A Correctness Result for Reasoning about One-Dimensional Planning Problems

Yuxiao (Toby) Hu Hector J. Levesque

Department of Computer Science University of Toronto

 $\{yuxiao, hector\}@cs.toronto.edu$

May 12, 2010

< ロ > < 同 > < 三 > < 三 >

Correctness for Reasoning about One-Dimensional Problems Hu & Levesque May 12, 2010 1 / 19

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Motivation

- Classical planning produces action sequence in complete world.
 - *e.g.*: given, *obj1* at home, *obj2* in office and a *truck*, make *obj1* in office and *obj2* at home.
 - Resulting sequential plan only works for this particular setting.

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Motivation

- Classical planning produces action sequence in complete world.
 - *e.g.*: given, *obj1* at home, *obj2* in office and a *truck*, make *obj1* in office and *obj2* at home.
 - Resulting sequential plan only works for this particular setting.
- Conditional planning allow incomplete knowledge by allowing branching on run-time world state.
 - *e.g.*: given a truck, *obj1* and *obj2*, location and destination unknown, make both objects at their destination.
 - Resulting tree-like plan can handle four different cases.

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Motivation

- Classical planning produces action sequence in complete world.
 - *e.g.*: given, *obj1* at home, *obj2* in office and a *truck*, make *obj1* in office and *obj2* at home.
 - Resulting sequential plan only works for this particular setting.
- Conditional planning allow incomplete knowledge by allowing branching on run-time world state.
 - *e.g.*: given a truck, *obj1* and *obj2*, location and destination unknown, make both objects at their destination.
 - Resulting tree-like plan can handle four different cases.
- An even more general form of planning?
 - Given a truck and an unknown number of objects, make them all at their desired destination!
 - Incomplete knowledge about number results in infinitly many cases.

A Formal Notion of Correctness Practical Verification for 1-D Problems Conclusion

Motivation

An intuitive plan:

Motivation

Э

A Formal Notion of Correctness Practical Verification for 1-D Problems Conclusion

Motivation

An intuitive plan:

Motivation

Moral:

• With this generality, plans with loops are needed!

Correctness for Reasoning about One-Dimensional Problems Hu & Levesque May 12, 2010 3 / 19

イロト イヨト イヨト イヨト

A Formal Notion of Correctness Practical Verification for 1-D Problems Conclusion Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Outline of the Talk

2 A Formal Notion of Correctness

3 Practical Verification for 1-D Problems

4 Conclusion

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Planning with Loops

- **(**) generating a plan with loops that works for small instances;
- testing if the plan also works for other instances. (If not, return to Step 1.)

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Planning with Loops

- **9** generating a plan with loops that works for small instances;
- testing if the plan also works for all (?) other instances. (If not, return to Step 1.)
- Plan Verification...
 - Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Planning with Loops

- **9** generating a plan with loops that works for small instances;
- testing if the plan also works for all (?) other instances. (If not, return to Step 1.)
- Plan Verification...
 - Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
 - However, this seems impossible with infinitely many cases.

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Planning with Loops

- **()** generating a plan with loops that works for small instances;
- testing if the plan also works for some other instances. (If not, return to Step 1.)
- Plan Verification...
 - Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
 - However, this seems impossible with infinitely many cases.
 - In practice, we only test against *finitely many* larger instances.

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

Planning with Loops

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

- **9** generating a plan with loops that works for small instances;
- testing if the plan also works for some other instances. (If not, return to Step 1.)
- Plan Verification...
 - Ideally, a candidate plan may pass the testing phase, only if it works for *all* instances of the planning problem.
 - However, this seems impossible with infinitely many cases.
 - In practice, we only test against *finitely many* larger instances.

Needed: finite verification with general correctness guarantee!

A Formal Notion of Correctness Practical Verification for 1-D Problems Conclusion

Contributions

Motivation FSAPLANNER and Plan Verification Contributions

< ロ > < 同 > < 三 > < 三 >

In this paper, we

- formally define a representation (FSA plan) for plans with loops;
- identify a class of (one-dimensional) planning problems whose plan correctness can be finitely verified;
- show that this verification algorithm enables FSAPLANNER to efficiently generate provably correct plans for this problem class.

The Situation Calculus Problem Representation Plan Representation Plan Correctness

The Situation Calculus

The situation calculus is a multi-sorted logic for modeling dynamic environments, with sorts *situation*, *action* and *object*.

