (rigid or fluent)predicate symbol,

then H(t1, · · · , tk) is an (atomic) formula;

2. If t1 and t2 are terms, then (t1 = t2) is a formula;

3. If t is an (action) term and α is a formula, then [t]α is a formula;

4. If α and β are formulas, and v is a first-order variable, then (α∧β), ¬α,

∀x.α, 2α are also formulas.

4.1 The Language 45

We read [t]α as “α holds after action t”, and 2α as “α holds after any

sequence of actions”. As usual, we treat (α∨β), (α ⊃ β), (α ≡ β) and ∃x.α as

abbreviations. A sentence is a formula without free variables, and a primitive

formula is one with the form H(n1, · · · , nk), where H is a predicate symbol

of arity k, and all of the ni are ground terms. Besides, a formula without 2

is called bounded, one without 2 or [t] is called static, and one without 2, [t]

or Poss is called a fluent formula.

As an example of formulas in the logic ES, consider the following sentence:1

∀x.Fragile(x) ⊃
(
2[drop(x)]Broken(x)

)
(4.1)

This is a well-formed formula in ES, which may intuitively read as “for any-

thing that is fragile, if we drop it in any situation, it gets broken”. Notice

that here, we do not have any situation term, and fluents do not have an extra

situation argument. Nevertheless, it is possible to reason about the dynamical

changes in the world with the help of the 2 and [] operators. If we translate

Equation (4.1) to the situation calculus, we get the sentence

(∀x).
(
Fragile(x) ⊃ (∀s).Broken

(
x, do

(
drop(x), s

)))

4.1.3 The Semantics

In order to determine whether a sentence α is true or not after a sequence of

actions z has been performed, we need to specify the world w in which the

evaluation is performed. Formally, we write it as

w, z |= α

The world w here determines both the values of primitive functions and the

truths for primitive sentences, not only initially, but also after any sequence

of actions. More precisely, a world w ∈ W is any function from primitive

terms and Z to N , and from primitive sentences and Z to {0, 1}, satisfy-

ing the rigidity constraint: if φ is a rigid function or predicate symbol, then

w[φ(n1, · · · , nk), z] = w[φ(n1, · · · , nk), z
′], for all z and z′ in Z.

The identity of t given w and z, denoted with |t|zw, is defined inductively

by

1. If t ∈ N , then |t|zw = t;

2. |h(t1, · · · , tk)|zw = w[h(n1, · · · , nk), z], where ni = |ti|zw.

1 We assume that logical connectives have higher priority than 2, but lower priority

than []

46 The Logic ES

For the truth value of well-formed formulas, given a world w ∈W and an

action sequence z ∈ Z, we define w, z |= α (read: α is true after z in w) as

1. w, z |= H(t1, · · · , tk) iff w[H(n1, · · · , nk), z] = 1, where H is a k-ary

predicate symbol and ni = |ti|zw;

2. w, z |= (t1 = t2) iff n1 and n2 are identical, where ni = |ti|zw;

3. w, z |= [t]α iff w, z · n |= α, where n = |t|zw;

4. w, z |= (α ∧ β) iff w, z |= α and w, z |= β;

5. w, z |= ¬α iff w, z 6|= α;

6. w, z |= ∀x.α iff w, z |= αx
n for every ground term n (of the same sort as

x);

7. w, z |= 2α iff w, z · z′ |= α for every z′ ∈ Z.

We write w |= α to mean w, 〈〉 |= α, and Σ |= α, where Σ is a set of

sentences and α is a sentence, to mean that Σ logically entails α, i.e. for all

world w, if w |= α′ for every α′ ∈ Σ, then w |= α. Finally, |= α means α is

valid, i.e. {} |= α.

4.2 Basic Action Theories

The basic action theory in ES resembles that in the situation calculus, except

for the following major differences. First, since the language does not have

situation terms, and the structure of situations is defined in the semantics,

there is no need to have the foundational axioms FA. Second, we assume a

fixed domain of discourse, and the unique names assumption on ground terms

is a built-in property.

As a result, the basic action theory in the logic ES has the following form:

Σ = Σ0 ∪ Σpre ∪ Σpost (4.2)

where

1. Σ0, the initial theory, is any set of fluent sentences, expressing the facts

in the initial situation, e.g. what relations are true and what are the

initial values of functions;

2. Σpre, the precondition axiom, is a singleton sentence of the form

2Poss(a) ≡ π

4.3 Regression 47

where π is a fluent formula, which has the form of a big disjunction

specifying the preconditions for each action;

3. Σpost, the successor state axiom, is a set of sentences for each of the

fluent symbols in the domain, either of the form 2[a]F (~x) ≡ γF for

predicates, or of the form 2[a]f(~x) = y ≡ γf for functions, where γF

and γf are both fluent formulas.

As an example, consider the vehicle domain, where a car drives from one

place to another. In this domain, we may have the following basic action

theory:





Σ0 =
{
At(berlin)

}

Σpre =
{
Poss(a) ≡ a = drive(x1, x2) ∧At(x1) ∧ x1 6= x2

}

Σpost =
{

2[a]At(x) ≡ ∃x′.a = drive(x′, x)∨
At(x) ∧ ¬∃x′′.a = drive(x, x′′)

} (4.3)

Then, we may have, for instance

[drive(berlin, aachen)][drive(aachen, paris)]At(paris)

4.3 Regression

Like in the situation calculus, in order to solve the projection problem, either

regression or progression has to be utilized. Now, we start from the former

case.

In the logic ES as we define here, any bounded sentence is regressible. For

the actual regression, we define R[α], the regression of α with respect to Σ,

to be the fluent formula R[〈〉, α], where for any sequence of actions z ∈ Z,

R[z, α] is defined inductively on the structure of α by2

1. R[z, (t1 = t2)] = (t1 = t2);

2. R[z,∀x.α] = ∀x.R[z, α];

3. R[z, (α ∧ β)] = (R[z, α] ∧R[z, β]);

4. R[z,¬α] = ¬R[z, α];

5. R
[
z, [t]α

]
= R[z · t, α];

6. R[z, Poss(t)] = R[z, πa
t];

2 For simplicity, we only define the regression without functional fluents. The case where

functional fluents do exist is similar to that in the situation calculus, and thus omitted here.

48 The Logic ES

7. R[z, F (t1, · · · , tk)] is defined inductively on z by

a) R[〈〉, F (t1, · · · , tk)] = F (t1, · · · , tk);
b) R[z · t, F (t1, · · · , tk)] = R[z, (γF)a x1 ···xk

t t1 ··· tk
]

Note that this definition uses the right-hand sides of both the precondition

and successor state axioms from Σ.

With the definition of regression above, Lakemeyer and Levesque further

proved the following regression theorem.

Theorem 4.1 (The regression theorem in ES). Let Σ = Σ0 ∪ Σpre ∪ Σpost be

a basic action theory and let α be a bounded sentence. Then R[α] is a fluent

sentence and satisfies

Σ0 ∪ Σpre ∪ Σpost |= α iff Σ0 |= R[α]

4.4 Progression

Progression in ES is very similar to that in the situation calculus, but due

to the fact that no situation term exists in the syntax of ES, the formula-

tion is simpler than Reiter’s original definition. The following definition of

progression is given by Claßen and Lakemeyer [CELN07].

Definition 4.2 (Progression). A set of sentences Σt is a progression of Σ0

through a ground (action) term t (wrt. Σpre and Σpost) iff

1. all sentences in Σt is in 〈t〉 (i.e. equivalent to [t]ϕ for some fluent formula

ϕ);

2. Σ0 ∪ Σpre ∪ Σpost |= Σt;

3. for every world wt with wt |= Σt ∪ Σpre ∪ Σpost, there is a world w with

w |= Σ0 ∪ Σpre ∪ Σpost such that

wt, t · z |= φ(~o) iff w, t · z |= φ(~o)

for all z ∈ Z and all primitive formulas φ(~o).

Due to the similarity between the progression in the situation calculus and

the one in the logic ES, we do not repeat the discussion of the properties of

progression in ES. We advise the reader to refer to Section 3.4 for details.

Chapter 5

The Extensions to ES

So far, the logic ES only concerns with discrete objects and sequential ac-

tions. No numerical or temporal properties have been taken into account.

However, they are necessary for defining the declarative semantics for the lat-

est versions of Pddl. Therefore, we explore in this section a possible way to

extend ES with numbers, time, concurrency, etc. As we shall see, this is done

mainly by adding new axioms to the basic action theory previously defined in

Equation (4.2) of Chapter 4.

First of all, we introduce a minor modification in Section 5.1, which enables

us to reason about the executability of action sequences. This is followed by

a discussion on numbers and numerical expressions, in Section 5.2, which is,

in turn, a foundation for the temporal extension described in Section 5.3. In

Section 5.4, we introduce durative actions, and see how concurrent processes

can be modeled with our extensions. We then investigate continuous changes

in Section 5.5. Finally, Section 5.6 discusses how to model coercive actions in

ES.

5.1 Executability

On many occasions, it is useful to reason about the executability of ac-

tion sequences. Recall that in the situation calculus, we use the relation

Executable(s), as defined in (3.6), to check whether s is an executable sit-

uation or not. However, in the logic ES, there is no situation term in the

language, so it is not possible to define the predicate Executable in the old

fashion. To solve this problem, we introduce a new axiom Σexec to the basic

action theory, when we need to reason whether action sequences are executable

in a domain.

49

50 The Extensions to ES

Σexec uses a 0-ary predicate symbol Executable, which is initially true. In

the succeeding situations, we modify the truth value of Executable according

to its old value and to whether the latest action is a possible one. Formally,

Σexec is the following sentence:

Executable ∧
(
2[a]Executable ≡ Executable ∧ Poss(a)

)
(5.1)

(5.1) essentially asserts two things. First, the static formula Executable,

which resembles sentences in the initial theory, says that the initial situation

is executable. Second, 2[a]Executable ≡ Executable ∧ Poss(a) has the form

of a successor state axiom, which says that in any situation, Executable will

be true after action a if and only if it is true and the execution of a is possible.

As an example, let us consider the example in (4.3) again. With the

definition of Σexec above, we have

Σ0∪Σpre ∪ Σpost ∪ Σexec |=
[drive(berlin, aachen)][drive(aachen, paris)]Executable

but

Σ0∪Σpre ∪ Σpost ∪ Σexec |=
[drive(berlin, aachen)][drive(liège, paris)]¬Executable

since after drive(berlin, aachen), At(liège) is false, so the precondition of

drive(liège, paris) is not satisfied, and therefore the action sequence is not

executable.

5.2 Numerics

In Section 3.5, we have seen how numbers, their operations and their relations

are used in the situation calculus to represent properties like the happening

time of actions. An interesting question is whether we can do the similar thing

in the logic ES. Although ES, in its current form, is similar to the situation

calculus in many respects, it has so far been unclear how we may use numbers

in it.

In this section, we shall look into this problem. In particular, we would

like to allow for elementary numerical expressions in the logic, so that we may

express basic numerical properties, such as the sentence

∃v.fuel left(v) = 75 ∧ ∃dest.[drive(v, paris, dest)]fuel left(v) = 15

5.2 Numerics 51

For this purpose, we first have to allow for numbers in our logical domain.

Unlike Reiter’s and other formalisms, where the real numbers with their “stan-

dard interpretation” are used directly, we try to be more precise, and start

with the axiomatization of numbers.

There are several ways to axiomatize real numbers, among which the most

frequently used is based on the Zermelo-Fraenkel set theory. According to this

approach, the real number system is a Dedekind-complete ordered field. That

is to say, a model for the real number system consists of a set R, two elements

of R (0 and 1), two binary functions on R × R → R (+ and ·), and a binary

relation on R × R (≤), satisfying the following properties

(∀x, y, z ∈ R). (x+ y) + z = x+ (y + z) (5.2)

(∃0 ∈ R.∀x ∈ R). x+ 0 = x (5.3)

(∀x ∈ R.∃y ∈ R). x+ y = 0 (5.4)

(∀x, y ∈ R). x+ y = y + x (5.5)

(∀x, y, z ∈ R). (x · y) · z = x · (y · z) (5.6)

(∃1 ∈ R.∀x ∈ R). x · 1 = x (5.7)
(
∀x ∈ (R \ {0}).∃y ∈ R

)
. x · y = 1 (5.8)

(∀x, y ∈ R). x · y = y · x (5.9)

(∀x, y, z ∈ R). (x+ y) · z = x · z + y · z (5.10)

0 6= 1 (5.11)

(∀x ∈ R). x ≤ x (5.12)

(∀x, y ∈ R). x ≤ y ∧ y ≤ x⇒ x = y (5.13)

(∀x, y, z ∈ R). x < y ∧ y < z ⇒ x < z (5.14)

(∀x, y ∈ R). x ≤ y ∨ y ≤ x (5.15)

(∀x, y, z ∈ R). x < y ⇒ x+ z < y + z (5.16)

(∀x, y, z ∈ R). x < y ∧ 0 < z ⇒ x · z < y · z (5.17)

(∀S ⊂ R).(S 6= ∅ ∧ ∃y ∈ R,∀x ∈ S.x ≤ y) =⇒
(∃z ∈ R.∀x ∈ S.x ≤ z∧∀y ∈ R. (∀x ∈ S.x ≤ y) ⇒ z ≤ y) (5.18)

Here, (5.2) – (5.11) say that (R,+, ·) forms a field; (5.12) – (5.15) say that

(R,≤) is a total order; (5.16) and (5.17) say that the field operations + and

· are compatible with the order ≤; (5.18) says that R is Dedekind complete,

i.e. every subset of R that has an upper bound has a least upper bound in R.

Axioms (5.2) – (5.18) characterize all the intrinsic properties of real num-

bers. Other properties can be derived from these axioms. Moreover, it can

52 The Extensions to ES

be shown that there exists exactly one model for the above axioms up to iso-

morphism, which means, given any two Dedekind-complete ordered fields R1

and R2, we can consider them as the same mathematical object, with just

renaming and relabeling.

However, two problems would arise if we were to use this axiomatization

in ES. First, the set of real numbers, R, is uncountable [Can91], whereas

ES assumes a countably infinite domain. Including an uncountable set in the

domain will lose the nice properties of ES, such as the substitutional interpre-

tation of quantifiers and the representation theorem. Second, Axiom (5.18)

quantifies over subsets of R, which means that this sentence cannot be ex-

pressed in first order logic. On the other hand, there is no complete proof

theory for second order logic, so allowing for general second-order quantifica-

tion would make the logic even not recursively enumerable.

To solve these difficulties, let us first have a closer look at the second

problem. Here, what Axiom (5.18) asserts, in fact, is the continuity of real

numbers. This is an important property for calculus and real analysis, but

somewhat irrelevant to our goal of doing arithmetics in the logic. As a result,

we try dropping this last axiom, and consider the theory of an ordered field,

described by Axioms (5.2)-(5.17) only.

Unlike the original theory, which has exactly one model, the theory of an

ordered field has several models. To see why, note that both the rational num-

bers (Q) and the real numbers (R) are ordered fields, but they are obviously

not isomorphic, since they have distinct cardinality. It can also be shown that

the algebraic numbers (A), the computable numbers (C) and the definable

numbers (D) are all ordered fields.

Here, an algebraic number is a real number that is a root of a non-zero

polynomial with integer coefficients, such as 3
7 and

√
2, but not π; a computable

number is a real number that can be computed to any desired precision by

a finite, terminating algorithm, such as 3 3
√

2, π and e; a real number, a, is

first-order definable in the language of set theory, without parameters, if there

is a formula ψ in the language of set theory, with one free variable, such that

a is the unique real number such that ψ(a) holds.1 Indeed, Q, A, C, D and

R, are increasingly general concepts, i.e. Q ⊂ A ⊂ C ⊂ D ⊂ R. Moreover, Q,

A, C and D are all countable, and thus contain far “fewer” elements than R.

Among the countable ones, the set of particular interest for us is that of

the computable numbers, since it contains all the specific numbers that can

ever be represented by algorithms. As a result, it is a broad enough subset of

the real numbers for our purpose with the desired property of countability.

1All three definitions are from www.wikipedia.org.

5.2 Numerics 53

Compared with the reals, the weaker axioms on the computable numbers

cannot capture the property of continuity, so it is unknown whether analysis

(including calculus) can be reconstructed with the weaker axioms. However, as

mentioned above, we are only concerned with the elementary operations, and

this axiomatization is powerful enough for this purpose. Furthermore, Tarski

proved in 1951 that elementary algebra2 is decidable, by showing that every

formula can be reduced to an equivalent one without quantifiers [Tar51]. This

result offers us the freedom to write arbitrarily complex arithmetic formulas

in elementary algebra, and it is guaranteed that the truth value of the formula

is computable.

As a result, our solution to the two problems above is to include the

countably infinite set of computable numbers in the domain of ES 3, allowing

for elementary operations (+, × and <) on them, and axiomatize them with

Axioms (5.2)-(5.17). In the rest part of this paper, we use Σnum to stand for

the numerical axioms for an ordered field.

Finally, in order to identify the numbers in the domain, we define a predi-

cate Number : N → {true, false}, whose only positive instances are all the

numbers in the domain, i.e. Number(x) is true if and only if x is a number.

5.2.1 An example

In this subsection, we analyze a simple example taken from Figure 4 of [FL03].

Suppose that we have a few jugs that can serve as water containers. One

can pour water from one jug to another as long as the destination does not

overflow. Two properties are associated with each jug, namely, the capacity

and the current amount of water in the jug.

In order to model this domain, we use two functions symbols amount(j)

and capacity(j) and an action pour(j1, j2), with their obvious meanings. Now

we can write the basic action theory as follows

The precondition axiom Σpre

2Poss(a) ≡
a = pour(j1, j2) ∧ amount(j1) ≤ capacity(j2) − amount(j2)

2Elementary algebra concerns with the properties of real numbers restricted to operations

+ and ×, using only the constants 0 and 1, and the predicate ≤.
3Strictly speaking, we should use the symbol C for the set of all the numbers in the

domain. However, following the convention, we sometimes also use the symbol R, since all

the real numbers that can be represented by algorithms are computable, anyway.

54 The Extensions to ES

The successor state axioms Σpost

2[a]capacity(j) = x ≡ capacity(j) = x

2[a]amount(j) = x ≡
∃j′.a = pour(j, j ′) ∧ x = 0∨
∃j′.a = pour(j ′, j) ∧ x = capacity(j) + capacity(j ′)∨
∀j′.a 6= pour(j, j ′) ∧ a 6= pour(j ′, j) ∧ amount(j) = x

The initial description Σ0

capacity(jug1) = 10

capacity(jug2) = 5

amount(jug1) = 7

amount(jug2) = 2

With the basic action theory above, we may conclude, for example,

Σ0 ∪ Σpre ∪ Σpost ∪ Σnum |= ¬Poss(pour(jug1, jug2))

and

Σ0 ∪ Σpre ∪ Σpost ∪ Σnum |=
[pour(jug2, jug1)](amount(jug1) = 9 ∧ amount(jug2) = 0)

5.3 Temporal Extension

So far, the logic is atemporal. That is, we only consider the sequence of

actions, and disregard the temporal properties, like when an action happens

or how long the duration of an action is. With the numerical extension in the

previous section, we are now able to rescue this by adding the happening time

of actions in the basic action theory.

Basically, we follow Reiter’s approach in the situation calculus as described

in Section 3.5, and add a time argument to each action. For example, A(~x)

is now extended to A(~x, t), to mean that action A(~x) happens at time t. The

advantage is that we can stick to the standard syntax and semantics of ES.

Strictly speaking, A(~x, t) is not an action, but instead a happenings, since

it consist of an action A(~x) and the corresponding time t at which it hap-

pens. However, we use the term “action” and “happening” interchangeably

for convenience, whenever there is no confusion.

5.3 Temporal Extension 55

The happening time of an action is thus always the last argument in its

parameter list. Unfortunately, this fact cannot be expressed in the language.

As a result, we define an auxiliary function time : N → R as

∀a, t.2time(a) = t ≡
∃~x1.a = A1(~x1, t)∨ (5.19)

· · · · · · ∨
∃~xm.a = Am(~xm, t)

where A1, · · · , Am are all the action symbols in the domain. With this defini-

tion, time(a) always has the value of the happening time of action a.

In order to have the “current” time, we further define a 0-ary fluent func-

tion now, whose value is always the happening time of the most recent action.

Formally, we have

2[a]now = time(a) (5.20)

This has the effect that now always refers to the time at which the current

situation starts. The functionality of now is similar to start(s) in Reiter’s

formalism, where s is the current situation. Notice that our view of time is

point based, and we only update the value of “now” at the points where some

action happens.

One important application of now is to ensure the correct temporal or-

dering of actions. When we write [a1][a2]α, we assume that a2 happens after

(or, at earliest, simultaneously with) a1. It makes little sense, if any, to write

[a1] before [a2], but the happening time of a1 is actually later than a2. In the

temporal situation calculus, this paradox is avoided by the clause

do(a, s∗) v s ⊃ start(s∗) ≤ time(a)

in the Executable(s) predicate, where start(s∗) is the time when situation s∗

starts. Here, however, it is difficult to define such an Executable predicate in

ES, since it would then have to reason about the start times of more than one

situation without resorting explicitly to any situation term. Fortunately, with

the help of now, we may add the following axiom, saying that the happen-

ing time of an action must not be earlier than the start time of the current

situation. Formally,

2Poss(a) ⊃ now ≤ time(a) (5.21)

This formula, together with the ones in (5.19) and (5.20), forms the three

temporal axioms in ES, which we denote with Σtime
4.

4 Strictly speaking, (5.21) itself is not an independent axiom, but is instead compiled into

56 The Extensions to ES

Notice that in (5.21), time(a) = now is true only when the action a hap-

pens “simultaneously” with its predecessor. In this way, concurrent happen-

ing of more than one event becomes possible. From the introduction in Sec-

tion 3.5.3, we know that this is the model of interleaved concurrency, In this

thesis, we shall mainly stick to the interleaved account to model concurrency,

due to its simplicity. In Chapter 8, we shall discuss the limitations of inter-

leaved concurrency and the prospect of integrating true concurrency in ES.

5.4 Durative Actions and Concurrency

Up to now, all the actions we express in ES are duration-free, i.e. an action

is an instantaneous event that changes a situation and finishes immediately

after activation. However, in practice, most actions have a duration. In Sec-

tion 3.5.2, we have already talked about how durative actions may be modeled

in the situation calculus. Now, we focus on the same topic in the logic ES.

Following Pinto and Reiter’s approach, we represent a durative action

by splitting it into two instantaneous actions denoting the start and end

events of it, along with a predicate denoting whether the durative action

is in progress [Pin94, Rei96]. However, instead of doing so literally, where

a durative action walk(x, y), for example, is split into startWalk(x, y, t),

endWalk(x, y, t) and Walking(x, y, s), we treat durative actions as domain

elements in ES, and have two function symbols start, end : N × R → N , and

a predicate symbol Performing : N → {false,true} for similar purposes.

The “walking” example above is thus represented by start
(
walk(x, y), t

)
,

end
(
walk(x, y), t

)
and Performing

(
walk(x, y)

)
in our formalism. The ad-

vantage is that we can more easily explore the correspondence among the

three when necessary. For example, the following properties may be conve-

niently expressed in ES

2[a]Performing(ã) ≡ ∃t.a = start(ã, t)∨
Performing(ã) ∧ ¬∃t′.a = end(ã, t′) (5.22)

2Poss(start(ã, t)) ⊃ ¬Performing(ã) (5.23)

2Poss(end(ã, t)) ⊃ Performing(ã) (5.24)

the precondition axiom when we concatenate Σtime with the original basic action theory.

For example, Σpre ∪ Σtime entails the formula

2Poss(a) ≡ now ≤ time(a)∧ π

where π is the right hand side of the original Σpre. This is also the case when we later define

Σdura, etc.

5.4 Durative Actions and Concurrency 57

whereas we have to write three sentences for each action if Pinto and Reiter’s

approach is used. In fact, (5.22)–(5.24) are the first three of the durative-

action axioms Σdura.

With this representation of durative actions, arbitrary overlapping actions

(both durative and non-durative) can be expressed. For example, the con-

current happening of actions in Figure 3.1 can be captured by the following

action sequence:

[start(walk(x, y), t1)][start(chew(gum), t1)]

[end(chew(gum), t2)][start(sing(song), t3)]

[shoot(t4)][end(walk(x, y), t5)][end(sing(song), t6)]

In some cases, it is necessary to reason about the duration of an action.

For this purpose, we record the start time of the durative action instance, and

obtain the duration when its end event is activated. We do so by introducing

a new function symbol since : N → R, where since(ã) = t means that the

durative action ã has been executing since time t. Formally, the correct value

of since(ã) is correctly guaranteed by

2[a]since(ã) = t ≡
a = start(ã, t)∨ (5.25)

since(ã) = t ∧ ¬∃t′.a = end(ã, t′)

(5.25) serves as the fourth and last axiom in Σdura. With this axiom,

when end(a, t) is executed, the duration of action a can be simply obtained

by
(
t−since(a)

)
. Notice that the value of the since(a) function is meaningful

only if ã is in being executed (i.e. Performing(a) is true).

Now, let us look at a producer-consumer example which involves the fea-

tures mentioned in this section so far. We assume that there are two durative

actions, produce(v) and consume(x, v). The former increases the amount of

the product at rate v and the latter decreases it by x at rate v. Figure 5.1

illustrates the basic action theory of this domain.5

Notice that a conservative resource model is used here, i.e. we check

whether there is enough product to consume at the start point of the consume

action, and increment the quantity of the product only at the end of the

produce action. This ensures the value of quantity never becomes negative.

Notice also that in the precondition axiom (5.26), we assert

t− since
(
consume(x, v)

)
= x/v

5 As mentioned before, axioms like Σexec, Σtime and Σdura only appear conceptually in

the definitions. In practice, they are compiled into Σpre or Σpost.

58 The Extensions to ES

Precondition axiom Σpre

2Poss(a) ≡ now ≤ time(a) ∧
(

∃x, v, t. a = start(consume(x, v), t)∧
¬Performing(consume(x, v)) ∧ x ≤ quantity∨

∃x, v, t. a = end(consume(x, v), t) ∧ Performing(consume(x, v))∧
(
t− since(consume(x, v))

)
= x/v∨

∃v, t. a = start(produce(v), t) ∧ ¬Performing(produce(v))∨
∃v, t. a = end(produce(v), t) ∧ Performing(produce(v))

)
(5.26)

Successor state axioms Σpost

2[r]quantity = y ≡
∃x, v, t.r = start(consume(x, v), t) ∧ y = quantity − x∨
∃v, t.r = end(produce(v), t)∧
y = quantity + v ·

(
t− since(produce(v))

)
∨

∀x, v, t.r 6= start(consume(x, v), t) ∧ r 6= end(produce(v), t)∧
quantity = y (5.27)

2[r]Performing(a) ≡
∃t.r = start(a, t)∨ (5.28)

Performing(a) ∧ ∀t.r 6= end(a, t)

2[r]since(a) = t ≡
r = start(a, t)∨ (5.29)

since(a) = t ∧ ∀t′.r 6= start(a, t′)

2[r]now = time(r) (5.30)

Initial state axioms Σ0

now = 0 ∧ quantity = 9

Figure 5.1: Basic action theory of the producer-consumer domain

5.4 Durative Actions and Concurrency 59

Figure 5.2: Linear change modeled by discretized durative actions

This condition is used as a duration constraint, which says, if the consume

action reduces the quantity of product by x at a constant rate of v, then the

duration of it must be x
v . If the end event of consume(x, v) does not happen

exactly x
v

time after the start event of it, then the action sequence is considered

impossible. For example,

[start
(
consume(7, 1), 3

)
] · · · [end

(
consume(7, 1), 10

)
]

may be a executable trace, whereas

[start
(
consume(7, 1), 3

)
] · · · [end

(
consume(7, 1), 13

)
]

is not, since 13 − 3 6= 7/1.

From (5.27), we see that we only take into account the overall result of

numerical changes, i.e. how much the quantity increases or decreases due to

the execution of a durative actions. We do not differentiate how the numerical

value quantity actually changes within the interval of the durative actions. In

the producer-consumer example, we may have a linear producer and a linear

consumer, where, for instance, the consumer runs between time 3 and 10,

linearly consuming 7 units of product, and the producer runs between time 8

and 13, linearly producing 10 units of product, as shown in Figure 5.2 with

dashed line ABCDEF . However, the basic action theory in Figure 5.1 models

the numerical change in a way illustrated by the continuous line ABB ′E′EF .

As a result, we may get incorrect value of a numerical fluent within the

interval of an action that modifies it. For example, in the example above, we

have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]quantity = 2

but in reality, the value is 4 at that time point.

60 The Extensions to ES

However, due to its simplicity, discretized models like this are useful in

many domains. In fact, it is powerful enough as long as we do not reason

about numerical values when the durative actions that change them are in

progress. For example, the basic action theory in Figure 5.1 draws the correct

conclusion

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]

[end(consume(7, 1), 10)][end(produce(2), 13)]quantity = 12

For those domains where we do need to model how a numerical fluent

changes, we have to further extend the language to integrate continuous flu-

ents. This will be the focus of the next section.

5.5 Modeling Continuous Changes

In this section, we go beyond the discretized view of numerical changes, and

consider how we may model continuous effects in ES. Here, we stick to linear

changes only, although in principle, arbitrary elementary functions can be

modeled with the approach introduced here. The reason is two-fold. First,

the linear function is the simplest non-trivial function, so its property is easy

to study. Second, our target language, Pddl 2, only allows for at most linear

changes in continuous actions.

Following our discussion in Section 3.5.4, we use continuous fluents of the

form linear(x, v, t) to represent linearly changing numerical fluent functions.

However, we go one step further here: We assume that linear’s are domain

elements. In particular, we consider them as extra instances of Number, and

define operations and relations on them. In particular, we assert:

linear(x0, v0, t0) + y = z ≡
∃x1, v1, t1.y = linear(x1, v1, t1)∧
z = linear

(
(x0 + x1) − (v0t0 + v1t1), v0 + v1, 0

)
∨ (5.31)

∀x1, v1, t1.y 6= linear(x1, v1, t1)∧
z = linear

(
x0 + y, v0, t0

)

linear(x0, v0, t0) = linear
(
x0 + v0 · (t− t0), v0, t

)
(5.32)

linear(x0, 0, t0) = x0 (5.33)

5.5 Modeling Continuous Changes 61

Furthermore, we define the following two operations on linear objects

eval(x, t) = y ≡
∃x0, v0, t0.x = linear(x0, v0, t0) ∧ y = x0 + v0 · (t− t0)∨ (5.34)

∀x0, v0, t0.x 6= linear(x0, v0, t0) ∧ y = x

rate(x) = y ≡
∃x0, v0, t0.x = linear(x0, v0, t0) ∧ y = v0∨ (5.35)

∀x0, v0, t0.x 6= linear(x0, v0, t0) ∧ y = 0

(5.31) says that if we add two linear entities together, then we combine

the two and get a new linear object; otherwise, we are adding a real number

to a linear entity, and we simply add it to the first component of the linear

function. Notice that the addition operation, as axiomatized in Σnum, is

commutative, so the case of y + linear(x0, v0, t0) can be reduced to the one

in (5.31). (5.32) builds the equivalence between linear objects with different

parameters. (5.33) says that if a linear object has a changing rate of 0, then

it degrades to a number. (5.34) defines the evaluation function for a linear

object at a certain time point. eval(x, t) returns the value of x at t. Finally,

(5.35) defines the function rate(x), which extracts the changing rate out of x.

In some cases, we need to evaluate the truth value of a fluent formula W

that mentions continuous fluents, at a certain time point t. For this purpose,

we substitute inW all the terms whose values are linear objects with with their

instant numerical values at time t. This process is called the numerization of

a formula. For notational convenience, we define a macro Eval[W, t], which

denotes the numerized formula of W at time t. Formally, Eval[W, t] is defined

inductively on the structure of W as follows:6

Eval[l1 ⊗ l2, t] =
(
eval(l1, t) ⊗ eval(l2, t)

)

Eval[¬W, t] = ¬Eval[W, t]
Eval[W1 ∧W2, t] = (Eval[W1, t] ∧Eval[W2, t])

Eval[∀x.W, t] = ∀x.Eval[W, t]
Eval[Poss(A), t] = Eval[πa

A, t]

Eval[[r]W, t] = [r]Eval[W, t]

Eval[2W, t] = 2Eval[W, t]

One of the applications of Eval is the numerization of precondition for-

mulas. For example, when we write

2Poss(a) ≡ π

6 Here ⊗ stands for the relations = and <.

62 The Extensions to ES

2[r]quantity = y ≡
∃x, v, t. r = start(consume(x, v), t)∧
y = quantity − linear(0, v, t)∨

∃x, v, t. r = end(consume(x, v), t)∧
y = quantity + linear(0, v, t)∨

∃v, t. r = start(produce(v), t)∧
y = quantity + linear(0, v, t)∨

∃v, t. r = end(produce(v), t)∧
y = quantity − linear(0, v, t)∨

∀x, v, t. r 6= start(consume(x, v), t) ∧ r 6= end(consume(x, v), t)∧
r 6= start(produce(v), t) ∧ r 6= end(produce(v), t)∧
quantity = y

Figure 5.3: Successor state axioms of a continuous fluent in the producer-

consumer domain

we expect that all linear terms in π are substituted with their numerical values

at the happening time of a. As a result, the precondition axiom should be

rewritten as

2Poss(a) ≡ Eval[π, time(a)]

when we allow for continuous effects in the domain.

With this model of linear change, the successor state axiom (5.26) of the

producer-consumer example in the previous section can be rewritten as shown

in Figure 5.3.

To understand this axiom, let us take the consume(x, v) action for ex-

ample. At its start event, quantity begins to decrease at a rate of v, so we

subtract a linear(0, v, t) component from it; at its end event, this decrease

stops, so we add the linear(0, v, t) back. At the first glance, it may seem

strange that the first argument to the linear function is 0 instead of x, but

actually, this is correct, in that we do not subtract anything immediately when

consume(x, v) starts, and only alter the changing rate of product. A natural

question is then: How do we ensure that an amount of x is consumed finally?

Remember that the duration of consume(x, v) is always x
v

according to the

precondition axiom, so a correct subtraction from quantity is realized due to

the fact that the product of v and the duration of consume(x, v) is exactly the

5.5 Modeling Continuous Changes 63

value of x. This makes sense especially when another action modifies the value

of product when consume(x, v) is in progress, which is the case in Figure 5.2,

where the quantity of product at time 10 is 6 instead of 2, for example.

Now, let us have a look at how our new basic action theory correctly

models all the happenings in Figure 5.2.

1. Initially, we have

Σ |= quantity = 9

So

Σ |= eval(quantity, t) = 9

2. After start(consume(7, 1), 3), we have

Σ |= [start(consume(7, 1), 3)]quantity = 9 − linear(0, 1, 3)

or equivalently

Σ |= [start(consume(7, 1), 3)]quantity = linear(9,−1, 3)

So

Σ |= [start(consume(7, 1), 3)]

eval(quantity, t) = eval(linear(9,−1, 3), t)

which may be simplified to

Σ |= [start(consume(7, 1), 3)]eval(quantity, t) = 6 − t

3. After start(produce(2), 8), we have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8]

quantity = linear(9,−1, 3) + linear(0, 2, 8)

or simply

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8]

quantity = linear(−4, 1, 0)

So we have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8]

eval(quantity, t) = −4 + t

For example, at time 9, the quantity of product is −4+9 = 5 unit, which

coincides with Figure 5.2.

64 The Extensions to ES

4. After end(consume(7, 1), 10), we have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]

[end(consume(7, 1), 10)]

quantity = linear(−4, 1, 0) + linear(0, 1, 10)

or equivalently,

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]

[end(consume(7, 1), 10)]quantity = linear(−14, 2, 0)

So we have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]

[end(consume(7, 1), 10)]eval(quantity, t) = −14 + 2t

5. Finally, after end(produce(2), 13), we have

Σ |= [start(consume(7, 1), 3)][start(produce(2), 8)]

[end(consume(7, 1), 10)][end(produce(2), 13]

quantity = linear(−14, 2, 0) − linear(0, 2, 13)

which can be simplified to

Σ |= [start
(
consume(7, 1), 3

)
][start

(
produce(2), 8

)
]

[end
(
consume(7, 1), 10

)
][end

(
produce(2), 13

)
]quantity = 12

As we can see, the result corresponds exactly to the reality illustrated in

Figure 5.2.

5.6 Coercive Actions

In the current form of the basic action theory, all the actions happen deliber-

ately, in the sense that the agent has the freedom to choose from a candidate

pool of possible actions, and determine which action happens next. In re-

ality, however, the agent does not always have that freedom. For example,

the snack bar closes daily at 20:00, regardless whether the robot is hungry at

midnight and wants a fat dinner; a pot of water starts boiling 5 minutes after

the robot puts it on the heater, although the robot is now enjoying a movie

in another room. The former “closing shop” action is a sort of predetermined

exogenous event, whereas the latter “boiling” action follows the laws of the

5.6 Coercive Actions 65

nature. Whichever reason the actions are caused to happen, they share a

common property that they are coercive, in that they must occur at a certain

time point.

Remember that in Section 3.5.5, we discussed the concept of natural ac-

tions in the situation calculus, which was originally proposed by Pinto [Pin94]

and later further elaborated by Reiter [Rei96].

However, both work focuses on natural actions that is determined by the

laws of nature. What we would like to have here, in contrast, is to model

the coerciveness caused by both natural laws and predetermined exogenous

actions. Furthermore, we are more interested in the influence of such coercive

actions on the deliberate actions, rather than how a domain evolves under the

laws of nature and without external interference. So in this section, we will

adapt their concepts and ideas, and define our own notion of coerciveness in

the logic ES.

To identify a coercive action, we do not use the predicate symbol natural

as Pinto and Reiter did, since it seems a bit strange to assert that a shop

closing action is natural. Instead, we name it Obli, which is a predicate on N .

Obli(a) means that action a must happen in the current situation. Note that

the happening time of a is simply time(a). The definition of Obli resembles

that of the Poss predicate, and has the form

2Obli(a) ≡ Π

where Π is a big disjunction of the necessary and sufficient conditions for each

action to occur. For example,

2Obli(a) ≡
a = closeShop(20)∨
∃p, t.a = boil(p, t) ∧ Performing

(
heat(p)

)

∧ t− since
(
heat(p)

)
> 5

which means, at time 20, the shop must be closed, and if we are heating a pot

of water for more than 5 minutes, then the water boils.

The next question is how to guard the obligatory condition, i.e. how to

ensure that in all the situations and at all times in an action sequence, as long

as Obli(a) is true, a is indeed executed.

Unfortunately, due to the fact that we are using interleaved concurrency,

which is a simplified but limited model of concurrency, we can only consider

a special case here, where the following Assumptions 5.1 and 5.2 are satisfied.

In Chapter 8, we shall illustrate the necessity of having Assumption 5.1 in the

66 The Extensions to ES

interleaved account for concurrency with a concrete example, and discuss how

this assumption may be dropped when true concurrency is used.

Assumption 5.1. Coercive actions never happen concurrently with other ac-

tions.

Assumption 5.2. Coercive actions are always followed by other actions.

With the assumptions above, our proposal is to add a new axiom ΣObli to

the basic action theory, insisting that for an action to be possible, no other

obligatory actions are scheduled before it. Formally,

2Poss(a) ⊃ ¬
(
∃a′.Obli(a′) ∧ now < time(a′) < time(a)

)
(5.36)

In this way, we consider an action sequence that violates the obligatory

condition Obli(a) to be impossible and thus invalid. In the next section, we

will return to coercive actions when we model continuous invariant constraints

and timed initial literals.

Chapter 6

The Semantic Mapping

between PDDL and ES

In Chapter 2, we introduced the language of Pddl along with an informal

account of its state-transitional semantics; in Chapter 5, we investigated how

the logic ES may be extended to incorporate time and concurrency. With

these results at hand, we are now ready to establish the semantic mapping

between Pddl and the basic action theories in ES. This mapping will serve as

a declarative semantics of Pddl, since for each construct in the Pddl problem

definition as well as the plan, we know exactly what it means in terms of logic.

The development of this chapter is like the following. First, we briefly

survey, in Section 6.1, the existing work on two proper subsets of Pddl,

namely, the Strips and the Adl fragments of the language. Then, we extend

these results by considering each of the new features in our target subset.

Section 6.2 deals with numerics and plan metrics, followed by the mapping of

durative actions in Section 6.3. Finally in Section 6.4, we turn to timed initial

literals.

6.1 Existing Work

6.1.1 STRIPS as Progression in the Situation Calculus

The first attempt to define a declarative semantics for planning languages

dates back to Lin and Reiter, who related the state updates in Strips to first-

order progression in the situation calculus [LR95]. They proved, among other

things, that there exists a direct correspondence between relational Strips

and basic action theories with complete initial database and strongly context

free successor state axioms.

67

68 The Semantic Mapping between PDDL and ES

Definition 6.1 (Relational Strips). A Strips system is called relational, if

its state representation

• consists of a set of ground atomic facts about predicates other than

equality;

• assumes the closed-world assumption on predicates including equality.

Definition 6.2 (Strongly context free successor state axioms). A successor

state axiom is strongly context free if and only if it has the form

F
(
~x,do(a, s)

)
≡

(∃~v(1))a = A1(~ξ
(1)) ∨ · · · ∨ (∃~v(m))a = Am(~ξ(m))∨ (6.1)

F (~x, s) ∧ ¬
(
(∃~w(1))a = B1(~η

(1)) ∨ · · · ∨ (∃~w(n))a = Bn(~η(n))
)

Here, theAi andBj are function symbols of sort action, not necessarily distinct

from one another. ~ξ(i) and ~η(j) are sequences of distinct variables that include

all the variables in ~x; the remaining variables of ~ξ(i) and ~η(j) are those being

existentially quantified by ~v(i) and ~w(j), respectively.

Strongly context free successor state axioms are special cases of context

free successor state axioms that are defined in Section 3.4. They satisfy the

additional condition that for any action term other than the variable a, its

parameter list contains all the variables that appear in ~x.

For example, according to this definition, the successor state axiom

At
(
x, y, do(a, s)

)
≡ ∃y′.a = move(x, y′, y)∨
At(x, y, s) ∧ ¬

(
∃y′′.a = move(x, y, y′′)

)

is strongly context free, whereas

In
(
x, do(a, s)

)
≡ a = putIn(x)∨
In(x, s) ∧ a 6= emptyBriefcase

is not, since the action term emptyBriefcase does not have the parameter x.

In order to represent the relational databases in purely logic notion, Lin

and Reiter defined the official axiomatization as follows:

Definition 6.3 (Official axiomatization of relational database). Let D be a

relational database. D’s official axiomatization Ω is constructed by:

1. Suppose P (~C(1)), · · · , P (~C(n)) are all of the ground atoms of predicate

P occurring in D, where ~C(i) are tuples of constant symbols. Then

include in Ω the sentence

P (~x) ≡ ~x = ~C(1) ∨ · · · ∨ ~x = ~C(n)

6.1 Existing Work 69

If the predicate P has no ground instances in D, then include in Ω the

sentence

P (~x) ≡ false

2. Include in Ω unique names axioms for all constant symbols.

With this definition, a Strips database, D0, where F (~C(1)), · · · , F (~C(n))

are all the positive instances of the predicate symbol F , has the corresponding

initial theory containing the sentence

F (~x, S0) ≡ ~x = ~C(1) ∨ · · · ∨ ~x = ~C(n) (6.2)

where ~C(i) are tuples of constant symbols of sort object.

In order to show how this is related with progression in the situation

calculus, let us assume that we have a basic action theory of the form Σ =

FA ∪ Σ0 ∪ Σpre ∪ Σpost ∪ Σuna, where

1. The sort object ranges over all objects other than situations and actions

in the domain; the only function symbols of sort object are constants.

2. Σ0 contains one sentence of the form in (6.2) for each fluent symbol F .

3. All successor state axioms in Σpost are strongly context free.

Now, we investigate the progression of such a theory through a ground action

term α.

Due to the unique names axioms on actions and the form of Σ0, we may

reduce (6.1) to

F
(
~x, do(α, S0)

)
≡ ~x = ~X(1) ∨ · · · ∨ ~x = ~X(l)∨

[~x = ~C(1) ∨ · · · ∨ ~x = ~C(n)] ∧ ~x 6= ~Y (1) ∧ · · · ∧ ~x 6= ~Y (m)

Let ~x = ~C(1) ∨ · · · ∨ ~x = ~C(r) be all the ~C(k) that are different tuples from

all of the ~Y (i), then

F
(
~x, do(α, S0)

)
≡ ~x = ~X(1) ∨ · · · ∨ ~x = ~X(l) ∨ ~x = ~C(1) ∨ · · · ∨ ~x = ~C(r)

This construction can be performed for all the predicate symbols in the

domain, and let us denote the resulting theory with Σα, then it can be shown

that Σα is the progression of Σ0 through the action term α.

To see how this is related to the state update in Strips, notice that the sit-

uation suppressed version of Σα is an official axiomatization of a new database,

which we denote with Dα. It contains, for the predicate symbol F for example,

the instances F (~X(1)), · · · , F (~X(l)), F (~C(1)), · · · , F (~C(r)).

70 The Semantic Mapping between PDDL and ES

Comparing this set of instances of F with D0, it is easy to see that the

new database is obtained by performing the following addition and deletion

to the initial database:

1. Delete from D0 the instances F (~Y (1)), · · · , F (~Y (m));

2. Add to to D0 the instances F (~X(1)), · · · , F (~X(l)).

These addition and deletion are exactly what the add list and delete list ex-

press in the operator definition of α. Therefore, the progression of the initial

theory correctly models the state update with Strips action operators.

6.1.2 ADL as Progression in the Logic ES
Generalizing the result in the Strips subset, Claßen et al. showed that Adl

can be given a declarative semantics with the logic ES [CELN07]. Although in

principle, it is also possible in the situation calculus, they argue that the for-

mulation in ES is more succinct. In this subsection, we shall look at how they

have defined the semantic mapping. Notice that in their original work, both

closed-world and open-world cases are considered. Here, for simplicity, we

only review the closed-world fragment, since the open-world case is excluded

from Pddl 2, and not interesting to the topic of this thesis.

We begin with constructing the basic action theory given an Adl problem

description.

Recall that in Section 2.3, we defined a structural representation of Pddl

descriptions, where an action A is represented by the tuple 〈~z : ~τ, πA, εA〉, and

the normal form of the effects εA has the form

∧
Fj

∀ ~xj : τFj
.
(
γ+

Fj ,A(~xj , ~z) ⇒ Fj(~xj)
)
∧

∧
Fj

∀ ~xj : τFj
.
(
γ−Fj ,A(~xj , ~z) ⇒ ¬Fj(~xj)

)

The following construction of the basic action theory makes use of this nota-

tional convention.

The successor state axioms Σpost:

Given the normal form of operators in (2.1), we construct, for each fluent

predicate Fj , the formulas

γ+
Fj

,
∨

γ+
Fj ,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γ+
Fj ,Ai

(6.3)

γ−Fj
,

∨

γ−

Fj ,Ai
∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γ−Fj ,Ai
(6.4)

6.1 Existing Work 71

where γ∗Fj ,Ai
∈ NF (Ai) means that a clause with Ai exists in γ∗Fj

only if

some γ∗Fj ,Ai
exists in the effect of Ai (∗ ∈ {+,−}). Then, the successor

state axiom for Fj is simply

2[a]Fj(~xj) ≡ γ+
Fj

∧ ~τFj
(~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

(6.5)

where τFj
(~xj) is the typing constraint, which ensures that Fj(~xj) can

become true only if ~xj are consistent with the type definitions for Fj ’s

arguments.

In addition, we need to construct the successor state axioms for each

type τi. Since typing is situation-independent, we simply have

2[a]τi(x) ≡ τi(x) (6.6)

The precondition axiom Σpre:

The precondition axiom is obtained by a disjunction of all the precon-

dition formulas of operators with case distinction, which has the form

2Poss(a) ≡
∨

1≤i≤m

∃~zi : ~τi.a = Ai(~zi) ∧ πAi

The initial description Σ0:

The initial theory actually consists of two parts, sentences characterizing

the initial world state and those for the typing of objects.

The construction from the initial world state is similar to how we ob-

tain the official axiomatization of relational databases in Section 6.1.1.

Specifically, suppose that Fj(~o1), · · · , Fj(~okj
) are all the positive in-

stances of Fj in the initial state I, then we include the sentence

Fj(~xj) ≡ (~x1 = ~o1 ∨ · · · ∨ ~xkj
= ~okj

) (6.7)

in the initial theory Σ0, which we sometimes write as Σ0(I) to indicate

that it is an initial theory obtained from the state description I.

As for typing, we add to Σ0 the following sentences

τi(x) ≡
(
τi1(x) ∨ · · · ∨ τiki

(x)
)

(6.8)

F (xj1 , · · · , xjkj
) ⊃

(
τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
)
)

(6.9)

τi(x) ≡ (x = oj1 ∨ · · · ∨ x = ojki
) (6.10)

Object(x) ≡
(
τ1(x) ∨ · · · ∨ τl(x)

)
(6.11)

Here, (6.8) deals with “either” statements; (6.9) declares the type of each

argument to a predicate symbol; (6.10) says that x = oj1 , · · · , x = ojki

are all the instances of primitive type τi; finally, (6.11) declares Object

to be the union of all other types.

72 The Semantic Mapping between PDDL and ES

With the basic action theory constructed in this way, now we consider the

state Iα obtained by executing an Adl operator, α, in I. First, Lemma 6.4

formalizes some simple consequences from the construction above.

Lemma 6.4. Let α = A(~p) be an action and ~o be object parameters for the

fluent Fj, then

1. Σ0 ∧ τ ~Fj
(~o) is satisfiable iff ~o are of the correct types according to the

Adl problem description.

2. Σ0 |= γ∗Fj

~xj a

~o α
iff γ∗Fj ,A(~o, ~p) is satisfiable in the original Adl state I,

where ∗ ∈ {+,−}.

3. Σ0 ∪ Σpre |= Poss(α) iff πA(~p) is satisfied in the original Adl state I

and ~p are of the correct types.

Proof. We shall prove a more general version of this lemma, as well as the com-

ing Theorem 6.5, in Chapter 7, after we make the extensions with functional

fluents.

Under the condition that Σ0(I)∪Σpre |= Poss(α), Lemma 6.4 tells us that

the execution of α is a possible one in the Adl state I. So, we do the following

for all Fj and all ~o such that Fj(~o) is type consistent

1. If Σ0 |= γ+
Fj

~xj a

~o α
, then add Fj(~o);

2. If Σ0 |= γ−Fj

~xj a

~o α
, then delete Fj(~o);

Let us denote the set of literals to be added by Adds and those to be deleted

by Dels, then the new state description is

Iα = (I \Dels) ∪Adds

Claßen et al. related the state update above to first-order progression in

ES (c.f. Section 4.4), and proved the following theorem:

Theorem 6.5. Let Iα be the state description obtained as shown above, given

an Adl problem and a ground action α. Further, let Σα = {[α]ψ|ψ ∈ Σ0(Iα)},
where Σ0(Iα) is the initial theory constructed from Iα instead of I. For all Fj,

let the consistency condition |= ¬(γ+
Fj

∧ γ−Fj
)aα hold. Then Σα is a progression

of Σ0 through α.

Theorem 6.5 implies that the application of an Adl operator under the

state transitional semantics is the same as progressing the initial theory of the

corresponding basic action theory.

6.2 Numerical Expressions and Plan Metrics 73

6.2 Numerical Expressions and Plan Metrics

With the existing results described above as a starting point, we are now ready

to investigate the additional features in the more general version of Pddl 2.

This section is devoted to the numerical extensions, which corresponds to

Pddl domains with the :fluents requirement.

In the coming subsections, 6.2.1 investigates how numerical properties in

the Pddl problem definition can be mapped to the basic action theory in ES,

6.2.2 discusses the plan metrics, and finally 6.2.3 illustrates all of our ideas in

this section with an example.

6.2.1 Numerical Expressions

As mentioned in Section 2.2.2, two restrictions are proposed for the usage of

numerical expressions in Pddl according to Fox and Long’s definition. First,

only numerical valued functions are allowed, i.e. all functions are of the form

Objectn → R, and functions like Objectn → Object are disallowed. Second,

numbers are not terms in the language, and thus cannot appear as parameters

to actions, predicates or functions.

Notice that our extension to ES is more general, in that all syntactically

valid numerical expressions in Pddl can be represented in ES, but not vice

versa.

In order to build a direct correspondance, we define additional constraints

in the basic action theory, such that the restrictions in Fox and Long’s seman-

tics can be modeled. Indeed, we only need to ensure that all function symbols

in f have parameters of type Object (or its subtype) and function value of

type Number. For this purpose, we add the following typing constraint for

each function symbol fj in the initial theory:

fj(xj1 , · · · , xjkj
) = y ⊃

(
τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
) ∧Number(y)

)
(6.12)

Now, let us investigate how the numerical extensions, compared to the Adl

subset, influences the basic action theory. We shall start from the successor

state axioms Σpost for functional fluents, and then discuss the precondition

axioms Σpre and the initial description Σ0.

The successor state axioms

The mapping from Pddl operators to the successor state axioms in ES is

similar to the Adl subset, except that we add additional axioms for numer-

ical fluent functions. So for predicate symbols and typing constraints, the

construction still follows (6.3)–(6.6).

74 The Semantic Mapping between PDDL and ES

For the numerical function symbols, remember that in Section 2.2, we used

the formula γv
fj ,Ai

(~xj , y, ~zi) to denote the condition to assign y to fj(~xj) in the

effect of action Ai(~zi). So, like in the case of fluent predicates, we define the

effect formula to assign y to fj(~xj) as

γv
fj

≡
∨

γv
fj ,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γv
fj ,Ai

(6.13)

and the one to change the value of fj(~xj) at all as

γfj
≡

∨

γfj ,Ai
∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γfj ,Ai
(6.14)

Then the successor state axiom for numerical function fj is

2[a]fj(~xj) = y ≡ γv
fj

∧ τfj
(~xj) ∧Number(y) ∨ fj(~xj) = y ∧ ¬γfj

(6.15)

where τfj
is the typing constraints for the function symbol fj.

The precondition axiom

The precondition axiom is obtained in the same fashion as in the Adl subset.

Remember that < is a predicate symbol, = is the identity relation in the

logic, and >, ≤ and ≥ are abbreviations, so the precondition axiom does

not contain any new feature, although we may now freely write comparison

between numerical expressions in it.

The initial state description

The initial description Σ0 is constructed in a similar way to what we did

in Section 6.1.2. The mapping is exactly the same for the initialization of

predicates. Then, for typing of objects, apart from (6.8)–(6.11), we add the

new constraint for function symbols in (6.12). Finally, for the (numerical)

functional atoms, we include for each functional symbol fj the sentence

fj(~x) = y ≡ ~x = ~o1 ∧ y = r1∨
· · · ∨ (6.16)

~x = ~okj
∧ r = ykj

where fj(~o1) = r1, · · · , fj(~okj
) = rkj

characterize the initial values of all the

instances of fj.

6.2 Numerical Expressions and Plan Metrics 75

6.2.2 Metrics

Before presenting an example to illustrate our solution to numerical expres-

sions above, let us first have a closer look at the plan metrics in Pddl.

As defined by Fox and Long, a plan metric is a numerical value, on which

basis the quality of a plan is evaluated. Any quantity that is used for defining

a metric has to be instrumented in the domain description, i.e. an action

has to specify how it may change the quantity in the :effect section. So

pragmatically, a metric is nothing but a real value obtained from arithmetics

on some of the numerical fluents in the domain.

The use of metrics for a planner is to optimize the plan that it generates. In

contrast, for our purpose here, metrics do not serve as a guideline in the basic

action theory in ES. Nevertheless, we always have access to the metric values,

since they are formulas on normal numerical fluents in the domain. This is

somewhat similar to the goal description in Pddl, in that we do not map the

goal sentence to anything in the basic action theory, yet we can always check

whether the goal is satisfied. In the following example, we will also see how

the metrics of a plan may be evaluated according to the basic action theory

in ES.

6.2.3 An Example

We now illustrate, with a concrete example, how to map a Pddl problem

description with numerical expressions and metrics to the basic action theory

in the logic ES. We do so by deriving a basic action theory from the sample

Pddl specification in Figure 6.1.

The Precondition Axiom Σpre

As usual, the right hand side of the precondition axioms is obtained by

π =
∨

1≤i≤m

∃~zi : ~τi.a = Ai(~zi) ∧ πAi
(6.17)

In our example here, there is only one action drive(v, l1, l2), so the pre-

condition axiom is

2Poss(a) ≡
∃v, l1, l2. V ehicle(v) ∧ Location(l1) ∧ Location(l2)∧
a = drive(v, l1, l2) ∧At(v, l1) ∧Accessible(v, l1, l2)∧
fuel level(v) ≥ fuel required(l1, l2)

76 The Semantic Mapping between PDDL and ES

(define (domain metricVehicle)

(:requirements :strips :typing :fluents)

(:types vehicle location)

(:predicates (at ?v - vehicle ?p - location)

(accessible ?v - vehicle ?p1 ?p2 - location))

(:functions (fuel-level ?v - vehicle)

(fuel-used ?v - vehicle)

(fuel-required ?p1 ?p2 - location)

(total-fuel-used))

(:action drive

:parameters (?v - vehicle ?from ?to - location)

:precondition (and (at ?v ?from)

(accessible ?v ?from ?to)

(>= (fuel-level ?v) (fuel-required ?from ?to)))

:effect (and (not (at ?v ?from))

(at ?v ?to)

(decrease (fuel-level ?v) (fuel-required ?from ?to))

(increase (total-fuel-used) (fuel-required ?from ?to))

(increase (fuel-used ?v) (fuel-required ?from ?to))))

)

(define (problem metricVehicleExample)

(:domain metricVehicle)

(:objects truck car - vehicle Paris Berlin Rome Madrid - location)

(:init (at truck Rome)

(at car Paris)

(= (fuel-level truck) 100)

(= (fuel-level car) 100)

(accessible car Paris Berlin)

(accessible car Berlin Rome)

(accessible car Rome Madrid)

(accessible truck Rome Paris)

(accessible truck Rome Berlin)

(accessible truck Berlin Paris)

(= (fuel-required Paris Berlin) 40)

(= (fuel-required Berlin Rome) 30)

(= (fuel-required Rome Madrid) 50)

(= (fuel-required Rome Paris) 35)

(= (fuel-required Rome Berlin) 40)

(= (fuel-required Berlin Paris) 40)

(= (total-fuel-used) 0)

(= (fuel-used car) 0)

(= (fuel-used truck) 0))

(:goal (and (at truck Paris) (at car Rome)))

(:metric minimize (total-fuel-used))

)

Figure 6.1: Domain and problem description with numerics and metrics

6.2 Numerical Expressions and Plan Metrics 77

The Successor State Axioms Σpost

There should be one successor state axiom for each predicate and each function

symbol. In the example domain, we have two predicate symbols At(v, l) and

Accessible(v, l1, l2), and four function symbols fuel level(v), fuel used(v),

fuel required(l1, l2) and total fuel used.

The effect formulas for predicates (including those for typing) are derived

in the same way as illustrated in Section 6.1.2 for the Adl subset of Pddl,

i.e. from the normal form of the effects of the only action drive(v, l1, l2), we

obtain

γ+
At = ∃v, l1, l2.a = drive(v, l1, l2) ∧ x1 = v ∧ x2 = l2

γ−At = ∃v, l1, l2.a = drive(v, l1, l2) ∧ x1 = v ∧ x2 = l1

γ+
Accessible = false

γ−Accessible = false

then, the successor state axioms for the predicates are simply

2[a]At(x1, x2) ≡
γ+

At ∧ V ehicle(x1) ∧ Location(x2)∨
At(x1, x2) ∧ ¬γ−At

2[a]Accessible(x1, x2, x3) ≡
γ+

Accessible ∧ V ehicle(x1) ∧ Location(x2) ∧ Location(x3)∨
Accessible(x1, x2, x3) ∧ ¬γ−Accessible

For the function symbols f(~x), we define their update conditions in the

way as specified in Section 6.2.1:

γv
fuel required(x1, x2, y) ≡ false

γfuel required(x1, x2) ≡ false

γv
fuel level(x, y) ≡ ∃v, l1, l2.a = drive(v, l1, l2) ∧ x = v∧

y = fuel level(v) − fuel required(l1, l2)

γfuel level(x) ≡ ∃v, l1, l2.a = drive(v, l1, l2) ∧ x = v

γv
fuel used(x, y) ≡ ∃v, l1, l2.a = drive(v, l1, l2) ∧ x = v∧

y = fuel used(v) + fuel required(l1, l2)

γfuel used(x) ≡ ∃v, l1, l2.a = drive(v, l1, l2) ∧ x = v

γv
total fuel used(y) ≡ ∃v, l1, l2.a = drive(v, l1, l2)∧

y = total fuel used+ fuel required(l1, l2)

γtotal fuel used ≡ ∃v, l1, l2.a = drive(v, l1, l2)

78 The Semantic Mapping between PDDL and ES

Then the successor state axioms for functional fluents are

2[a]fuel required(x1, x2) = y ≡
γv

fuel required(x1, x2, y) ∧ Location(x1) ∧ Location(x2) ∧Number(y)∨
fuel required(x1, x2) = y ∧ ¬γfuel required(x1, x2)

2[a]fuel level(x) = y ≡
γv

fuel level(x, y) ∧ V ehicle(x) ∧Number(y)∨
fuel level(x) = y ∧ ¬γfuel level(x)

2[a]fuel used(x) = y ≡
γv

fuel used(x, y) ∧ V ehicle(x) ∧Number(y)∨
fuel used(x) = y ∧ ¬γfuel used(x)

2[a]total fuel used = y ≡
γtotal fuel used(y) ∧Number(y)∨
total fuel used = y ∧ ¬γtotal fuel used

In summary, if we simplify all the sentences above, we get the successor

state axioms for all typing constraints, relational and functional fluents in the

domain as follows:

2[a]V ehicle(x) ≡ V ehicle(x)

2[a]Location(x) ≡ Location(x)

2[a]At(v, l) ≡
∃l′.Location(l′) ∧ a = drive(v, l′, l) ∧ V ehicle(v) ∧ Location(l)∨
At(v, l) ∧ ¬∃l′.Location(l′) ∧ a = drive(v, l, l′)

2[a]Accessible(v, l1, l2) ≡ Accessible(v, l1, l2)

2[a]fuel required(l1, l2) = y ≡ fuel required(l1, l2) = y

2[a]fuel level(v) = y ≡
∃l1, l2.Location(l1) ∧ Location(l2) ∧ a = drive(v, l1, l2)∧

y = fuel level(v) − fuel required(l1, l2)∧
V ehicle(v) ∧Number(y)∨

fuel level(v) = y ∧ ¬∃l1, l2.a = drive(v, l1, l2)

Location(l1) ∧ Location(l2)

2[a]fuel used(v) = y ≡
∃l1, l2.Location(l1) ∧ Location(l2) ∧ a = drive(v, l1, l2)∧

y = fuel used(v) + fuel required(l1, l2)∧
V ehicle(v) ∧Number(y)∨

6.2 Numerical Expressions and Plan Metrics 79

fuel used = y ∧ ¬∃l1, l2.a = drive(v, l1, l2)∧
Location(l1) ∧ Location(l2)

2[a]total fuel used = y ≡
∃v, l1, l2.V ehicle(v) ∧ Location(l1) ∧ Location(l2)

a = drive(v, l1, l2) ∧Number(y)∧
y = total fuel used+ fuel required(l1, l2)∨

total fuel used = y ∧ ¬∃v, l1, l2.a = drive(v, l1, l2)

V ehicle(v) ∧ Location(l1) ∧ Location(l2)

The Initial Description Σ0

Finally, following the construction procedure described above, it is easy to

obtain the following initial theory for this domain:

V ehicle(x) ≡x = truck ∨ x = car

Location(x) ≡x = paris ∨ x = berlin ∨ x = rome ∨ x = madrid

At(x, y) ⊃V ehicle(x) ∧ Location(y)

Accessible(x, y, z) ⊃V ehicle(x) ∧ Location(y) ∧ Location(z)

fuel level(x) = y ⊃V ehicle(x)
fuel used(x) = y ⊃V ehicle(x)

fuel required(x, y) ⊃Location(x) ∧ Location(y)

At(x, y) ≡(x = truck ∧ y = rome) ∨ (x = car ∧ y = paris)

fuel level(x) = y ≡(x = truck ∧ y = 100) ∨ (x = car ∧ y = 100)

Accessible(x, y, z) ≡(x = car ∧ y = paris ∧ z = berlin)∨
(x = car ∧ y = berlin ∧ z = rome)∨
(x = car ∧ y = rome ∧ z = madrid)∨
(x = truck ∧ y = rome ∧ z = paris)∨
(x = truck ∧ y = rome ∧ z = berlin)∨
(x = truck ∧ y = berlin ∧ z = paris)

fuel required(x, y) = z ≡(x = paris ∧ y = berlin ∧ z = 40)∨
(x = berlin ∧ y = rome ∧ z = 30)∨
(x = rome ∧ y = madrid ∧ z = 50)∨
(x = rome ∧ y = paris ∧ z = 35)∨
(x = rome ∧ y = berlin ∧ z = 40)∨
(x = berlin ∧ y = paris ∧ z = 40)

total fuel used = y ≡(y = 0)

80 The Semantic Mapping between PDDL and ES

fuel used(x) = y ≡(x = car ∧ y = 0) ∨ (x = truck ∧ y = 0)

With the basic action theory above, we may correctly conclude, for exam-

ple,

Σ0 ∪ Σpre∪Σpost ∪ Σnum |= [drive(car, paris, berlin)]

[drive(truck, rome, paris)][drive(car, berlin, rome)]
(
At(truck, paris) ∧At(car, rome) ∧ total fuel used = 105

)

and we can see that the metric total fuel used has got the desired correct

value 105.

6.3 Durative Actions

In this section, we investigate how we may give the durative actions in Pddl

a declarative semantics with the logic ES. First, we shall look at the simpler

case where at most discretized numerical effects exist. Then, we turn to the

more general but complicated case with continuous numerical effects. In both

cases, instead of building everything anew, we base our discussion upon the

results from the previous sections, and only remark on the necessary changes.

6.3.1 Discretized Durative Actions

This subsection deals with discretized durative actions with at most end du-

ration constraints and temporally local conditional effects. Following the

notational convention in Section 2.3, suppose that we have simple actions1

A1, · · · , Ap ∈ A and durative actions Ã1, · · · , Ãq ∈ Ã, where εo
eAj

= ∅, δs
eAj

≡
true, and each effect in εe

eAj
has the form 〈true,true, ϕe

j,i〉 ⇒ ψj,i, for all

j = 1, · · · , q. Our goal is to translate these action descriptions to the basic

action theory in ES.

Remember that as mentioned in Section 5.4, we represent durative actions

in ES with two simple actions denoting the start and the end events of it. This

coincides with the definition of durative actions in Pddl, where conditions

and effects are temporally annotated, as denoted by 〈πs
eAj
, πe

eAj
〉 and 〈εs

eAj
, εe

eAj
〉,

respectively. So the first step in deriving the basic action theory from the

Pddl description is to map the start and the end conditions and effects.

For the durative action Ãj , to make its start event possible to happen,

at least πs
eAj

must be satisfied. And if it really happens, then the effects εs
eAj

1 In this section and the following, the terms “simple action” and “spontaneous action”

both stand for non-durative actions.

6.3 Durative Actions 81

will take place. Similarly, πe
eAj

and εe
eAj

can be considered as the (partial)

precondition and effects of the end event. Since we assume that no end effect

εe
eAj

have a premise that is temporally prior to its happening, all the conditional

effects, if any, are local as well. So, to some extent, the start and the end

events are just like the simple actions in A. Therefore, for notational benefits,

we define them as two virtual simple actions with the normal form Ãs
j〈~z :

~τ, πs
Aj
, εsAj

〉 and Ãe
j〈~z : ~τ, πe

Aj
, εeAj

〉. Further, we denote S (Ã) = {Ãs
j} and

E (Ã) = {Ãe
j}. Then, to translate the problem description, we need to consider

not only the simple actions in A, as we described in the previous section, but

also the virtual simple actions in S (Ã) and E (Ã), derived from Ã.

As a result, the precondition axiom will have the form

2Poss(a) ≡ time(a) ≥ now ∧
(

∨

1≤i≤p

∃~zi, t.a = Ai(~zi, t) ∧ πAi
∨

∨

1≤j≤q

∃~zj , t.a = start(Ãj(~zj), t) ∧ πs
eAj
∨

∨

1≤j≤q

∃~zj , t.a = end(Ãj(~zj), t) ∧ πe
eAj

)

and the structure of successor state axioms remains unchanged, except that

the effect formulas, γ+
Fj

, γ−Fj
, γv

fj
and γfj

, consider actions in A∪S (Ã)∪E (Ã)

γ+
Fj

≡ ∨
Ai∈A∪S (eA)∪E (eA)
γ

F
+
j

,Ai
∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γ+
Fj ,Ai

γ−Fj
≡ ∨

Ai∈A∪S (eA)∪E (eA)

γ−

Fj,Ai
∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γ−Fj ,Ai

γv
fj

≡ ∨
Ai∈A∪S (eA)∪E (eA)

γv
fj ,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γv
fj ,Ai

γfj
≡ ∨

Ai∈A∪S (eA)∪E (eA)
γfj ,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γfj ,Ai

However, two things are neglected in this direct transformation. First, the

duration constraint δ eAj
is not yet taken into account. Second, the invariant

conditions πo
eAj

for durative actions are not protected. Now, we shall look at

how they may be implemented in the basic action theory.

82 The Semantic Mapping between PDDL and ES

Remember that in Section 5.4, we defined the following axioms in Σdura:

2[a]Performing(ã) ≡
∃t.a = start(ã, t)∨
Performing(ã) ∧ ¬∃t.a = end(ã, t)

2[a]since(ã) = t ≡
a = start(ã, t)∨
since(ã) = t ∧ ¬∃t′.a = start(ã, t′)

2Poss(start(ã), t) ⊃ ¬Performing(ã)
2Poss(end(ã), t) ⊃ Performing(ã)

and concluded that we may obtain the duration of durative action ã with(
t − since(ã)

)
at end(ã, t), the end event of ã. As a result, we may check

whether the end duration constraint δe
ea is fulfilled at this time point, more

precisely, in the precondition of the end event.

Formally, we assert

2Poss
(
end(ã, t)

)
⊃ (δe

ea)
duration
t−since(ea) (6.18)

where (δe
ea)

duration
t−since(ea) is the formula obtained by simultaneously substituting all

the free occurrences of duration in δe
ea with

(
t− since(ã)

)
.

Here, we do not consider start durative constraints, and assume δs
ea =

true. We shall return to the general case, where start duration constraints

do exist, at the end of Section 6.3.2, after we discuss about the inter-temporal

conditional effects.

(6.18) implies that if the (end) duration constraint of any durative action

is violated, then the end event of it is not possible, and thus the whole plan

becomes invalid. In this way, we ensure that the duration constraint is satisfied

in any valid plan.

Now, let us turn to the invariant conditions for durative actions. Here, the

difficulty in protecting the invariants is that they must hold in a continuous

interval, whereas ES can only reason about discrete points in the situations.

One näıve solution would be to discretize the interval, and say that the condi-

tion holds at each point in the discretization. However, the happenings within

the duration of the action may be arbitrary, so no matter how we discretize

it, even if we can guarantee that the condition holds at all the points, we do

not know whether some action happens in between, violating the condition.

To overcome this problem, we propose to protect the invariant conditions

by not allowing actions that violates them to happen. The idea is as follows:

6.3 Durative Actions 83

we check, before executing any action a, whether after its execution the in-

variant condition πo
eAj

of some active durative action Ãj is violated. If this is

the case, the execution of a should be forbidden.

As a result, we consider action a possible to happen, only if in the resulting

situation, the invariant condition of all durative actions that are in progress

are satisfied. Formally, the idea can be captured by the following ES sentence:

2Poss(a) ⊃
∧

eAj

R[a, Performing(Ãj) ⊃ πo
eAj

] (6.19)

Here, the right-hand side of (6.19) makes use of the regressed formula of

Performing(Ãj) ⊃ πo
eAj

through action a. The validity of this approach is

established from the following fact: We want to ensure Performing(Ãj) ⊃
πo

eAj
holds after executing a, which can be expressed with

[a]
(
Performing(Ãj) ⊃ πo

eAj

)

However, this formula is in [a]. In order to remove the [a] operator and

get a formula that only talks about the current situation, we may resort to

regression, and finally get (6.19).

With the considerations on duration constraints and invariant conditions

above, we should extend the precondition axiom as shown in the following

(6.20):

2Poss(a) ≡ time(a) ≥ now ∧
(∧

eAj

R[a, Performing(Ãj) ⊃ πo
eAj

]
)
∧

(

∨

Ai

a = Ai ∧ πAi
∨

∨

eAj

∃t.a = start(Ãj, t) ∧ ¬Performing(Ãj) ∧ πs
eAj
∨ (6.20)

∨

eAj

∃t.a = end(Ãj , t) ∧ Performing(Ãj) ∧ πe
eAj

∧ (δe
eAj

)duration

t−since(eAj)

)

In order to see how our approach above works, let us look at a “light

tunnel” example in Figure 6.2, and derive the basic action theory from this

Pddl action definition.

In this example, we consider a domain where there are a few tunnels of

different lengths. Each tunnel is equipped with lighting facilities. In order

to go through a tunnel, there must be light in it. This is guaranteed by the

infrared sensor: if someone is entering a dark tunnel, the sensor automatically

84 The Semantic Mapping between PDDL and ES

(:durative-action go-thru

:parameters (?l - tunnel)

:duration (= ?duration (/ (length ?l) velocity))

:condition (over all (light ?l))

:effects (and (at start (in ?l))

(when (at start (not (light? l)))

(at start (light ?l)))

(at end (not (in ?l))))

)

(:action switch-on

:parameters (?l - tunnel)

:condition (not (light ?l))

:effect (light ?l))

)

(:action switch-off

:parameters (?l - tunnel)

:condition (light ?l)

:effect (not (light ?l)))

)

Figure 6.2: Action definitions for a simple light-tunnel problem.

turns on the lights in the tunnel. Apart from that, it is possible to turn

the lights on and off manually, by the two simple actions switch-on and

switch-off, respectively.

Now, let us build the basic action theory for this domain, step by step

from the action specifications.

According to (6.18), the duration constraint

:duration (= ?duration (/ (length ?l) velocity))

can be guaranteed by inserting the formula

t− since(goThru(l)) =
length(l)

velocity

to the precondition of the end event end(goThru(l), t).

Then, to ensure that the invariant condition

(over all (light ?l))

6.3 Durative Actions 85

for the durative action goThru(l) is satisfied, we need to ensure the satisfaction

of the condition

R[a, Performing
(
goThru(l)

)
⊃ Light(l)]

which is extended to the following formula
(
∃t.a = start

(
goThru(l), t

)
∨

Performing
(
goThru(l)

)
∧ ¬∃t.a = end

(
goThru(l)

))
⊃(

∃t.a = switchOn(l, t)∨
∃t.a = start

(
goThru(l), t

)
∨

Light(l) ∧ ¬∃t.a = switchOff(l, t)
)

(6.21)

For example, suppose a situation where Performing(goThru(l))∧Light(l)
is true, and let a be the action switchOff(l), then the evaluation result of

(6.21) is false, which intuitively means, when someone is in the middle of a

light tunnel, it is not possible to switch off the light in it. This is exactly what

we desire.

With the considerations above, the precondition axiom for the light tunnel

domain is the formula:

2Poss(a) ≡
time(a) ≥ now∧
(
∃t.a = start

(
goThru(l), t

)
∨

Performing
(
goThru(l)

)
∧

¬∃t.a = end
(
goThru(l)

))
⊃

(
∃t.a = switchOn(l, t)∨

∃t.a = start
(
goThru(l), t

)
∨ (6.22)

Light(l) ∧ ¬∃t.a = switchOff(l, t)
)
∧

(
∃t.a = switchOn(x, t) ∧ ¬Light(x)∨

∃t.a = switchOff(x, t) ∧ Light(x)∨
∃t.a = start

(
goThru(x), t

)
∧ ¬Performing

(
goThru(x)

)
∨

∃t.a = end
(
goThru(x), t

)
∧ Performing

(
goThru(x), t

)
∧

t− since
(
goThru(x)

)
= length(x)/velocity

)

Finally, it is not difficult to obtain the following successor state axioms for

the target fluent predicates. For space reasons, we omit the ones for the rigid

86 The Semantic Mapping between PDDL and ES

properties here.

2[a]In(x) ≡
∃t.a = start

(
goThru(x), t

)
∨ (6.23)

In(x) ∧ ¬∃t.a = end
(
goThru(x), t

)

2[a]Light(x) ≡
∃t.a = switchOn(x, t)∨
∃t.a = start

(
goThru(x), t

)
∨ (6.24)

Light(x) ∧ ¬∃t.a = switchOff(x, t)

6.3.2 Inter-Temporal Property Reference

In Section 6.3.1, we only consider temporally local properties. This includes

the following two restrictions. First, we only allow intra-temporal conditional

effects, and disallow for the end effects with premise annotated with at start

or over all. Second, we do not consider start duration constraints. In this

subsection, we loosen these restrictions, and investigate the more general cases.

Inter-temporal conditional effects

Let us start with inter-temporal conditional effects. So far, we assumed that

for a durative action Ãj(~xj), each effect in εe
eAj

has the form

〈true, true, ϕe
j,i〉 ⇒ ψj,i

Now, let us consider the general case

〈ϕs
j,i, ϕ

o
j,i, ϕ

e
j,i〉 ⇒ ψj,i

where ϕs
j,i and ϕo

j,i may be non-trivial formulas. In the following discussion,

we use the ~qi to denote all the free variables in ψj,i that are distinct from those

in ~xj .

Like Fox and Long, to accommodate inter-temporal conditional effects,

we introduce an auxiliary fluent predicate to memorize the “old state”, when

we meet a premise that has a temporal annotation prior to its corresponding

effect.

In the case of a start-end conditional effect of a durative action Ãj(~pj),

for each non-trivial premise formula ϕs
j,i, we define a predicate ξs

j,i(~pj, ~qi).

The value of ξs
j,i(~pj, ~qi) is updated to the truth value of ϕs

j,i whenever the

6.3 Durative Actions 87

start(Ãj(~pj), t) event is activated, and to false after the duration of the

action. Formally, the successor state axiom for ξs
j,i(~pj , ~qi) is

2[a]ξs
j,i(~pj , ~qi) ≡
∃t.a = start

(
Ãj(~pj), t

)
∧ ϕs

j,i∨
ξs
j,i(~pj , ~qi) ∧ ¬∃t′.a = end(Ãj(~pj), t

′)

This has the effect that ξs
j,i(~pj , ~qi) “memorizes” the truth value of ϕs

j,i at the

time point when the start event of Ãj(~pj) is executed.

The overall-end conditional effects are a little more subtle to deal with,

since the satisfaction of the premise is not determined by a single state, but

instead according to an interval. Like for the start premise, we introduce

an auxiliary fluent predicate ξo
j,i(~pj , ~qi) for each non-trivial overall premise

formula ϕo
j,i. The value of ξo

j,i(~pj , ~qi) is determined in a way similar to how

we protected the invariant condition for durative actions described in Sec-

tion 6.3.1. Assigned to false initially, the truth value of ξo
j,i(~pj, ~qi) may be

later changed in two ways. First, when the start event of Ãj(~pj) is executed,

if ϕo
j,i becomes true immediately afterward, then the value of ξo

j,i(~pj, ~qi) is

assigned to true. Second, if the durative action finishes or an action falsifies

the overall premise, then the value of ξo
j,i(~pj, ~qi) is updated to false. This

idea is captured by the following successor state axiom

2[a]ξo
j,i(~pj , ~qi) ≡
∃t.a = start(Ãj(~pj), t) ∧R[a, ϕo

j,i]∨
ξo
j,i(~pj , ~qi) ∧ ¬∃t′.a = end(Ãj(~pj), t

′) ∧R[a, ϕo
j,i]

Then, to decide whether the effect ψj,i should take place at the end event

of Ãj(~pj), we simply test whether ξs
j,i(~pj , ~qi) and ξo

j,i(~pj , ~qi) both have the value

true, apart from considering the end-premise ϕe
j,i.

In order to illustrate our solution to the problem of inter-temporal condi-

tional effects, we consider, as an example, a variant of the light tunnel problem,

whose action definitions are shown in Figure 6.3.

In the new version, the infrared sensor “remembers” the state of the lights

before someone enters the tunnel: if the lights are originally on, it remains on

after she exits the tunnel; otherwise, it turns on the light in the beginning,

and turns it off again when she leaves. Besides, there is only one simple action

switch that toggles the light between on and off.

The main focus here is the conditional end effect

〈Infrared(l) ∧ ¬Light(l), true, true〉 ⇒ ¬Light(l)

88 The Semantic Mapping between PDDL and ES

(:durative-action go-thru

:parameters (?l - tunnel)

:duration (= ?duration (/ (length ?l) velocity))

:condition (over all (light ?l))

:effects (and (at start (in ?l))

(at end (not (in ?l)))

(when (and (at start (infrared ?l))

(at start (not (light? l))))

(and (at start (light ?l))

(at end (not (light ?l))))))

)

(:action switch

:parameters (?l - tunnel)

:effect (and (when (light ?l) (not (light ?l)))

(when (not (light ?l) (light ?l))))

)

Figure 6.3: The full version of light tunnel problem.

Since the premise is a start condition, we introduce a predicate ξs
goThru,Light(l),

whose successor state axiom is

2[a]ξs
goThru,Light(l) ≡
∃t.a = start

(
goThru(l), t

)
∧ Infrared(l) ∧ Light(l)∨

ξs
goThru,Light(l) ∧ ¬∃t′.a = end

(
goThru(l), t′

)

The successor state axiom for Light(l), then, becomes

2[a]Light(l) ≡
∃t.a = switch(l, t) ∧ ¬Light(l)∨
∃t.a = start

(
goThru(l), t

)
∧ Infrared(l) ∧ ¬Light(l)∨

Light(l) ∧ ¬
(
∃t.a = switch(l, t) ∧ Light(l)∨

∃t.a = end
(
goThru(l), t

)
∧ ξs

goThru,Light(l)
)

Start duration constraints

With the solution to inter-temporal conditional effects presented above, let us

now turn to the duration constraints with at start annotations.

6.3 Durative Actions 89

When Fox and Long defined their semantics for the Pddl, they split the

duration constraint into a start constraint DCDA
start and an end constraint

DCDA
end , and handle them respectively as a precondition of the start and end

events. This approach is possible, since the duration of an action is specified

explicitly in a plan, and their semantics is offline in nature.

In contrast, in ES, all durative actions are represented by their derived

simple actions, and no duration is represented explicitly in the plan. As a

result, there is no way to access the duration of an action before the end of

it. So it is impossible to directly copy Fox and Long’s approach to check the

satisfaction of the start duration constraint.

To solve this problem, our proposal is to memorize the fluent functional

properties at the beginning of the durative action, and postpone the evaluation

of the formula to the end, when the duration value is also accessible.

Formally, for each functional fluent fi(~qi) that is mentioned in some start

duration constraint δs
eAj

(~pj), we introduce a new fluent f s
j,i(~pj , ~qi), which has

the following successor state axiom:

2[a]f s
j,i(~pj, ~qi) = y ≡
∃t.a = start(Ãj(~pj), t) ∧ y = fi(~qi)∨
f s

j,i(~pj, ~qi) = y ∧ ¬∃t.a = start(Ãj(~pj), t)

Then, the satisfaction of the whole duration constraint may be checked

when the end event is executed by

2Poss
(
end(Ãj , t)

)
⊃ (δs

eAj
)
fi(~qi) duration

fs
j,i(~pj ,~qi) t−since(eAj)

∧ (δe
eAj

)duration

t−since(eAj)
(6.25)

For notational simplicity, we sometimes write (δ eAj
)duration

t−since(eAj)
to denote the

right hand side of (6.25).

6.3.3 Continuous Effects

In the previous two subsections, we demonstrated how to map a Pddl de-

scription with durative actions to the basic action theories in the logic ES,

under the assumption εo
eAj

= ∅ for all durative actions Ãj . This is the subset

with only discretized durative actions. Now, let us consider the mapping with

continuous durative actions, where εo
eAj

6= ∅, for some durative actions Ãj .

According to Section 2.3.2, the normal form of εo
eAj

is a set of structures

in 〈op, P,Q〉. So, we shall discuss how to map the effects of this form to the

continuous extensions of the logic ES as described in Section 5.5.

Remember that in the logic ES (as well as the situation calculus), all the

changes of the states occur at the happening points of actions. Although for

90 The Semantic Mapping between PDDL and ES

continuous changing quantities, the value varies from time to time within a

situation, the pattern of its change is already determined at the start of the

situation. This fact suggests that continuous effects may be modeled at the

points where the start and end events occur as well.

As a result, our proposal is to add an
(
(op) · linear(0, Q, t)

)
component to

fk(~xk) at the start and subtract the same component at the end of the durative

action Ãj whose “overall effect” εo
eAj

contains the effect 〈op, fk(~xk), Q〉. Here,

(op) is positive (+) when the effect is an increase and negative (−) when it

is a decrease; t is the time when the start (respectively, end) event happens.

For example, suppose that the overall effect of a durative action fly(p) is

(decrease (fuel-level ?p) (* #t (consume-rate ?p)))

which has the normal form

〈−, fuel level(p), consume rate(p)〉

then we have the following update conditions:

γv
fuel level(p),flys(p) ≡

y = fuel level(p) + (−1) · linear(0, consume rate(p), t)
γv

fuel level(p),flye(p) ≡
y = fuel level(p) − (−1) · linear(0, consume rate(p), t)

As a result, the successor state axiom for the numerical fluent fuel level(p) is

2[a]fuel level(p) = y ≡
∃t.a = start

(
fly(p), t

)
∧

y = fuel level(p) − linear
(
0, consume rate(p), t

)
∨

∃t.a = end
(
fly(p), t

)
∧

y = fuel level(p) + linear
(
0, consume rate(p), t

)
∨

fuel level(p) = y ∧ ¬
(
∃t.a = start

(
fly(p), t

)
∨ ∃t.a = end

(
fly(p), t

))

So far, it does not seem difficult to translate the continuous effect descrip-

tion in Pddl description to the logic ES. However, if we think about the

invariant constraints, we will find that it is not trivial to protect them in the

presence of continuous effects.

Remember that in the discretized case, we protect the invariant constraints

of durative actions by not allowing actions that violate the constraints to

occur. The validity of this approach is based on the assumption that the only

6.3 Durative Actions 91

way to change the truth value of a formula is by the execution of an action.

However, this is not true when we compare continuously changing numerical

values. Suppose, for instance, a durative action Ã requires x < 10 as an

invariant, but due to a continuous effect of an executing durative action B̃,

x is linearly increasing from 5 at a rate of 1. So, five time units later, the

invariant of Ã is violated, yet no action happens at this time point! As a

result, it seems that we need a stronger mechanism to protect the invariants

from being violated by continuous numerical changes.

Our proposal here is to schedule a force stop at the time point where any

invariant condition is predicted to get violated. Since the semantics of Pddl,

as defined by Fox and Long, requires the invariant condition to hold in the

open interval of the duration, ending the durative action on the first spot of a

violation ensures that all the conditions hold at least before this time point.

In this way, we argue, the invariant condition will be protected.

Technically, this idea is implemented with coercive actions as discussed in

Section 5.6. To be specific, we add the following obligatory condition to each

end event:

Obli(end(Ã, t)) ⊂ Performing(Ã) ∧ ¬Eval[πo
eA
, t] (6.26)

which means, whenever the invariant condition πo
eA

does not hold, the action

Ã is forced to stop.

To see how this helps protect the invariant conditions with continuous

fluents, suppose x = linear(5, 1, 0) and the condition of an active durative

action Ã requires x < 10 as an invariant condition. In this case, we have

Obli(end(Ã, 5)), and therefore Ã cannot keep running after time 5 to get its

invariant condition violated.

It gets even more interesting if we change the invariant of Ã from x < 10

to x ≤ 10. In this case, we do not have Obli(end(Ã, 5)) any more, since

eval(x, 5) = 10 and still satisfies πo
eA
. Nevertheless, we argue that the end

event have to occur at latest at time 5. The reason is that Obli(end(Ã, t))

holds for all t > 5. If any action C wants to happen at time t > 5, there

always exists 5 < t′ < t satisfying Obli(end(Ã, t′)), and thus the happening of

C without end(Ã, t′) is not executable. Moreover, even end(Ã, t′) itself is not

possible, since there is another 0 < t′′ < t′ such that Obli(end(Ã, t′′)), and so

on. So this forces an end(Ã, t) event to happen at some time where t ≤ 5.

It can be seen, now, that our mechanism successfully protects the invariant

condition in the presence of continuous changing effects. One may further ask,

whether we can solely use (6.26) for the protection of the invariant conditions,

and abandon the idea of protecting them with disallowing possibly violating

92 The Semantic Mapping between PDDL and ES

actions. Unfortunately, we cannot. The reason is that for condition changes

in the discretized case, all the changes are made by some actions or events.

That means, an action must have occurred and violated an invariant condi-

tion, before the Obli(· · ·) gets activated. Although the end events happens

immediately afterward, or in fact, they happen simultaneously in concept,

there is a situation with duration 0 where the invariant condition is violated.

As a result, the mechanism in (6.26) fails in the case of discretized effects.

So, the conclusion is that (6.19) and (6.26) together protects the invariant

constraints in the presence of both the discrete and continuous effects.

6.4 Timed Initial Literals

In Pddl 2.2, Edelkamp and Hoffmann introduced the concept of timed ini-

tial literals, in order to model simple deterministic exogenous events, such as

the time window in which a shop is open [EH04]. In this section, we shall

concentrate on how they can be mapped to the basic action theory in ES.

The use of timed initial literal is to specify the truth value of a predicate

atom, not in the initial situation, but at a certain time point in the future

(later than time 0). In ES, the domain evolves in a way defined in the basic

action theories, and it is not a standard method to change the truth value of

any formula directly with an external “command”.

To solve this problem, we resort to coercive actions, which is defined in

Section 5.6, since it was introduced to ES as a standard way to model prede-

termined exogenous events.

In order to make use of coercive actions, we need to introduce a new

action A〈t,ϕ〉 that is unique to any existing action symbol in the domain, for

each timed initial literal 〈t, ϕ〉. Both the precondition and the obligatory

condition of A〈t,ϕ〉 is that the time is exactly the same as specified in the

Pddl description, formally,

2Poss(A〈t,ϕ〉) ≡ time(A〈t,ϕ〉) = t (6.27)

2Obli(A〈t,ϕ〉) ≡ time(A〈t,ϕ〉) = t (6.28)

Furthermore, the only effect of A〈t,ϕ〉 is to change the truth value of ϕ to True.

As an example, suppose that we have the timed initial literals

(:init

(at 9 (shop-open))

(at 20 (not (shop-open)))

)

6.4 Timed Initial Literals 93

Then, we introduce two actions open shop and close shop, with the following

axioms for them:

2Poss(open shop(t)) ≡ t = 9

2Poss(close shop(t)) ≡ t = 20

2Obli(open shop(t)) ≡ t = 9

2Obli(close shop(t)) ≡ t = 20

2[a]ShopOpen ≡
∃t.a = open shop(t)∨
ShopOpen ∧ ¬∃t.a = close shop(t)

With the help of these two actions, it is guaranteed that the shop gets open at

time 9, and becomes closed at time 20, and therefore the timed initial literals

are realized.

Chapter 7

Correctness

In Chapter 6, we built a semantic mapping between the Pddl problem de-

scription and the basic action theories in the logic ES. Now, we shall prove

the correctness of this mapping. We do so in an incremental way, starting

from the result of the Adl subset obtained by Claßen et al. [CELN07]. Ex-

tending their result, we first reconsider the meaning of a state in the presence

of numerical and temporal properties (Section 7.1). Then we justify, in turn,

our treatments of the numerics (Section 7.2), durative actions (Section 7.3)

and timed initial literals (Section 7.4).

7.1 The Interpretation of the State

In the Adl subset of Pddl, a state is characterized solely by the truth values of

logical atoms. With the introduction of numerical functional fluents, however,

a state is determined not only by such a logical state, but also by the values of

fluent functions. As a result, we need to extend the interpretation of a state

with functional properties.

Definition 7.1. A state I is a tuple 〈IP , If 〉, where IP is the logical state

description, comprised of a finite set of ground atomic predicates that are

true in the state, and If is the functional state description, comprised of a

finite set of formulas with the form f(~o) = r, where f(~o) is a ground function

term and r is a ground term in the domain.

Notice that for simplicity, we only consider the closed-world case here,

since open-world planning is rarely used in practice (Fox and Long’s Pddl 2.1

even does not consider the open-world case) and including it may cause subtle

problems in our discussion.

Remember that in Fox and Long’s formalism, a state is represented by a

triple in 〈R,P(AtmsI),R
dim
⊥ 〉, where the first component is the time of the

95

96 Correctness

state, the second is the logical state and the third is the mapping from the

primitive numerical expressions to their values. Although their definition

seems distinct from ours, we argue that the two are indeed equivalent. To

see why, remember that we use the term now to represent the time of the

current situation in ES, which is similar to the first component in Fox and

Long’s definition, but is actually a 0-ary functional fluent and thus belongs to

If according to our definition.

Besides, instead of considering If as a mapping from functional terms to

their corresponding values, we choose to represent them as a set of formulas.

It is easy to see that, under the consistency condition that at most one formula

exists to assert the value of a ground functional term, the two interpretations

are equivalent. However, with ours, the axiomatizations of the logical state

and the functional state become similar.

Now, let us consider the mapping between a Pddl state and its corre-

sponding initial theory. For all the predicates and functions in the Pddl

domain, there are counterparts in the basic action theory. However, the re-

verse is not true: there are additional predicates and functions in the basic

action theories, yet they do not appear in the Pddl domain. These properties

include, for example, now, Performing(a), ξs
j,i(~pj , ~qi), f

s
j,i(~pj, ~qi), and so on.

To differentiate between these two groups of properties, we have the following

definition.

Definition 7.2. A target property is a property that is defined in the problem

domain definition; an auxiliary property is a (process-related) property that

is not mentioned in the domain definition but defined in the basic action

theory. The set of target properties is denoted by I
(T)
P and I

(T)
f (respectively

for predicates and functions), and the set of auxiliary properties is denoted by

I
(A)
P and I

(A)
f .

For example, in the vehicle domain, At(x, y) and fuel level(x) are target

properties, whereas Performing(a), since(a) and now are auxiliary ones.

To build a direct correspondence between the Pddl state and the initial

theory, we map the auxiliary properties in the basic action theory to the Pddl

domain, which determine the so-called meta-state of a state.

Definition 7.3. A meta-state in a Pddl domain, characterized by 〈I (A)
P , I

(A)
f 〉,

is an extended state description that determines the process-related properties

of a state, including

• the time of the state;

• whether each durative action is in progress;

7.1 The Interpretation of the State 97

• since when each durative action is in progress;

• the value of fluent functions used in the duration constraint at the start

of a durative action;

• the truth value of premise formula for conditional effects at the start

and during a durative action;

• the changing rate of continuous fluents.

Recall that the need for defining the auxiliary properties in the basic action

theory comes from the limitation of the logic ES (as well as the situation

calculus) that only non-durative actions can be directly represented in it. They

are proposed to model the process-related properties. Since the meta-state is

obtained from the auxiliary properties that are directly mapped from the basic

action theory, they should correctly model the evolution of the processes as

well. Theorem 7.4 proves this correctness.

Theorem 7.4. Suppose we have a plan P , containing m happenings of simple

actions and n happenings of durative actions:

P = {
(
t1 : A1(~o1)

)
, · · · ,

(
tm : Am(~om)

)
}∪

{
(
s1 : Ã1(~p1)[d1]

)
, · · · ,

(
sn : Ãn(~pn)[dn]

)
}

Then, for a state after some happening at time t, the auxiliary properties

determining its meta-state satisfy:

• now has the same value as t;

• Performing
(
Ãj(~pj)

)
is true if and only if there exists some happening(

s : Ãj(~pj)[d]
)

in plan P , satisfying s ≤ t < s+ d;

• since
(
Ãj(~pj)

)
= s if there exists some happening

(
s : Ãj(~pj)[d]

)
in plan

P , satisfying s ≤ t < s+ d;

• f s
j,i(~pj , ~qi) has the value of fi(~qi) at time s, if fi(~qi) appears in the start

duration constraint of Ãj(~pj) and the happening (s : Ãj(~pj)[d]) is in P ,

satisfying s ≤ t < s+ d;

• If ϕs
j,i appears in the premise of a start-end effect in Ãj(~pj), and the

happening (s : Ãj(~pj)[d]) is in P , satisfying s ≤ t < s+d, then ξs
j,i(~pj, ~qi)

is true iff ϕs
j,i is true at time s, where ~qi are all the free variables in the

effect formula that do not appear in ~pj;

98 Correctness

• If ϕo
j,i appears in the premise of an overall-end effect in Ãj(~pj), and the

happening (s : Ãj(~pj)[d]) is in P , satisfying s ≤ t < s+d, then ξs
j,i(~pj, ~qi)

is true iff for all happening time t′ where s < t′ ≤ t, ϕo
j,i is true at time

t′;

• The changing rate of the functional fluent fi is determined by

rate
(
fi(~qi)

)
=

(∑

(s: eAj(~pj)[d])∈P∧s≤t<s+d

〈+,fi(~qi),Qj,i〉∈εo
eAj

Qj,i

)
−

(∑

(s: eAj(~pj)[d])∈P∧s≤t<s+d

〈−,fi(~qi),Qj,i〉∈εo
eAj

Qj,i

)

Proof. These conclusions are obvious from the construction of the successor

state axioms discussed in Chapter 6

Theorem 7.4 establishes the correspondence between the auxiliary proper-

ties in the basic action theory and the process-related properties in the Pddl

state with respect to the specific plan. When we later talk about the cor-

rectness of the mapping of durative actions, we shall mainly concentrate on

proving the equivalence between the standard definition with meta-theoretical

structures by Fox and Long and ours with meta-states. But before that, let us

first hook the semantics of the non-durative subset, i.e. the subset of Pddl

with the requirements :adl and :fluent.

7.2 The Non-Durative Subset

In Section 6.1.2, we have introduced the conclusion by Claßen et al. that

their declarative semantics for the Adl subset of Pddl is correct. They

proved this conclusion by relating the state updates through Pddl action

operators to first-order progression in ES. As mentioned above, their result

covers purely logical properties in IP . With the introduction of fluent functions

in Section 6.2, a state is also characterized by the function values in If . So

we shall extend their correctness proof to incorporate the functional fluents.

The basic idea of the proof is very similar. In the first step, we simply show

that, for a basic action theory that is a translation from a Pddl problem de-

scription, there exists a correspondence between the relational and functional

updates in the state-transitional semantics and first-order progression in ES.

However, this is not enough, since Pddl plans, in general, allow concurrent

happening of actions in them. As a result, we need to show that even with

concurrent happenings, our semantics is equivalent to the standard one. This

7.2 The Non-Durative Subset 99

is done by further showing that the two semantics share the same set of valid

plans.

First, in the following Lemma 7.5 and Corollary 7.6, we formalize some

simple consequences of the way we construct our basic action theory from the

Pddl description. They form an extension to Lemma 6.4 in the Adl subset

with function symbols.

Lemma 7.5. Let I be a Pddl state and Σ0 be the initial theory obtained from

I by the construction in Section 6.2.1. Futher, let ~o be object parameters for

the fluent φj (standing for either a fluent predicate Fj or a fluent function

fj), and let α be a precondition formula1. Then

1. Σ0(I) ∧ τφj
(~o) is satisfiable iff ~o are of the correct types for φj in the

Pddl state I.

2. Σ0(I) ∪ Σnum |= α iff α is satisfied in the Pddl state I.

Proof. 2 The first thing to notice is that the translation result Σ0 (and thus

the complete Σ) is satisfiable iff the original Pddl problem is consistent.3 In

the following we will however always assume a consistent Pddl description

and therefore a satisfiable Σ0.

Next, we will also use the property that the set of all sentences of the form

(6.8), (6.10) and (6.11) in Σ0 is equivalent to a finite set of sentences of the

form (6.10), including one for the Object type. This can easily be seen by the

fact that we assumed type definitions to be non-circular; thus we can always

“flatten” sentences (6.8) and (6.11) by recursively substituting all τi(x) in their

right-hand side by the right-hand side of (6.8) or (6.10) of τi. Equivalently,

we assume that the Pddl problem description explicitly assigns each object

to all the types it belongs to, without making the “detour” of defining the

supertypes by means of “either” statements.

1. To show: Σ0 ∧ ~τφj
(~o) is satisfiable iff the ~o are of the correct types for

φj in the Pddl problem. (φj here stands either for a function fj or for

a predicate Fj .)

The “only if” direction:

1 Recall that in Section 2.3, we defined precondition formula as a first-order formula

constructed with only typing, predicate, function and typed object symbols.
2 The proof of this lemma, as well as those for Corollary 7.6 and Theorem 7.7, is adapted

from the unpublished proofs of [CELN07], with minor extensions for functional fluents.
3 In closed worlds, inconsistencies can only appear when the tuples in (6.7) or (6.16) do

not comply with the type restrictions and definitions in (6.8)–(6.11), (6.12).

100 Correctness

Let w |= Σ0 ∧ ~τφj
(~o) and let τji

(oi) be one of the conjuncts in ~τφj
(~o). By

assumption, there is some sentence τji
(x) ≡ (x = oj1 ∨ · · · ∨ x = ojki

)

in Σ0 such that w |= τji
(x) ≡ (x = oj1 ∨ · · · ∨ x = ojki

). Since also

w |= τji
(oi), it must hold that oi is one of oj1 , · · · , ojki

. Therefore, oi is

of type τji
according to the Pddl problem.

The “if” direction:

Let ~o be of the correct types for φj according to the Pddl problem. Since

Σ0 is satisfiable, there is some world w with w |= Σ0. Let τji
be the type

for the i-th argument of φj and τji
(oi) the respective conjunct in ~τφj

(~o).

By assumption, there is some sentence τji
(x) ≡ (x = oj1 ∨ · · · ∨x = ojki

)

in Σ0 such that w |= τji
(x) ≡ (x = oj1 ∨ · · · ∨ x = ojki

) and oi is one

of the oj1 , · · · , ojki
defined to be of type τji

in the Pddl problem. But

then w |= τji
(oi).

2. To show: Σ0(I) ∪ Σnum |= α iff I |=PDDL α
4, the proof is by induction

on the structure of α.

• α = (o1 = o2) for objects o1 and o2:

Σ0 ∪ Σnum |= (o1 = o2)

iff (by definition)

for all worlds w with w |= Σ0 ∪ Σnum, w |= (o1 = o2)

iff (due to the following two facts: Σ0 is satisfiable, and so is Σ0 ∪
Σnum, by definition, there is at least one such world; besides, the

truth value of equations between ground terms is independent of

the interpreting world)

o1 and o2 are identical constants

iff (unique names assumption in Pddl)

I |=PDDL (o1 = o2)

• α = (e1 ⊗ e2) where ei are numerical expressions and ⊗ ∈ {=, <}:
First, notice that only numbers and primitive functions may ap-

pear as terms in ei. In Pddl, this is guaranteed by the standard

semantics; in Σ0, this is ensured by the typing of domain elements.

So, suppose f1(~q1), · · · , fm(~qm) are all function terms in ei. Then,

for any number tl,

Σ0 |= fl(~ql) = tl

4 We use the notation I |=PDDL α to mean that α is satisfied in the Pddl state I.

7.2 The Non-Durative Subset 101

iff (since Σ0 |= (6.16))

Σ0 |= (~ql = ~o1 ∧ tl = r1 ∨ · · · ∨ ~ql = ~okj
∧ tl = rkj

)

iff (since Σ0 is satisfiable and equality between ground terms is

world-independent)

|= (~ql = ~o1 ∧ tl = r1 ∨ · · · ∨ ~ql = ~okj
∧ tl = rkj

)

iff

〈~ql, tl〉 is one of 〈~o1, r1〉, · · · , 〈 ~okj
, rkj

〉

iff (by construction) (
fl(~ql) = tl

)
∈ If

iff

I |=PDDL

(
fl(~ql) = tl

)

Meanwhile, for any numerical formulas e′1 and e′2, where e′i is con-

structed with only symbols on numbers, + and ∗,

Σnum |= e′1 ⊗ e′2

iff

e′1 ⊗ e′2 holds in mathematics

iff

I |=PDDL e
′
1 ⊗ e′2

As a result, with the additional fact that Σ0 ∪ Σnum is satisfiable,

Σ0 ∪ Σnum |= e1
fl(~ql)
tl

⊗ e2
fl(~ql)
tl

iff (combining the above two conclusions)

I |=PDDL e1
fl(~ql)
tl

⊗ e2
fl(~ql)
tl

And finally, Σ0 ∪ Σnum |= e1 ⊗ e2 iff I |=PDDL e1 ⊗ e2.

• α = Fj(~o):

Σ0 ∪ Σnum |= Fj(~o)

iff (since Σ0 |= (6.7) and Σ0 ∪ Σnum is satisfiable)

Σ0 ∪ Σnum |= (~o = ~o1 ∨ · · · ∨ ~o = ~oko
)

102 Correctness

iff (since Σ0∪Σnum is satisfiable and truth value of equality between

ground term is world independent)

|= (~o = ~o1 ∨ · · · ∨ ~o = ~oko
)

iff

~o is one of ~o1, · · · , ~oko

iff (by construction)

Fj(~o) ∈ IP

iff

I |=PDDL Fj(~o)

• The cases φ = φ1 ∧ φ2 and φ = ¬φ1 follow directly by induction

• φ = ∀x : τ.φ1, with x being the only free variable in φ1:

Σ0 ∪ Σnum |= ∀x : τ.φ1

iff (by definition)

Σ0 ∪ Σnum |= ∀x.τ(x) ⊃ φ1(x)

iff (by the semantics of ES)

Σ0 ∪ Σnum |=
(
τ(r) ⊃ φ1

)x

r
for all ground terms r

iff (since Σ0 |= (6.10) and Σ0 ∪ Σnum is satisfiable)

Σ0 ∪ Σnum |=
∧

oj of type τ

(φ1)
x
oj

iff (by induction)

I |=PDDL

∧

oj of type τ

(φ1)
x
oj

iff (by the substitutional interpretation of quantification of Pddl)

I |=PDDL ∀x : τ.φ1

Corollary 7.6. Let I be a Pddl state, Σ0 be the initial theory obtained from

I by the construction in Section 6.2.1, ~o be object parameters for the fluent

φj, and A(~p) be a action instance. Then

7.2 The Non-Durative Subset 103

1. Σpre∪Σ0∪Σnum |= Poss
(
A(~p)

)
if and only if πA(~p) is satisfied in I and

~p are of correct types.

2. Σ0 ∪ Σnum |= γ+
Fj

~xj a

~o A(~p)
if and only if Fj(~o) is asserted in the effect of

A(~p).

3. Σ0 ∪ Σnum |= γ−Fj

~xj a

~o A(~p)
if and only if Fj(~o) is negated in the effect of

A(~p).

4. Σ0 ∪ Σnum |= γv
fj

~xj y a

~o r A(~p)
for some r, if and only if r is the assignment

result for fj(~o) as an effect of A(~p).

Proof.

1. To show: Σpre ∪Σ0 ∪Σnum |= Poss
(
A(~p)

)
iff I |=PDDL πA(~p) and ~p are

of correct types:

Σpre ∪ Σ0 ∪ Σnum |= Poss
(
A(~p)

)

iff (by definition)

Σpre ∪ Σ0 ∪ Σnum |= πa
A(~p)

iff (by construction)

Σpre ∪ Σ0 ∪ Σnum |=
(∨

operators Ai

∃~zi : ~τAi
.a = Ai(~zi) ∧ πAi

)a

A(~p)

iff

Σpre ∪ Σ0 ∪ Σnum |=
(∨

operators Ai

∃~zi : ~τAi
.A(~p) = Ai(~zi) ∧ πAi

)

iff (by definition)

Σpre ∪ Σ0 ∪ Σnum |=
(∨

operators Ai

∃~zi. ~τAi
(~zi) ∧A(~p) = Ai(~zi) ∧ (πAi

)~z~p

)

iff (by unique names in ES, only the A-conjunct applies)

Σpre ∪ Σ0 ∪ Σnum |= ~τA(~p) ∧ (πA)~zi

~p

iff

Σpre ∪ Σ0 ∪ Σnum |= ~τA(~p) and Σpre ∪ Σ0 ∪ Σnum |= (πA)~zi

~p

104 Correctness

iff (by Lemma 7.5)

~p are of the correct types for A according to the Pddl problem

description and I |=PDDL πA(~p)

2. To show: Σ0 ∪ Σnum |= γ+
Fj

~xj a

~o A(~p)
if and only if Fj(~o) is asserted in the

effect of A(~p):

Σ0 ∪ Σnum |= γ+
Fj

~xj a

~o A(~p)

iff (by construction)

Σ0 ∪ Σnum |=
(∨

γ+
Fj,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γ+
Fj ,Ai

) ~xj a

~o A(~p)

iff

Σ0 ∪ Σnum |=
∨

γ+
Fj ,Ai

∈NF (Ai)

∃~zi.A(~p) = Ai(~zi) ∧ (γ+
Fj ,Ai

)
~xj ~zi

~o ~p

iff (by unique names in ES, only the A-conjunct applies)

Σ0 ∪ Σnum |= (γ+
Fj ,A)

~xj ~zi

~o ~p

iff (by Lemma 7.5)

I |=PDDL (γ+
Fj ,A)

~xj ~zi

~o ~p

iff (by construction)

Fj(~o) is an effect of A(~p)

3. To show: Σ0 ∪ Σnum |= γ−Fj

~xj a

~o A(~p)
if and only if Fj(~o) is negated in the

effect of A(~p):

Similar to 2.

4. To show: Σ0 ∪ Σnum |= γv
fj

~xj y a

~o r A(~p)
for some r, if and only if r is the

assignment result for fj(~o) as an effect of A(~p):

Σ0 ∪ Σnum |= γv
fj

~xj y a

~o r A(~p)

iff (by construction)

Σ0 ∪ Σnum |=
(∨

γv
fj ,Ai

∈NF (Ai)

∃~zi.a = Ai(~zi) ∧ γv
fj ,Ai

) ~xj y a

~o r A(~p)

7.2 The Non-Durative Subset 105

iff

Σ0 ∪ Σnum |=
∨

γv
fj ,Ai

∈NF (Ai)

∃~zi.A(~p) = Ai(~zi) ∧ (γv
fj ,Ai

)
~xj y ~zi

~o r ~p

iff (by unique names in ES, only the A-conjunct applies)

Σ0 ∪ Σnum |= (γv
fj ,A)

~xj y ~zi

~o r ~p

iff (by Lemma 7.5)

I |=PDDL (γv
fj ,A)

~xj y ~zi

~o r ~p

iff (by construction)

A(~p) assigns to fj(~o) the value r.

With Corollary 7.6, it is easy to construct the new state I ′ that is updated

from I = 〈IP , If 〉 through action operator A(~p). Suppose Σ = Σpre∪Σpost∪Σ0

is the basic action theory obtained from the Pddl description, and Σnum is

the one for axiomatizing numbers. Under the condition Σpre ∪ Σ0 ∪ Σnum |=
Poss

(
A(~p)

)
, we define four sets AddsP , DelsP , Addsf and Delsf , all of which

are initialized to the empty set and expanded with the following procedure:

1. for all objects ~o and all fluent predicates Fj such that Fj(~o) is type-

consistent, if Σ0∪Σnum |= γ
+ ~xj a

Fj ~o A(~p), then add Fj(~o) to the set AddsP ;

2. for all objects ~o and all fluent predicates Fj such that Fj(~o) is type-

consistent, if Σ0∪Σnum |= γ
− ~xj a

Fj ~o A(~p), then add Fj(~o) to the set DelsP ;

3. for all objects ~o and all fluent functions fj such that fj(~o) is type-

consistent, if for some r, Σ0 ∪ Σnum |= γ
v ~xj y a

fj ~o r A(~p), then

• for any r0 6= r such that Σ0 |= fj(~o) = r0 add fj(~o) = r0 to the set

Delsf ;

• add fj(~o) = r to the set Addsf .

Then the new state description is

I ′ = 〈I ′P , I ′f 〉

where {
I ′P = (IP \DelsP) ∪AddsP

I ′f = (If \Delsf) ∪Addsf

106 Correctness

Here, all the symbols we consider (objects, fluents, operators) are those

that appear in the Pddl problem definition. Since there are only a finite num-

ber of them, the combination is also finite. The fact that we only check type

consistent instances of functions and predicates further restricts the number

of atoms to consider. The only potential problem lies in the numbers that

appear in the construction. One may ask whether the numbers satisfying the

formulas can be found in finite time, since there are countably infinitely many

of them. However, we argue that we do not rely on a substitutional method

for obtaining their values. In fact, numbers only appear in two special forms.

In the case of r0, it is an existential account, so we only need to see whether ~o

coincides with some ~oj in a finite disjunction in (6.16); for r, remember that

in γv
fj

, the free variable y always appear at the left-hand side of equations,

so the value r can be efficiently calculated with little computational effort by

evaluating the right-hand side of the equation. So it is guaranteed that the

four sets above are finite, and can always be easily obtained in finite time with

the construction above.

We then have the following theorem, saying that a basic action theory

obtained from the state description I ′ is a progression of the original theory

I.

Theorem 7.7. Let I ′ be the state description obtained from the construction

above applied to a given Pddl problem description and a ground simple action

r = A(~p). Further let

Σr = {[r]ψ|ψ ∈ Σ0(I
′)}

where Σ0(I
′) means the result of constructing the initial state axiom from I ′

instead of I. For all fluent predicates Fk and all fluent functions fl in the

problem description, let the consistency conditions

Σ0 ∪ Σnum |= ¬(γ+
Fk

∧ γ−Fk
)ar

and

Σ0 ∪ Σnum |= (∀~o, t1, t2).
(
γv

fl

~x y

~o t1
∧ γv

fl

~x y

~o t2

)a

r
⊃ (t1 = t2)

hold. Then Σr is a progression of Σ0 through r.

In order to prove this theorem, we first need the following lemma:

Lemma 7.8. Let w |= Σ0 ∪ Σnum. Then, for any fluent formula φ that only

mentions fluent symbols in F \ {Poss}

w |= φ iff Σ0 ∪ Σnum |= φ

7.2 The Non-Durative Subset 107

Proof. The proof is given by induction on the structure of φ. Remember that

due to the typing constraints in Σ0, parameters to predicates and functions

can only be ground terms of type Object or its subtype.

• w |= fj(~o) = t iff 〈~o, t〉 is one of 〈~o1, r1〉, · · · , 〈 ~okj
, rkj

〉 in (6.16) iff for

every world w′ with w′ |= Σ0 ∪ Σnum,w′ |= fj(~o) = t.

• w |= Fj(~o) iff ~o is one of ~o1, · · · , ~oko
in (6.7) iff for every w′ with w′ |=

Σ0 ∪ Σnum, w′ |= Fj(~o).

• w |= τi(t) iff (using the “type flattening” properties in the proof of

Lemma 7.5) t is one of the oj1 , · · · , ojkj
of type τi in (6.10) iff for every

w′ with w′ |= Σ0 ∪ Σnum, w′ |= τi(t).

• the cases for φ1 ∧ φ2 and ¬φ1 follows directly by induction.

• w |= ∀x.φ1 iff w |= φ1
x
r for all ground terms r iff (by induction) Σ0 ∪

Σnum |= φ1
x
r for all ground terms r iff for all ground term r and all world

w′ with w′ |= Σ0 ∪ Σnum, w′ |= φ1
x
r iff for all w′ with w |= Σ0 ∪ Σnum,

w′ |= ∀x.φ1.

Proof of Theorem 7.7. To show that Σr is a progression of Σ0 through r, we

need to prove that Σr satisfies the three properties of progression defined in

Definition 4.2.

1. All sentences in Σr are fluent in 〈r〉
Obvious by the construction of Σr.

2. Σ |= Σr, where Σ = Σpre ∪ Σpost ∪ Σ0 ∪ Σnum:

• For (6.8), Σ |= [r]τi(x) ≡
(
τi1(x) ∨ · · · ∨ τikk

(x)
)
:

follows directly from (6.6) and (6.8).

• For (6.9), Σ |= [r]F (xj1 , · · · , xjkj
) ⊃

(
τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
)
)
:

let w |= Σ and w |= [r]Fj(~t). Then, since w |= (6.5), we have

w |=
(
γ+

Fj
∧ ~τFj

(~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

)a ~xj

r ~t

therefore, we need only to consider the following two cases:

a) w |=
(
γ+

Fj
∧ ~τFj

(~xj)
)a ~xj

r ~t
:

We have w |= ~τFj
(~xj), and since w |= (6.6), w |= [r] ~τFj

(~xj).

108 Correctness

b) w |=
(
Fj(~xj) ∧ ¬γ−Fj

)a ~xj

r ~t
:

w |= Fj(~xj), so since w |= (6.9), w |= ~τFj
(~xj). Similar to the

previous case, we have w |= [r] ~τFj
(~xj)

• For (6.10), Σ |= [r]τi(x) ≡ (x = oj1 ∨ · · · ∨ x = ojki
):

follows directly from (6.6) and (6.10).

• For (6.11), Σ |= [r]Object(x) ≡
(
τ1(x) ∨ · · · ∨ τl(x)

)
:

follows directly from (6.6) and (6.11).

• For (6.12),

Σ |= [r]
(
fj(xj1 , · · · , xjkj

) = y
)
⊃

(
τj1(xj1) ∧ · · · ∧ τjkj

(xjkj
) ∧Number(y)

)
:

let w |= Σ and w |= [r]fj(~o) = t. Then, since w |= (6.15), we have

w |=
(
γv

fj
∧ τfj

(~xj) ∧Number(y) ∨ fj(~xj) = y ∧ ¬γfj

)a ~xj y

r ~o t

Like the case for fluent predicates, we need to consider the following

two cases:

a) w |=
(
γv

fj
∧ τfj

(~xj) ∧Number(y)
)a ~xj y

r ~o t
:

we have w |= ~τfj
(~xj) and w |= Number(y). Since w |= (6.6),

w |= [r]
(
~τFj

(~xj) ∧Number(y)
)
.

b) w |=
(
fj(~xj) = y ∧ ¬γfj

)a ~xj y

r ~o t
:

we have w |= fj(~xj) = y. Since w |= (6.12), w |=
(
~τFj

(~xj) ∧
Number(y)

)
. With a similar argument as above, we get w |=

[r]
(
~τFj

(~xj) ∧Number(y)
)
.

• For (6.7),

Σ |= [r]Fj(~xj) ≡ (~xj = ~o1 ∨ · · · ∨ ~xj = ~oko
) : (7.1)

Let w |= Σ, then with (6.5), w, 〈r〉 |= Fj(~o) iff

w |=
(
γ+

Fj
∧ ~τFj

(~xj) ∨ Fj(~xj) ∧ ¬γ−Fj

)a ~xj

r ~o

So we have the following two cases:

a) w |=
(
γ+

Fj
∧ ~τFj

(~xj)
)a ~xj

r ~o

which, according to Lemma 7.8, is equivalent to

Σ0 ∪ Σnum |=
(
γ+

Fj
∧ ~τFj

(~xj)
)a ~xj

r ~o

iff (by construction) Fj(~o) ∈ AddsP iff Fj(~o) ∈ I ′P

7.2 The Non-Durative Subset 109

b) w |=
(
Fj(~xj) ∧ ¬γ−Fj

)a ~xj

r ~o

which, again by Lemma 7.8, is equivalent to

Σ0 ∪ Σnum |=
(
Fj(~xj) ∧ ¬γ−Fj

)a ~xj

r ~o

iff

Σ0 ∪ Σnum |= Fj(~xj) and Σ0 ∪ Σnum |=
(
¬γ−Fj

)a ~xj

r ~o

iff (due to Lemma 7.5, and Σ0 ∪ Σnum is satisfiable)

Fj(~o) ∈ I and Σ0 ∪ Σnum 6|= (γ−Fj
)
a ~xj

r ~o

iff (by construction)

Fj(~o) ∈ I and Fj(~o) 6∈ DelsP

Therefore, in both cases, Fj(~o) ∈ I ′P , meaning that ~o is one of

~o1, · · · , ~oko
in (7.1).

• For (6.16),

Σ |= [r]fj(~x) = y ≡ ~x = ~o1 ∧ y = r1∨
· · · ∨ (7.2)

~x = ~okj
∧ r = ykj

Let w |= Σ, then with (6.15), w, 〈r〉 |= fj(~o) = t iff

w |=
(
γv

fj
∧ τfj

(~xj) ∧Number(y) ∨ fj(~xj) = y ∧ ¬γfj

)a ~xj y

r ~o t

So we have the following two cases:

a) w |=
(
γv

fj
∧ τfj

(~xj) ∧Number(y)
)a ~xj y

r ~o t

which, according to Lemma 7.8, is equivalent to

Σ0 ∪ Σnum |=
(
γv

fj
∧ τfj

(~xj) ∧Number(y)
)a ~xj y

r ~o t

iff (by construction)
(
fj(~o) = t

)
∈ Addsf and for any t′ with

t′ 6= t,
(
fj(~o) = t′

)
∈ Delsf

iff
(
fj(~o) = t

)
∈ I ′f and for any other t′,

(
fj(~o) = t′

)
6∈ I ′f

b) w |=
(
fj(~xj) = y ∧ ¬γfj

)a ~xj y

r ~o t

which, again by Lemma 7.8, is equivalent to

Σ0 ∪ Σnum |=
(
fj(~xj) = y ∧ ¬γfj

)a ~xj y

r ~o t

110 Correctness

iff

Σ0 ∪ Σnum |= fj(~xj) = t and Σ0 ∪ Σnum |= (¬γfj
)
a ~xj

r ~o

due to Lemma 7.5 and the fact that Σ0 ∪ Σnum is satisfiable,

this is equivalent to

(
fj(~o) = t

)
∈ I and Σ0 ∪ Σnum 6|= (∃y.γv

fj

a ~xj

r ~o
)

iff (by construction)

(
fj(~o) = t

)
∈ I and for any t′

(
fj(~o) = t′

)
6∈ Addsf ∪Delsf

Therefore, in both cases,
(
fj(~o) = t

)
∈ I ′f , meaning that 〈~o, t〉 is

one of 〈~o1, r1〉, · · · , 〈 ~oko
, rko

〉 in (7.2).

3. For every world wr with wr |= Σr ∪ Σpre ∪ Σpost, there exists a world w

with w |= Σ, such that

wr[φ(~o), r · σ] = w[φ(~o), r · σ]

for all σ ∈ Z and primitive φ(~o):

First, similar to Lemma 7.8, it can be proven that for any fluent formula

φ in F \ {Poss}, if wr |= Σr ∪ Σnum, then

wr, 〈r〉 |= φ iff Σr ∪ Σnum |= [r]φ (7.3)

Now, we construct a world w′ with

• w′[fj(~o), 〈〉] = t iff
(
fj(~o) = t

)
∈ If

• w′[Fj(~o), 〈〉] = 1 iff Fj(~o) ∈ IP)

• w′[τi(t), 〈〉] = 1 iff t is an object of type τi according to the Pddl

problem description

Then, we let w = (w′)Σ, i.e. w is like w′ in the initial situation, and also

satisfies Σpre ∪ Σpost ∪ Σnum (cf. [LL01]). Clearly, w |= Σpre ∪ Σpost ∪
Σ0 ∪ Σnum, so we are only left with the task to show for each primitive

φ

wr, 〈r〉 |= φ iff w, 〈r〉 |= φ (7.4)

Notice that the general property for all successor situations r · σ can be

justified inductively with the fact that both w and wr satisfy Σpost.

7.2 The Non-Durative Subset 111

• w, 〈r〉 |= fj(~o) = t

iff (due to conclusion in Item 2 of this theorem)
(
fj(~o) = t

)
∈

I ′f iff 〈~o, t〉 is one of 〈~o1, r1〉, · · · , 〈 ~oko
, rko

〉 in (7.2) in Σr iff Σr |=
[r]

(
fj(~o) = t

)
iff (since Σr ∪ Σnum is satisfiable) Σr ∪ Σnum |=

[r]
(
fj(~o) = t

)
iff (according to (7.3)) wr, 〈r〉 |=

(
fj(~o) = t

)

• w, 〈r〉 |= Fj(~o)

iff (like above) Fj(~o) ∈ IP iff ~o is one of ~o1, · · · , ~oko
in (7.1) in Σr

iff Σr |= [r]Fj(~o) iff (since Σr ∪ Σnum is satisfiable) Σr ∪ Σnum |=
[r]Fj(~o) iff (according to (7.3)) wr, 〈r〉 |= Fj(~o)

• w, 〈r〉 |= τi(o)

iff (using w |= (6.6)) w |= τi(t) iff (using the “type flattening”

property in the proof of Lemma 7.5) o is one of oj1 , · · · , ojkj
defined

to be of type τi iff w, 〈r〉 |= τi(o)

• w, 〈r〉 |= Poss(o)

iff (since w |= Σpre) w, 〈r〉 |= πa
o iff (by induction over the con-

struction of πa
o , which is a fluent sentence) wr, 〈r〉 |= πa

o iff (using

wr |= Σpre) wr, 〈r〉 |= Poss(o).

Theorem 7.7 establishes the correctness of a single-step update to the ini-

tial state. An important fact is that the new state description I ′ has the same

form as the original state I, so this theorem can be applied repeatedly through

a sequence of actions in a plan, in order to prove that the two semantics share

the same set of valid plans.

To proceed with the proof, we first need the following lemma, which ensures

that when drawing conclusion about the future with a progressed theory, the

common history may be neglected.

Lemma 7.9. For fluent formulas φ and ψ, φ |= ψ if and only if for any action

sequence r1, · · · , rn, [r1] · · · [rn]φ |= [r1] · · · [rn]ψ.

Proof. The “only if” direction:

Suppose φ |= ψ, let w be a world satisfying w |= [r1] · · · [rn]φ, and let

z = 〈r1, · · · , rn〉.
We construct a new world w′ satisfying

{
|f(~n)|〈〉w′ = |f(~n)|zw
w′[P (~n), 〈〉] = w[P (~n), z]

(7.5)

where ~n is a vector of ground terms, f is any function symbol and P is any

predicate symbol in the domain. Then, for any fluent formula α, by induction

112 Correctness

on its structure, we have,

w′[α, 〈〉] = w[α, z] (7.6)

Specifically w′[φ, 〈〉] = w[φ, z], so w′ |= φ. Since φ |= ψ, it immediately follows

w′ |= ψ. According to (7.6), w[ψ, z] = w′[ψ, 〈〉]. So w |= [r1] · · · [rn]ψ.

As a result, [r1] · · · [rn]φ |= [r1] · · · [rn]ψ.

The “if” direction:

Suppose [r1] · · · [rn]φ |= [r1] · · · [rn]ψ, let w′ be a world satisfying w′ |= φ,

and let z = 〈r1, · · · , rn〉.
We construct a new world w satisfying (7.5). Then the conclusion follows

in the similar manner as in the “only if” direction.

Then, we define how a Pddl plan is mapped into an action sequence in

the logic ES.

Definition 7.10 (Grounded serialized plan for simple actions). Let P be a

plan, consisting of a finite list of happenings of simple actions.

(
t1 : A1(~p1)

)
, · · · ,

(
tn : An(~pn)

)

Without loss of generality, we assume t1 ≤ · · · ≤ tn. Then, the grounded

serialized plan of P , denoted by JP K, is the syntactic structure5

[A1(~p1, t1)] · · · [An(~pn, tn)]

The grounded serialized plan, according to Definition 7.10, is a transformed

Pddl plan in the ES notation. Generally speaking, it is possible to have

ti = ti+1, because the actions Ai(~pi) and Ai+1(~pi+1) may happen concurrently

at time ti. In this case, the PDDL plan may have more than one serialization,

since the grounded serialized plan may put [Ai(~pi, ti)] either before or after

[Ai+1(~pi+1, ti+1)].

When proving the correctness of our semantics, we show that the two

formalisms always share the same set of valid plans. We do so in two steps:

first, we look at the simpler case where no concurrency exists in the plan, and

then consider the more complex one where it does exist.

5Notice that JP K is not a well-formed formula, but only a sequence of bracket-surrounded

action terms.

7.2 The Non-Durative Subset 113

Lemma 7.11. Given a Pddl problem description where Ã = ∅ and TI = ∅,
a plan P , without concurrent happening, is valid if and only if

Σ |= JP K
(
Executable ∧ ϕ(G)

)

Here, Σ = Σpre ∪ Σpost ∪ Σ0 ∪ Σnum ∪ Σexec, ϕ(G) is the transformation

of the goal specification into a ES formula, and JP K
(
Executable ∧ ϕ(G)

)
de-

notes the formula obtained by syntactically concatenating JP K and the formula(
Executable ∧ ϕ(G)

)
.

Proof. Suppose that
(
t1 : A1(~p1)

)
, · · · ,

(
tn : An(~pn)

)
are all the action happen-

ings in P listed in temporal sequence. Since there is no concurrent happening,

we have t1 < · · · < tn, and JP K has the form [A1(~p1, t1)] · · · [An(~pn, tn)].

The “only if” direction: If the plan is valid, then there is a sequence

of states I0, I1, · · · , In, where I0 is the initial state,
(
ti : Ai(~pi)

)
is possible in

Ii−1, resulting in state Ii, and G is satisfied in state In.

Since
(
t1 : A1(~p1)

)
is possible in I0, according to Corollary 7.6, we have

Σ |= Poss
(
A1(~p1, t1)

)

so

Σ |= [A1(~p1, t1)]Executable (7.7)

Meanwhile, according to Theorem 7.7,

Σ |= [A1(~p1, t1)]Σ0(I1) (7.8)

Thus [A1(~p1, t1)]Σ0(I1) is the progression of Σ0(I0) through A1(~p1, t1). The

derivation in (7.7) and (7.8) can be repeated n times, and by induction, we

get

Σ |= [A1(~p1, t1)] · · · [An(~pn, tn)]Executable

and

Σ |= [A1(~p1, t1)] · · · [An(~pn, tn)]Σ0(In)

Since G is satisfied in In, due to Lemma 7.5, Σ0(In) ∪ Σnum |= ϕ(G),

applying Lemma 7.9, we get

Σ |= [A1(~p1, t1)] · · · [An(~pn, tn)]
(
Executable ∧ ϕ(G)

)

The “if” direction: suppose that we have

Σ |= JP K
(
Executable ∧ ϕ(G)

)
(7.9)

114 Correctness

From the axiom Σexec, we get, for k = 1, · · · , n,

Σ |= [A1(~p1, t)] · · · [Ak(~pk, t)]Executable

With repeated application of Corollary 7.6, it can be shown that the Pddl

plan P is executable, so we define a sequence of states I0, I1, · · · , In, where I0
is the initial state, Ii is the state resulting from executing

(
ti : Ai(~pi)

)
in Ii−1,

for each i = 1, · · · , n.

According to Theorem 7.7, [A1(~p1, t1)]Σ0(I1) is the progression of Σ0(I0)

through action A1(~p1, t1), and by induction, we can show that JP KΣ0(In) is

the progression of Σ0(I0) through JP K. Lemma 7.9 suggests that this fact,

together with (7.9), implies

Σ0(In) ∪ Σnum |= ϕ(G)

from which Lemma 7.5 tells us that G is satisfied in In.

Thus, P is an executable plan leading to a state that satisfies the goal G.

By definition, P is valid.

Now, let us turn to the concurrent happening of actions. According to the

semantics definition by Fox and Long, two actions may happen concurrently

only if they are non-interfering. The following definition of non-interfering

and mutex actions are taken from Definition 12 in [FL03], with a minor mod-

ification.6

Definition 7.12 (Mutex actions). Two ground actions, a and b are non-

interfering if

GPrea ∩ (Addb ∪Delb) =GPreb ∩ (Adda ∪Dela) = ∅
Adda ∩Delb =Addb ∩Dela = ∅

La ∩Rb =Ra ∩ Lb = ∅
La ∩ Lb ⊆ L∗

a ∪ L∗
b

If two actions are not non-interfering, they are mutex.

Here, GPrez is the set of ground relational atoms that appear in the

precondition formula of z, or in the invariant condition of the durative action

if z is a start or end event of it. Addz andDelz are the sets of ground relational

6 Compared with the original definition, we add in Definition 7.12 the additional condi-

tion that for two actions to be non-interfering, if either of them is the start or end event of a

durative action, then the other may not influence any predicate or function in its invariant

condition. This condition is necessary for later serializing plans with durative actions. A

detailed discussion about this issue is postponed to Chapter 8.

7.2 The Non-Durative Subset 115

atoms that are asserted as positive and negative literals in the effect of z

respectively. Lz is the set of ground functional atoms that appear in the left

hand side of assignment effects of z. Rz is the set of ground functional atoms

that appear in the right hand side of assignment effects, or appear in the

precondition of action z, or in the invariant condition of the durative action

if z is the start or end event of it. L∗
z denotes the set of ground functional

atoms that appear in the left hand side of an additive assignment effect of z.

Notice that this condition for concurrent execution of simple actions is

conservative, in that some intuitively possible cases may be ruled out. For

example, consider the two actions a and b with the following definitions

(:action a

:precondition (or P Q)

:effect (R))

(:action b

:precondition (P)

:effect (not P))

In a state where P and Q are both true, the intuition may suppose that a and

b may happen concurrently, but according to Definition 7.12, they are actually

mutex. The reason that Fox and Long proposed this strong condition for non-

interfering actions is to make it easily tractable to check whether two actions

are mutex. The interesting thing is that this condition also guarantees that

concurrent happening of simple actions are serialization safe.

Definition 7.13 (Serialization safe). For a state I and a happening H of two

actions a and b, let I ′ be the state resulting from concurrently executing a

and b in I, I ′′ be the state resulting from first executing a then executing b in

I, I ′′′ be the state resulting from first executing b then executing a in I. We

say that H is serialization safe in I if I ′, I ′′ and I ′′′ are the same state. A

happening with more than two actions is serialization safe, if the concurrent

happening of any two actions in it is serialization safe.

Lemma 7.14. If a and b are non-interfering actions, then the concurrent

happening of them is serialization safe.

Proof. Suppose that a and b are to be executed in state I.

• Executability

The concurrent happening of a and b is executable in I, iff the precon-

dition Prea ∧Preb is satisfied in I, iff both Prea and Preb are satisfied

in I.

116 Correctness

Suppose I∗ is the state obtained by executing a in I. Since a and b are

non-interfering, we have

GPreb ∩ (Adda ∪Dela) = ∅
La ∩Rb = ∅

So, Preb is true in I∗ iff it is true in I. Therefore the concurrent hap-

pening of a and b is executable in I, iff it is possible to first execute a

and then b in I.

Similarly, we can get that the concurrent happening of a and b is exe-

cutable in I, iff it is possible to first execute b and then a in I.

• Effects

For the logical state, if a and b are executed concurrently, then

Addab = Adda ∪Addb

Delab = Dela ∪Delb
Since

Adda ∩Delb = Addb ∩Dela = ∅
we have

I ′P = (IP \Delab) ∪Addab

=
(
IP \ (Dela ∪Delb) ∪ (Adda ∪Addb)

)

=
((

(IP \Dela) ∪Adda

)
\Delb

)
∪Addb

= (I∗P \Delb) ∪Addb

= I ′′P

where I∗P is the logical state obtained by executing a in I. Similarly, we

can obtain IP = I ′′P .

For the numerical state, if a and b are executed concurrently, since

La ∩Rb = Lb ∩Ra = ∅

the primary numerical expressions in Lb \ La are only influenced by b

and not by a; similarly, those in La \Lb are only influenced by a and not

by b. So the effects on them can be safely serialized. For La ∩ Lb, since

La ∩ Lb ⊆ L∗
a ∪ L∗

b

they are always additive assignments, and can thus also be serialized

without changing the final value of the update.

7.3 Durative Actions 117

In the following discussion, when we talk about a plan, we always assume

that actions that happen concurrently in the plan are non-interfering, and

thus the plan is always serialization safe. This assumption is a reasonable

one, since plans with concurrent mutex actions are invalid anyway.

Theorem 7.15. Given a Pddl problem description where Ã = ∅ and TI = ∅,
a plan P , with no concurrent happening of mutex actions, is valid if and only

if

Σ |= JP K
(
Executable ∧ ϕ(G)

)

for some JP K.

Proof. The case where no concurrent happening exists in P has been justified

in Lemma 7.11.

Otherwise, since all concurrent actions in P are non-interfering, according

to Lemma 7.14, P is serialization safe. So P is valid iff a serialized plan of

P is valid. Thus the problem is reduced to the non-concurrent case, and the

conclusion is justified by Lemma 7.11.

7.3 Durative Actions

The introduction of durative actions complicates the semantics of Pddl, since

an action may no longer be considered as an instant state-changing operator,

but instead as a process that spans over an interval of time. Furthermore,

there may be constraints and conditional effects over the interval.

When formalizing the semantics, Fox and Long transformed durative ac-

tions into ground simple actions, and based the definition upon the non-

durative subset. This basic idea is somewhat similar to ours here, in that

we also represent a durative action with two simple actions – the start and

the end events of it.

However, there are intrinsic differences between the two approaches. The

definition given by Fox and Long is offline and meta-theoretic in nature. In

particular, they transform both the problem definition and the plan into a

simple form, and reason about the validity with this form. For example,

they split an action with a conditional effect into two simple actions without

conditional effects; they transform the happening of a durative action into a

sequence of (variably many) happenings of simple actions to guarantee that all

the preconditions are satisfied and all the effects are realized. Unfortunately,

those transformations are hardly axiomatizable.

118 Correctness

In contrast, our definition is declarative, in the sense that we define, for

each syntactical construct, what it means in terms of logic. As mentioned

above, due to the limitation of ES, we may only use simple actions, and resort

to the auxiliary properties to describe the process-related properties in the

domain. So to prove the correctness of our definition, it is necessary to show

that our definition is equivalent to the standard semantics given by Fox and

Long. This is done, again, by showing that the two formalisms share the

same set of valid plans. This subsection is devoted to the proof for the subset

concerning durative actions.

First, let us extend the definition of grounded serialized plan in Defini-

tion 7.10 to incorporate durative actions.

Definition 7.16 (Grounded serialized plan with durative actions). Let P be

a plan, possibly with happenings of durative actions. Further let P ′ be the

derived plan from P with only happenings of simple actions as

P ′ =
{(
ti : Ai(~pi)

)∣∣(ti : Ai(~pi)
)
∈ P

}
∪

{(
ti : Ãs

i (~pi)
)
,
(
(ti + d) : Ãe

i (~pi)
)∣∣(ti : Ãi(~pi)[d]

)
∈ P

}

Then the grounded serialized plan of P , denoted by JP K, is exactly JP ′K, the

grounded serialized plan of P ′.

Intuitively, the grounded serialized plan is just a sequence of bracket-

surrounded simple actions written in temporally non-descending order. Each

action in the serialized plan corresponds either to a happening of a simple

action or to the happening of a start/end event of a durative action in the

Pddl plan.

With Definition 7.16, we are able to translate arbitrary Pddl plan into

the ES notation. In order to proceed to build the equivalence between our

semantics and the standard one, let us now have a review how the validity of

plans with durative actions are defined by Fox and Long:

Consider a durative action DA without continuous effects and

without conditional effects.

The duration field can be separated into DCDA
start and DCDA

end ,

the duration constraint for the start and end of DA, with terms

being arithmetic expressions and ?duration. The separation is

conducted in the obvious way, placing at start conditions into

DCDA
start and at end conditions into DCDA

end .

The durative action DA defines three simple actions, DAstart,

DAend and DAinv. DAstart (respectively DAend) has the pre-

condition equal to the conjunction of all the proposition p, such

7.3 Durative Actions 119

that at start p (at end p) is a condition of DA, together with

the duration constraint DCDA
start (DCDA

end). The effect equals to the

conjunction of all simple effects e, such that at start e (at end

e) is an effect of DA. DAinv has the precondition equal to the con-

junction of all propositions p, such that over all p is a condition

of DA, and it has an empty effect.

For a plan P , which is a finite collection of timed actions, each

either of the form (t, a) for simple actions or of the form (t, a[t′])

for durative actions, the following procedure is used to generate

Simplify(P), the induced simple plan of P :

1. Find the happening sequence, the ordered sequence of time

points from the set of times

{
t|(t, a) ∈ P ∨ (t, a[t′]) ∈ P ∨ (t− t′, a[t′] ∈ P

}

2. The induced simple plan simplify(P) includes the set of pairs

defined as follows:

a) (t, a) for each happening of simple action (t, a) ∈ P ;

b) (t, astart) and (t+ t′, aend) for each happening of durative

action (t, a[t′]) ∈ P ;

c)
(
(ti + ti+1)/2, ainv

)
for each happening of durative action

(t, a[t′]) ∈ P and for each i such that t ≤ ti < t+ t′ where

ti and ti+1 are in the happening sequence of P .

Then, a plan, P , is executable if Simplify(P) is executable, and

P is valid if it is executable and the goal is satisfied in the final

state produced by Simplify(P).

Notice that if we disallow for both invariant constraints and duration con-

straints, then, for any durative action Ã, the induced simple plan does not

contain Ãinv, and the preconditions for Ã’s start and end events do not men-

tion DC
eA

start or DC
eA

end. In this case the grounded serialized plan can be con-

sidered as a direct syntactical transformation from the induced simple plan,

so we have the following simple proposition in Lemma 7.17.

Lemma 7.17. In a domain D =
〈
T,F, f ,O, 〈A, Ã〉, I, T I,G

〉
, if TI = ∅ and

120 Correctness

for each durative action Ãj ∈ Ã, the following conditions are satisfied





δs
eAj

≡ true

δe
eAj

≡ true

πo
eAj

≡ true

εo
eAj

= ∅
εe

eAj
has the form 〈true, true, ϕe

j,i〉 ⇒ ψe
j,i

(7.10)

then a plan P , with no concurrent happening of mutex actions, is valid if and

only if

Σ |= JP K
(
Executable ∧ ϕ(G)

)

for some JP K

Proof. According to Fox and Long, P is a valid plan if and only if the induced

simple plan of P is executable and the goal is satisfied after executing this plan.

Notice that under the conditions in (7.10), the induced simple plan is exactly

the same as JP K, (except for the syntactical differences.) So the executablilty

and validity of the plan is reduced to the non-durative case. According to

Theorem 7.15, the lemma is proved.

Lemma 7.17 says that if all the durative actions in the domain mention no

duration constraint, invariant condition, inter-temporal effect or continuous

effect, and the domain does not have timed initial literals, then the state

transitional semantics and our declarative semantics are equivalent in the sense

that they share the same set of valid plans.

With Lemma 7.17 as the starting point, we are now ready to investigate

the more advanced features of durative actions. This is done in the next four

subsections.

7.3.1 Duration Constraint

The treatments of the duration constraint are very similar in the two for-

malisms. Both definitions split the duration constraint into a start condition

and an end condition, and ensure the satisfaction by appending them to the

precondition formulas.

The only difference is lies in the start duration condition. In Fox and

Long’s definition, the start duration condition is checked as part of the pre-

condition of the start event, whereas in ours, the values of the terms mentioned

in the start duration condition is remembered, and the condition is not checked

until the end event of the durative action.

7.3 Durative Actions 121

This difference comes from the way a plan is represented. In Fox and

Long’s approach, the duration of a durative action is explicitly specified in the

plan, so the value is available even before the precondition of its start event

is evaluated. In contrast, we represent the plan with a sequence of simple

actions, and the duration of a durative action can be obtained only when we

get the knowledge when its start event and its end event are executed.

Despite this difference, it is not difficult to prove the following equivalence

proposition in Lemma 7.18.

Lemma 7.18. For a Pddl plan P , in which
(
s : Ãj(~pj)[d]

)
is a happening of

a durative action. The duration d satisfies the duration constraint if and only

if (
δs

eAj
(~pj)

)fi(~qi) duration

fs
i (~pj ,~qi) t−since

(
eAj(~pj)

) ∧
(
δe

eAj
(~pj)

)duration

t−since
(

eAj(~pj)
) (7.11)

is satisfied at the happening of end
(
Ãj(~pj), t

)
in JP K.

Proof. Since
(
s : Ãj(~pj)[d]

)
is a happening in P , according to Definition 7.16,

both start
(
Ãj(~pj), s

)
and end

(
Ãj(~pj), s+d

)
are in JP K. So, according to Theo-

rem 7.4, when the precondition of end
(
Ãj(~pj), t

)
is evaluated, since

(
Ãj(~pj)

)
=

s, and moreover, t = s+ d. Thus,

t− since
(
Ãj(~pj)

)
= d

For the end duration constraint, δe
eAj(~pj)

is a direct translation from DC
eAj

end,

so according to Lemma 7.5, it is obvious that
(
δe

eAj(~pj)

)duration

d
holds if and only

if DC
eAj

end[duration = d] holds.

For the start duration constraint, δs
eAj

(~pj) is also a direct translation from

DC
eAj

start. Since f s
j,i(~pj , ~qi) are the values of fi(~qi) at the start of Ãj(~pj), the

instantiated formula
(
δs

eAj
(~pj)

)fi(~qi) duration

fs
j,i(~pj ,~qi) d

is exactly the same as DC
eAj

start

when Ãs
j(~pj) is activated. So,

(
δs

eAj
(~pj)

)fi(~qi) duration

fs
j,i(~pj ,~qi) d

holds at the end event

iff DC
eAj

start[duration = d] holds.

As a result, the condition in the formula (7.11) is satisfied at the end event

of Ãj, if and only if both DC
eAj

start[duration = d] and DC
eAj

end[duration = d] are

satisfied in their respective happenings.

7.3.2 Invariant Conditions

As discussed above, when protecting the invariant conditions of a durative

action, Fox and Long insert monitoring actions in the interval of the action.

122 Correctness

In contrast, we assert that the condition holds at the beginning of the durative

action, and no action violates it during its execution. Here, we prove that the

two approaches are indeed equivalent in terms of plan validity.

Let us consider the happening of a durative action
(
t : Ã(~x)[d]

)
, whose

invariant condition is πo
eA
. Without loss of generality, suppose that

(ti0 : Ai0), (ti2 : Ai2), · · · , (ti2n−2
: Ai2n−2

), (ti2n
: Ai2n

) (7.12)

are all the happenings of non-monitoring actions during the (closed) interval

of the happening of Ã(~x), where

t = ti0 ≤ ti2 ≤ · · · ≤ ti2n−2
≤ ti2n

= t+ d

and {
Ai0 = Ãs(~x)

Ai2n
= Ãe(~x)

then, according to Fox and Long’s definition, the monitoring action Ãinv, with

precondition πo
eA

and empty effect, needs to be placed at time points

ti2k+1
=
ti2k

+ ti2k+2

2
, k = 0, 1, · · · , n− 1

In this setting, we have the following lemma:

Lemma 7.19. In a domain without continuous effects or timed initial literals,

the precondition πo
eA

of the monitoring action Ãinv is satisfied at time points

ti2k+1
, if and only if R(Ai2k

, P erforming(Ã) ⊃ πo
eA
) is satisfied at time points

ti2k
, for k = 0, 1, · · · , n− 1.

Proof. According to the definition of regression, R(Ai2k
, πo

eA
) is true in the cur-

rent situation if and only if Performing(Ã) ⊃ πo
eA

is true immediately after the

execution ofAi2k
if and only if (from Theorem 7.4, we have Performing

(
Ã(~x)

)

holds between ti0 and ti2n
) πo

eA
is true immediately after the execution of Ai2k

.

Since there is no action between Ai2k
and Ai2k+1

, and according to the as-

sumption that there is no continuous effect or timed initial literal, nothing

changes the truth value of πo
eA

in the interval, and thus the conclusion in the

lemma is drawn.

Lemma 7.19 proves that the method we proposed in (6.19) in Chapter 6

is equivalent to Fox and Long’s approach of adding happenings of guarding

actions, in ensuring that valid plans have all invariant conditions satisfied.

7.3 Durative Actions 123

7.3.3 Conditional Effects

In this subsection, we shall prove the correctness of our treatment of condi-

tional effects in durative actions. As we shall soon see, since our treatment for

the conditional effects is very similar to the one in Fox and Long’s semantics

definition, the proof here is straightforward.

Notice that the case of intra-temporal conditional effects has already been

covered in Lemma 7.17. So in the following discussion, we only concentrate

on the inter-temporal conditional effects.

Suppose we have the following end effect for the happening of a durative

action
(
t : Ã(x)[d]

)
:

(when (and (at start ϕs
eA
)

(over all ϕo
eA
)

(at end ϕe
eA
))

(at end ψ eA
))

which has the normal form

〈ϕs
eA
, ϕo

eA
, ϕe

eA
〉 ⇒ ψ eA

(7.13)

To define the semantics of the conditional effect of this form, Fox and Long

introduce two special new propositions that are unique to any name in the do-

main. First, for the start-end conditional effect, they introduce the proposition

M s
eA
, with an additional conditional effect (when (ϕs

eA
) (M s

eA
)) in the start

simple action. Second, for the overall-end conditional effect, they introduce

the proposition M o
eA
, with an additional effect (M o

eA
) in the start simple ac-

tion and a conditional effect (when (and (M o
eA
) (not ϕo

eA
)) (not (M o

eA
)))

in the monitoring action. Then, to see whether the original inter-temporal

conditional effect takes place, they add the intra-temporal conditional effect

(when (and (M s
eA
) (M o

eA
) (ϕe

eA
)) ψ eA

)

to the end simple action.

Remember that we also introduced similar propositions in our semantics

definition: the auxiliary fluent predicates ξs
eA

and ξo
eA
, with successor state

axioms

2[a]ξs
eA
(~p, ~q) ≡

∃t.a = start
(
Ã(~p), t

)
∧ ϕs

eA
∨

ξs
eA
(~p, ~q) ∧ ¬∃t′.a = end(Ã(~p), t′)

2[a]ξo
eA
(~p, ~q) ≡

∃t.a = start(Ã(~p), t) ∧R[a, ϕo
eA
]∨

124 Correctness

ξo
eA
(~p, ~q) ∧ ¬∃t′.a = end(Ã(~p), t′) ∧R[a, ϕo

eA
]

Here, ~p and ~q are used to identify the “memory” from different happen-

ings of Ã’s instances and different conditional effects in Ã, where ~p are the

parameters to the action symbol Ã and ~q are all the free variables in ψ eA
other

than those in ~p.

To see whether the effect finally should take place, we further transform

the inter-temporal conditional effect in (7.13) into a intra-temporal one by

substituting ϕs
eA

and ϕo
eA

with ξs
eA
(~p, ~q) and ξo

eA
(~p, ~q), respectively. As we can

see, all the treatments in the two formalisms are similar. In fact, we have the

following lemma:

Lemma 7.20. For the happening of a durative action (t : Ã(~p)[d]) with con-

ditional effect 〈ϕs
eA
, ϕo

eA
, ϕe

eA
〉 ⇒ ψ eA

, the truth value of the propositions M s
eA

and

Mo
eA

are pairwise equal to the auxiliary properties ξs
eA
(~p, ~q) and ξo

eA
(~p, ~q) in the

situation at time t+ d, i.e. at the happening of the end event of Ã(~p).

Proof. The validity of this lemma is obvious, if we compare the Pddl effect

definitions for M s
eA

and M o
eA

with the successor state axioms for ξs
eA

and ξo
eA
.

It immediately follows from Lemma 7.20 that the two approaches draw

same conclusion on whether the premise 〈ϕs
eA
, ϕo

eA
, ϕe

eA
〉 enables ψ eA

to takes

place or not.

7.3.4 Continuous Effects

In order to define the semantics of continuous effects of durative actions, Fox

and Long resort to differential equations. Definition 7.21 (originally Defini-

tion 22 in [FL03]) is their definition of the continuous update function.

Definition 7.21 (Continuous update function). Let C be a set of ground

continuous effects for a planning instance, I, and St = (t, S,X) be a state.

The continuous update function, defined by C for state St, is the function

fC : R → Rn, where n is the dimension of the planning problem (the number

of fluent function instances), such that

d fC

d t
= g

and

fC(0) = X

where g is the update function generated for an action a with

NPa =
{
(〈op〉 P Q)|

(
〈op〉 P (∗ #t Q)

)
∈ C

}

7.3 Durative Actions 125

Intuitively, suppose the state St starts at ti and ends at ti+1, then for any

ti ≤ t ≤ ti+1, fC(t− ti) is the vector of the values of all function instances in

the domain at time t. Here, X = fC(0) is the vector of the initial values of all

function instances at ti, the start of the state St, and g is the changing rate.

Since only linear changes are allowed in Pddl and there is no other happening

between ti and ti+1, g, the derivative of fC , is a vector of constant numbers.

Recall that according to Theorem 7.4, the changing rate of any numerical

property fk(~qk) satisfies

rate
(
fk(~qk)

)
=

(∑

(s: eAj [d])∈P∧s≤t<s+d

〈+,fk(~qk),Qj,k〉∈εo
eAj

Qj,k

)
−

(∑

(s: eAj [d])∈P∧s≤t<s+d

〈−,fk(~qk),Qj,k〉∈εo
eAj

Qj,k

)

It is easy to see that there exists a correspondance between the changing

rate rate
(
fk(~qk)

)
in the basic action theory and the derivative of the contin-

uous update function d fC

d t
in Definition 7.21. Lemma 7.22 characterizes this

correspondance.

Lemma 7.22. Suppose ti and ti+1 are the times for two neighboring hap-

penings in a plan with continuous durative actions. Let fC be the continuous

update function on [ti, ti+1), which corresponds to the the fluent numerical

properties f1(~q1), · · · , fn(~qn). Further, let lk be the linear objects assigned to

fk(~qk) at time t1. Then,

d fC

d t
= 〈rate(l1), · · · , rate(ln)〉

Proof. This conclusion is obvious from Definition 7.21 and Theorem 7.4.

Considering the fact that the time for function fC is relative to the latest

happening time, whereas fk(~qk) has the global time, we have the following

lemma to build the connection between the two.

Corollary 7.23. In the setting of Lemma 7.22, if

fC(0) = 〈eval
(
l1, ti

)
, · · · , eval

(
ln, ti

)
〉 (7.14)

then

fC(t− ti) = 〈eval
(
l1, t

)
, · · · , eval

(
ln, t

)
〉, t ∈ [ti, ti+1)

126 Correctness

Proof. For any t ∈ [ti, ti+1), we have

fC(t− ti)

=fC(0) +

∫ t

ti

d fC

d t
dt (since

d fC

d t
is constant in [ti, ti+1))

=fC(0) +
d fC

d t
· (t− ti) (since (7.14) and Lemma 7.22)

=〈eval
(
l1, ti

)
, · · · , eval

(
ln, ti

)
〉

+ 〈rate
(
l1

)
· (t− ti), · · · , rate

(
ln

)
· (t− ti)〉

=
〈
eval

(
l1, ti

)
+ rate

(
l1

)
· (t− ti), · · · ,

eval
(
ln, ti

)
+ rate

(
ln

)
· (t− ti)

〉

(comparing the forms)

=〈eval
(
l1, t

)
, · · · , eval

(
ln, t

)
〉

Since lk models the function fk(~qk) in the interval [ti, ti+1) in the basic

action theory, Corollary 7.23 implies that concerning the continuous update,

as long as the continuous fluents have correct values in the state at ti, they

are also correct throughout this state, and in particular, immediately before

the beginning of the next state at ti+1. Here, a “correct value” means that

the evaluation result of the linear object in our approach is equal to the one

obtained from the continuous update functions in Fox and Long’s definition.

With this conclusion for single-step update, we are now able to prove that

our approach correctly models the trace of the plan.

Definition 7.24 (Trace). Let D be a planning instance that includes con-

tinuous durative actions, P be a plan for D, SP be the simplified plan of P ,

{ti}i=0,··· ,m be the happening sequence for SP and I0 be the initial state for

D. Further let Cts be the systems of continuous effects

Cts = {(C, ti, ti+1)|C is the set of active continuous effects over (ti, ti+1)}

Then, the trace for P is the sequence of states {Ii}i=0,··· ,m defined as follows:

• If there is no element (C, ti, ti+1) ∈ Cts, then Ii+1 is the state resulting

from applying the happening at ti in the simple plan SP to the state Ii;

• If (C, ti, ti+1) ∈ Cts, then let Ti be the state formed by substituting

fC(ti+1 − ti) for the numeric part of state Ii, where fC is the continuous

7.3 Durative Actions 127

update function defined by C for state Ii
7. Then Ii+1 is the state

resulting from applying the happening at ti in the simple plan SP to

the state Ti. If f is undefined for any element in Cts, then so is the

trace.

Definition 7.24 (originally Definition 24 in [FL03]) states that the proce-

dure to obtain the successor state of a state Ii is to first apply the continuous

numerical updates, if any, and then perform the add and delete operations

as usual. The following Lemma 7.25 shows that our solution in Section 6.3.3

correctly captures Fox and Long’s notion of the trace.

Lemma 7.25. In the setting of Definition 7.24, suppose Σ is the basic action

theory derived from D, and A1, · · · , An are the sequence of actions in the

simplified plan of P . Then for any functional fluent fk(~qk), any number r and

any state Ii,

fk(~qk) = r

holds in state Ii if and only if

Σ |= [A1] · · · [Ai]eval(fk(~qk), ti) = r

Proof.

Due to Lemma 7.5, fk(~qk) = r holds in I0 if and only if Σ |= eval(lk, t0) = r.

First, consider the state immediately before I1 at time t1. According to

Definition 7.24, the value of fk(~qk) at (immediately before) time t1 is {fC(t1−
t0)}k, where fC is the continuous update function on the interval [t0, t1), and

{fC(t1 − t0)}k stands for the k-th dimension of the vector fC(t1 − t0).

According to Corollary 7.23, {fC(t1 − t0)}k equals to eval(fk(~qk), t1). So,

if we construct a new state I−1 , which is the same as I0, except that the

values of all numerical function fk(~qk) is changed from eval(fk(~qk), t0) to

eval(fk(~qk), t1). From this construction, I−1 serves as the intermediate state

T0 in Definition 7.24.

Now, let us consider the application of A1 in state I−1 . Since the resulting

state I1 is at the same time as I−1 , there is no longer continuous numerical

7 The continuous update function is defined on an interval that is closed on the left but

open on the right. So strictly speaking, fC(ti+1 − ti) is undefined. Here, we understand

fC(ti+1 − ti) as

lim
t′→t

−

i+1

fC(t′ − ti)

that is, the value of fC immediately before time ti+1.

128 Correctness

change to consider. According to Theorem 7.7, [A1]Σ0(I1) is the progression

of Σ0(I
−
1).

As a result, fk(~qk) = r′ holds in I1 if and only if Σ |= [A1]eval(lk, t1) = r′.

With an induction on the length of the plan, the proposition in the lemma

is proved.

Lemma 7.25 shows that our basic action theory correctly models the trace

of plans of a domain, possibly with continuous durative actions. Now we

are only left with the satisfaction of invariant conditions with the presence of

continuous effects.

Lemma 7.26. Let D be a planning instance with continuous durative actions

and invariant conditions, Σ be the basic action theory obtained from D as

described in Chapter 6, Σ′ be the same as Σ except that it does not take the

invariants into account, P be a plan for D. Suppose that Σ′ |= JP KExecutable.

Further, let {(ti : Ai)}i=1,··· ,m be all the happenings in the derived simple plan

of P , and Qi be the conjunction of all the invariant conditions between ti and

ti+1. Then all Qi are satisfied in their corresponding interval if and only if

Σ |= JP KExecutable.

Proof. The “only if” direction

Suppose all Qi are satisfied in their corresponding interval. Notice that

each Qi is a conjunction of the invariant conditions πo
eAl1

, · · · , πo
eAlk

of the ac-

tions that are in progress Ãl1 , · · · , Ãlk . So, according to Lemmas 7.5 and 7.9,

Σ |= [A1] · · · [Ai]Performing(ã) ⊃ Eval[πo
ea, t]

which leads to

Σ |= [A1] · · · [Ai]¬Obli
(
end(ã), t

)

Since Σ′ |= JP KExecutable and Σ differs from Σ′ only with the additional

Obli conditions, but none of them are true at any time in the duration of the

plan, We know that Σ |= JP KExecutable.

The “if” direction

Suppose that there is some t ∈ [ti, ti+1) such that Qi is false at t. Then

according to Lemma 7.5, for some durative action Ã,

Σ |= [A1] · · · [Ai]Performing(Ã) ∧ ¬Eval[πo
eA
, t]

As a result, we have

Σ |= [A1] · · · [Ai]Obli
(
end(Ã), t

)

7.4 Timed Initial Literals 129

so

Σ |= [A1] · · · [Ai]
(
Obli

(
end(Ã), t

)
∧ t < time(Ai+1)

)

Thus, we have

Σ |= [A1] · · · [Ai]¬Poss(Ai+1)

According to Σexec, we have

Σ 6|= JP KExecutable

7.4 Timed Initial Literals

To define the meaning of timed initial literals in the standard semantics of

Pddl 2.2, Edelkamp and Hoffmann introduced additional happenings to the

temporal plan. Each of the additional happening (t : Atil) corresponds to a

timed initial literal 〈t0, ϕ0〉 in the problem definition. The happening time t

equals to t0 as specified in the timed initial literal, and the action Atil is new

and unique, with the precondition true and the single effect asserting the

specified literal ϕ0 [EH04].

The semantics that we introduced in Chapter 6 is hooked on their def-

inition. We forced the insertion of similar auxiliary actions in the plan by

specifying the actions as obligatory at the very time points. The correct in-

sertion is guaranteed by the following Lemma 7.27.

Lemma 7.27. Suppose 〈t0, ϕ0〉 ∈ TI is a timed initial literal in a problem

definition D. If the obligatory condition

2Obli
(
A〈t0 ,ϕ0〉(t)

)
≡ (t = t0)

is defined in the basic action theory Σ(D), then for every executable plan P ,

the time of whose last happening tend satisfying tend > t0, A〈t0,ϕ0〉(t0) is in P .

Proof. Since tend > t0, there must be a happening Ai(~xi, ti) in P , such that

t0 < ti ≤ tend, and there is no other happening Ak(~xk, tk) in P with t0 < tk <

ti.

Suppose A〈t0 ,ϕ0〉(t0) is not in P , then at time ti, we have

Obli
(
A〈t0 ,ϕ0〉(t0)

)
∧ now < t0 < ti

which contradicts the precondition of Ai(~xi, ti) that has the form as shown in

(5.36). This further contradicts with the assumption that P is executable. As

a result, A〈t0,ϕ0〉(t0) must exist in P .

130 Correctness

Since for each timed initial literal 〈t0, ϕ0〉, the corresponding introduced

action A〈t0,ϕ0〉(t0) exists in any executable plan according to Lemma 7.27, the

correct semantics of timed initial literals is guaranteed further by the original

definition by Edelkamp and Hoffmann.

7.5 Conclusion

So far, we have proved the individual features in our semantic mapping. From

these fragments, it is easy to obtain that our semantics for the subset of

Pddl with time and concurrency, as defined in Chapter 6, is a correct one.

This correctness is based on the fact that for a Pddl problem definition, our

semantics and the standard one determine the same set of valid plans. This

is formalized in the following Theorem 7.28.

Theorem 7.28. Given a Pddl problem description

D = 〈T,F, f ,O,A, I, T I,G〉

a plan P , with no concurrent happening of mutex actions, is valid if and only

if

Σ ∪ Σexec |= JP K
(
Executable ∧ ϕ(G)

)

for some JP K.

Proof. The validity of this theorem follows immediately from Theorem 7.15

and Lemmas 7.17–7.27.

Chapter 8

Conclusion and Future Work

8.1 The Result

The major contribution of this thesis lies in two aspects.

First, we have studied the possible extensions to the logic ES, which is

approximately in parallel to the ones in the situation calculus [Rei01]. This

enables ES to reason about, among other things, numerics, time, concurrency

and coerciveness, such that many realistic features in a domain can be modeled

in the logic. The extensions also show the generality and expressiveness of

ES. Furthermore, due to the nice features of ES (e.g. situation properties are

defined in the semantics, a fixed domain of discourse is assumed, etc.), the

formulation becomes simpler than in the classical situation calculus.

Second, we have built a semantic mapping between a subset of Pddl with

time and concurrency and our extended version of basic action theories in ES,

and have proved the correctness of this mapping. This serves as a declarative

semantics for this subset of Pddl. Unlike the state-transitional semantics,

which rely on meta-theoretic structures in the definition [FL03], ours here

defines what each element in the language means in a purely logical notion.

The advantage is that, with this declarative semantics, it is possible to bridge

planning and action formalisms, such that one approach can benefit from the

results of the other. For example, as we shall go a little deeper in Section 8.2.3,

our result makes it possible to integrate external planners in action languages

such as Golog.

8.2 Future Work

Due to the time constraints and the author’s knowledge level, a few topics are

still left open. Here, we give a brief introduction to several directions of future

131

132 Conclusion and Future Work

work, and some preliminary ideas on them.

8.2.1 The Reoccurance Problem

In general, it is possible to have two instances of a same durative action happen

concurrently. For example, suppose we have a durative action refuel(v) which

fills a tank with petrol at a rate of v. Then,

{
(
1 : refuel(30)[3]

)
,
(
2.5 : refule(30)[5]

)
}

may be a valid plan according to the semantics given by Fox and Long. This

plan has the meaning that a refueling process starts at time 1 with duration

3, and another starts at time 2.5 with duration 5; the refueling rate of both

processes is 30.

Unfortunately, this plan is not executable if we map it to the basic action

theory. Intuitively, the reason is like this: after the virtual simple action

start
(
refuel(30), 1

)
, Performing

(
refuel(30)

)
becomes true. At time 2.5,

when the start event of the second process start
(
refuel(30), 2.5

)
is to be

activated, Performing
(
refuel(30)

)
remains true, since end

(
refuel(30), 4

)

has not been executed by that time. So due to the durative action axioms in

Σdura ⊂ Σ, we have

Σ |= [start
(
refuel(30), 1

)
]¬Poss

(
start

(
refuel(30), 2.5

))

As we can see, a valid plan in Pddl becomes unexecutable, and thus invalid,

in our translated basic action theory. This is called the reoccurrance problem.

The cause of the reoccurrance problem is that we identify durative actions

only by their names. According to the semantics of ES, refuel(30) refers to

one single element in the domain, so it is not possible to distinguish whether

we mean the first process or the second, purely from this name. If the sec-

ond happening were (2.5 : refuel(30.001)[5]), for example, then this problem

would not occur.

In the previous chapters, we have implicitly assumed that such an ambigu-

ity does not exist in the Pddl domains, but in general this assumption does

not necessarily hold.

To solve this problem, we can simply introduce a unique identifier of each

happening of the durative action. In the refueling example, for instance, the

concurrent refueling process may come from two distinct pipes to the tank, so

if the domain designer identify the two processes with their corresponding pipe

name, and define the refuel action as refuel(id, v), where id denotes the pipe

and v is the rate, then the problem is avoided. However, this solution requires

the modification of the domain definition. It is interesting to study, given

8.2 Future Work 133

a domain, potentially with reoccurrance problem, how we can automatically

assign unique identifiers to the processes, when we construct the basic action

theories from it.

8.2.2 Integrating True Concurrency

In the development of this thesis, one of our guidelines was to stick to the

existing syntax and semantics of the logic ES, and only modify the basic

action theory to extend the expressiveness. One consequence of this decision

is that we choose to use interleaved concurrency.

As we can see from the previous chapters, the interleaved account for

concurrency is almost always sufficient for capturing the semantics for the

Pddl. This result owes a lot to the strong condition of mutex actions defined

by Fox and Long, in that actions that interact with each other cannot happen

simultaneously according to the standard semantics of Pddl.

However, two exceptions exist, where interleaved concurrency fails. One is

the case where an obligatory action is scheduled at the same time as the hap-

pening of other actions; the other is where an action influences the invariant

condition of a durative action whose start event happens simultaneously with

it. Now, let us illustrate them with two examples.

As an example to the first problem, consider the plan

{(5 : A1), (10 : A2)}

and the additional condition Σ |= 2Obli
(
B(5)

)
. Ideally, we expect to have

Σ |= [A1(5)][A2(10)]¬Executable (8.1)

since [B(5)] is not in the action sequence. Unfortunately, even with ΣObli,

(8.1) may fail. To see why, notice that when A1(5) is about to activate,

now = 0 and time
(
A1(5)

)
= 5, but there is no obligatory action a′ such that

0 < time(a′) < 5, provided B(5) is the only obligatory action in the domain;

similarly, when A2(10) is about to activate, now = 5 and time
(
A2(10)

)
= 10,

but again there is no obligatory action scheduled in the open interval (5, 10).

As a result, our solution to coerciveness fails in this case.1 That is why we

introduced Assumption 5.1 in Chapter 5 to temporarily avoid the problem.

1 One may argue that we should modify Equation (5.36) to

2Poss(a) ⊃ ¬
`

∃a
′

.Obli(a′) ∧ now ≤ time(a′) ≤ time(a)
´

to also take the end points of the interval into account. However, this does not solve the

problem either. Let us denote the modified basic action theory with Σ′. For the first ≤ in

the above equation, notice that

Σ′ |= [A1(5)][B(5)]¬Poss
`

A2(10)
´

134 Conclusion and Future Work

As for the second problem, let us consider the following two actions:

(:durative-action A

:parameters ()

:duration ()

:condition (over all (P))

:effect ()

)

(:action B

:parameters ()

:condition ()

:effect (P)

)

Intuitively, A is a durative action that has a single precondition that P holds

in its duration; B is a simple action that asserts P as its effect. Assume that

(not P) holds initially, then the plan

{(t1 : A[d1]), (t1 : B)} (8.2)

is executable, since although the invariant condition formula of A was false

before t1 and the start event of A alone does not assert it, the simultaneous

simple action B does so. If we consider the basic action theory Σ derived from

this domain and the grounded simple plan of (8.2), however, we shall have

{
Σ |= [B(t1)][start(A, t1)][end(A, t1 + d1)]Executable

Σ |= [start(A, t1)][B(t1)][end(A, t1 + d1)]¬Executable

The cause of this paradox is the interleaved view of concurrency. In the second

sentence above, there is a situation of duration 0 between the start event of A

and the execution of B, where the invariant condition of A is violated. In the

previous chapters, to avoid such a problem from occurring in our discussion, we

strengthened Fox and Long’s definition of mutex actions in Definition 7.12 to

consider actions like B(t1) and start(A, t1) as mutex. However, they are in fact

since

Σ′ |= [A1(5)][B(5)]
“

Obli
`

B(5)
´

∧ now = time
`

B(5)
´

≤ 10
”

Then, for the second ≤, we have the counter example

Σ′ |= [B(5)]¬Poss
`

A1(5)
´

since

Σ′ |= [B(5)]
“

Obli
`

B(5)
´

∧ now ≤ time
`

B(5)
´

= time
`

A1(5)
´

”

8.2 Future Work 135

non-interfering according to the standard semantics. As a result, a stronger

formulation of concurrency is needed to capture the original semantics.

Although we do not give a formal proof here, it can be shown that if the sit-

uation calculus with true concurrency is used, as formalized by Reiter [Rei96],

the both problems above can be solved. The question is, then, how we can

reproduce this result in ES, by extending it with true concurrency.

One natural way to accommodate true concurrency is to denote happenings

with sets of actions. This is also the approach in Reiter’s formalism. However,

in order to use this approach, at least the two problems need to be considered:

1. The syntax and the semantics of ES need to be changed.

In its current form, the language requires that the [] operator take a

simple action as its argument; with true concurrency, the argument be-

comes a set of simple actions. As for semantics, the sequence of actions

z becomes a sequence of sets of actions. So far, it is not clear how the

extended syntax and semantics can be formally defined.

2. Allowing for general sets makes the domain uncountable

A direct idea is to consider general sets as elements in the domain, but

unfortunately, it makes the domain uncountable. This can be illustrated

simply by a domain with all the subsets of an infinite set. This fact leads

to a dilemma. On one hand, Reiter showed that the case of infinite ac-

tions happening concurrently must be taken seriously; on the other hand,

a countably infinite domain is the foundation of many nice properties of

ES.

As a result, reasoning with true concurrency in the logic ES does not follow

trivially from the existing work in the situation calculus. We believe that it

is an interesting topic for further research.

8.2.3 Embedding External Planners in Golog

An ultimate goal of a bigger project containing the topic here is to bring the

research in the areas of planning and action formalisms to a convergence, such

that the work in one area may benefit from the ready results in the other.

For example, one may embed external planners in the action languages, such

as Golog. As introduced in Section 3.6, Golog is a powerful language that

enables its user to write programs that constrain the search for an executable

plan to a goal in a flexible way. However, when general planning is needed,

Golog can only resort to its non-deterministic choice of actions, whose per-

formance is far from competitive to the state-of-the-art planners.

136 Conclusion and Future Work

Recently, Claßen et al. proposed a general method to integrate Adl plan-

ners, such as FF, into Golog programs, whose underlying basic action theory

is a translation of an Adl problem description [CELN07]. Their result is based

on the declarative semantics of the Adl subset of Pddl in the same paper.

The general idea is like this: during the execution of the Golog program,

when a goal that requires general planning is faced, a special procedure trans-

forms the goal into a Pddl problem description, and activates the external

planner to generate a plan. With the declarative semantics, it is guaranteed

that valid plans in both cases are the same, so the returned plan is a valid

one, and can thus be used directly in the Golog program.

As the major result, a declarative semantics for Pddl 2, a much larger

subset of Pddl, is obtained in this thesis. The natural question is, can we

extend the work in the Adl subset, and integrate external planners in the

temporal concurrent Golog? We are optimistic in the prospect, and believe

that the practical implementation of this idea will be an exciting future work

on this topic.

Bibliography

[Can91] G. Cantor. Über ein elementare frage der mannigfaltigkeitslehre.

1891. 52

[CELN07] J. Claßen, P. Eyerich, G. Lakemeyer, and B. Nebel. Towards an

integration of golog and planning. IJCAI, 2007. to appear. 2, 17,

48, 70, 95, 99, 136

[DGLL00] Giuseppe De Giacomo, Yves Lespérance, and Hector Levesque.

ConGolog, a concurrent programming language based on the sit-

uation calculus. Artificial Intelligence, 121(1–2):109–169, 2000. 2,

33

[EH04] Stefan Edelkamp and Joerg Hoffmann. PDDL2.2: The language

for the classical part of the 4th international planning competi-

tion. report00195, Institut für Informatik, Universität Freiburg,

January 21 2004. 1, 9, 15, 92, 129

[FL03] Maria Fox and Derek Long. PDDL2.1: An extension to PDDL

for expressing temporal planning domains. J. Artif. Intell. Res.

(JAIR), 20:61–124, 2003. 1, 8, 12, 13, 53, 114, 124, 127, 131

[FN71] R. Fikes and N. J. Nillson. Strips: a new approach to the applica-

tion of theorem proving to problem solving. Artificial Intelligence,

2(3/4):189–208, 1971. 1, 5

[FR97] Lin Fangzhen and Ray Reiter. How to progress a database. Arti-

ficial Intelligence, 92:131–167, 1997. 30

[GHK+98] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,

M. Veloso, D. Weld, and D. Wilkins. Pddl—the planning domain

definition language, 1998. 1, 8, 9

[GL00] Henrik Grosskreutz and Gerhard Lakemeyer. cc-Golog: Towards

more realistic logic-based robot controllers. In NMR-00, 2000. 2,

33, 38

137

138 Bibliography

[GL01] Henrik Grosskreutz and Gerhard Lakemeyer. On-line execution of

cc-Golog plans. In IJCAI-01, 2001. 2

[GL05] Alfonso Gerevini and Derek Long. Plan constraints and preferences

in PDDL3. Technical report, University of Brescia, 2005. 9

[Lif86] Vladimir Lifschitz. On the semantics of strips. In Michael P.

Georgeff and Amy Lansky, editors, Reasoning about Actions and

Plans, pages 1–9. Morgan Kaufmann, Los Altos, California, 1986.

2, 6

[LL01] Hector J. Levesque and Gerhard Lakemeyer. The Logic of Knowl-

edge Bases. MIT Press, 2001. 110

[LL04] G. Lakemeyer and H. J. Levesque. Situations, si! situation terms,

no! In 9th Conf. on Principles of Knowledge Representation and

Reasoning (KR2004). AAAI Press, 2004. 2, 43

[LL05] Gerhard Lakemeyer and Hector J. Levesque. Semantics for a useful

fragment of the situation calculus. In IJCAI-05, 2005. 2, 43

[LR95] F. Lin and R. Reiter. How to progress a database ii: The strips

connection. In In Proc. IJCAI-95, 1995. 67

[LRL+97] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl.

GOLOG: A logic programming language for dynamic domains.

Journal of Logic Programming, 31:59–84, 1997. 2, 40

[McC63] John McCarthy. Situations, actions, and causal laws. Technical

Report Memo 2, Stanford Artificial Intelligence Project, Stanford

University, 1963. 2, 23

[Ped89] Edwin P. D. Pednault. Adl: exploring the middle ground between

strips and the situation calculus. In Proceedings of the first inter-

national conference on Principles of knowledge representation and

reasoning, pages 324–332, San Francisco, CA, USA, 1989. Morgan

Kaufmann Publishers Inc. 1, 6

[Ped94] Edwin P. D. Pednault. Adl and the state transition model of

action. Logical Computing, 4(5):467–512, 1994. 6

[Pin94] Javier Pinto. Temporal Reasoning in the Situation Calculus. PhD

thesis, Department of Computer Science, University of Toronto,

Toronto, Canada, January 1994. 2, 33, 37, 38, 56, 65

Bibliography 139

[PR99] Fiora Pirri and Ray Reiter. Some contributions to the metatheory

of the situation calculus. Journal of the ACM, 46(3):261–325, 1999.

27

[Rei91] Ray Reiter. The frame problem in the situation calculus: A simple

solution (sometimes) and a completeness result for goal regression.

In Vladimir Lifschitz, editor, Artificial Intelligence and Mathemat-

ical Theory of Computation: Papers in Honor of John McCarthy,

pages 359–380. Academic Press, San Diego, CA, 1991. 25

[Rei96] R. Reiter. Natural actions, concurrency and continuous time in the

situation calculus. In In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fifth International Conference

(KR’96), pages 2–13, Cambridge, Massachusetts, U.S.A., Novem-

ber 1996. 2, 33, 56, 65, 135

[Rei01] Raymond Reiter. Knowledge in Action. Logical Foundations for

Specifying and Implementing Dynamical Systems. MIT Press,

2001. 2, 23, 29, 131

[RN03] Stuart Russell and Peter Norvig. Artificial Intelligence: A Mod-

ern Approach. Prentice-Hall, Englewood Cliffs, NJ, 2nd edition

edition, 2003. 1

[Tar51] A. Tarski. A decision method for elementary algebra and geometry.

1951. 53

	Contents
	List of Figures
	to1Introduction
	1.1 Background
	1.2 Project Goals
	1.3 Outline

	to2The Planning Domain Definition Language
	2.1 The Development of PDDL
	2.1.1 STRIPS
	2.1.2 ADL
	2.1.3 PDDL

	2.2 The Language
	2.2.1 The Basics
	2.2.2 Numerics and Metrics
	2.2.3 Durative Actions
	2.2.4 Timed Initial Literals

	2.3 A Structural Representation
	2.3.1 Functional updates
	2.3.2 Duration and temporal annotation

	to3The Situation Calculus
	3.1 The Language
	3.2 The Basic Action Theory
	3.3 Regression
	3.4 Progression
	3.5 Time and Concurrency
	3.5.1 Time
	3.5.2 Durative actions
	3.5.3 Concurrency
	3.5.4 Continuous effects
	3.5.5 Natural actions

	3.6 Complex Actions and Golog

	to4The Logic ES
	4.1 The Language
	4.1.1 The Alphabet
	4.1.2 Terms and Formulas
	4.1.3 The Semantics

	4.2 Basic Action Theories
	4.3 Regression
	4.4 Progression

	to5The Extensions to ES
	5.1 Executability
	5.2 Numerics
	5.2.1 An example

	5.3 Temporal Extension
	5.4 Durative Actions and Concurrency
	5.5 Modeling Continuous Changes
	5.6 Coercive Actions

	to6The Semantic Mapping between PDDL and ES
	6.1 Existing Work
	6.1.1 STRIPS as Progression in the Situation Calculus
	6.1.2 ADL as Progression in the Logic ES

	6.2 Numerical Expressions and Plan Metrics
	6.2.1 Numerical Expressions
	6.2.2 Metrics
	6.2.3 An Example

	6.3 Durative Actions
	6.3.1 Discretized Durative Actions
	6.3.2 Inter-Temporal Property Reference
	6.3.3 Continuous Effects

	6.4 Timed Initial Literals

	to7Correctness
	7.1 The Interpretation of the State
	7.2 The Non-Durative Subset
	7.3 Durative Actions
	7.3.1 Duration Constraint
	7.3.2 Invariant Conditions
	7.3.3 Conditional Effects
	7.3.4 Continuous Effects

	7.4 Timed Initial Literals
	7.5 Conclusion

	to8Conclusion and Future Work
	8.1 The Result
	8.2 Future Work
	8.2.1 The Reoccurance Problem
	8.2.2 Integrating True Concurrency
	8.2.3 Embedding External Planners in Golog

	Bibliography