- S₀ is the unique initial situation, and do(a, s) is the situation obtained by performing action *a* in situation *s*.
- Changing properties modeled by fluents, *i.e.*, functions and predicates whose last argument is a situation term, *e.g.*,

 $loc(S_0) = home \land Loaded(do(load, S_0)).$

- Poss(a, s) is a special relation that holds iff action a is executable in situation s.
- SR(*a*, *s*) denotes the sensing result of action *a* when performed in situation *s*.

< ロ > < 同 > < 三 > < 三 >

The Situation Calculus Problem Representation Plan Representation Plan Correctness

< ロ > < 同 > < 三 > < 三 >

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01)

$$\Sigma = \mathcal{F}\mathcal{A} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0},$$

The Situation Calculus Problem Representation Plan Representation Plan Correctness

< ロ > < 同 > < 三 > < 三 >

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01)

$$\Sigma = \mathcal{F}\mathcal{A} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0},$$

where Σ_{sr} is a set of sensing result axioms (Scherl & Levesque 03):

$$\operatorname{sr}(get_done, s) = r \equiv r = yes \land parcels_left(s) = 0 \lor$$

 $r = no \land parcels_left(s) \neq 0.$

The Situation Calculus Problem Representation Plan Representation Plan Correctness

< ロ > < 同 > < 三 > < 三 >

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01)

$$\Sigma = \mathcal{F}\mathcal{A} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0},$$

where Σ_{sr} is a set of sensing result axioms (Scherl & Levesque 03):

$$\operatorname{sr}(\operatorname{get_done}, s) = r \equiv r = \operatorname{yes} \land \operatorname{parcels_left}(s) = 0 \lor$$

 $r = \operatorname{no} \land \operatorname{parcels_left}(s) \neq 0.$

Definition

A planning problem is a pair $\langle \Sigma, G \rangle$, where Σ is a basic action theory and G is a situation-suppressed goal formula.

The Situation Calculus Problem Representation Plan Representation Plan Correctness

Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01)

$$\Sigma = \mathcal{F}\mathcal{A} \cup \Sigma_{\textit{una}} \cup \Sigma_{\textit{pre}} \cup \Sigma_{\textit{ssa}} \cup \Sigma_{\textit{sr}} \cup \Sigma_{0},$$

where Σ_{sr} is a set of sensing result axioms (Scherl & Levesque 03):

$$\operatorname{sr}(\operatorname{get_done}, s) = r \equiv r = \operatorname{yes} \land \operatorname{parcels_left}(s) = 0 \lor$$

 $r = \operatorname{no} \land \operatorname{parcels_left}(s) \neq 0.$

Definition

A planning problem is a pair $\langle \Sigma, G \rangle$, where Σ is a basic action theory and G is a situation-suppressed goal formula.

Both infinite domain and incomplete initial state allowed.

< ロ > < 同 > < 三 > < 三 >

The Situation Calculus Problem Representation **Plan Representation** Plan Correctness

Plan Representation

We use a finite-state automaton-like plan representation (called FSA plan), which can be viewed as a directed graph, where

- Each node represents a program state
 - One unique "start state"
 - One unique "final state"
 - Non-final states associated with action

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Each edge labeled with a sensing result (omitted for non-sensing).

The Situation Calculus Problem Representation **Plan Representation** Plan Correctness

Plan Representation

To formalize FSA plans, we introduce a new sort "program states" with Q_0 and Q_F being two constants, and a set of axioms FSA, consisting of

domain closure axioms for program states

$$(\forall q).q = Q_0 \lor q = Q_1 \lor \cdots \lor q = Q_n \lor q = Q_F;$$

unique names axioms for program states

$$Q_i \neq Q_j$$
 for $i \neq j$;

action association axioms

$$\gamma(Q) = A;$$

transition axioms

$$\delta(Q,R)=Q'.$$

< ロ > < 同 > < 三 > < 三 >

The Situation Calculus Problem Representation Plan Representation **Plan Correctness**

(a)

Plan Correctness

We use T(q, s, q', s') to denote legal one-step transitions, *i.e.*, $T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land$ $\delta(q, r) = q' \land s' = do(a, s)$

The Situation Calculus Problem Representation Plan Representation **Plan Correctness**

(日)

Plan Correctness

We use T(q, s, q', s') to denote legal one-step transitions, *i.e.*, $T(q, s, q', s') \stackrel{def}{=} \exists a, r. \ \gamma(q) = a \land Poss(a, s) \land SR(a, s) = r \land$ $\delta(q, r) = q' \land s' = do(a, s)$

 $T^{\star}(q, s, q', s')$ denotes the reflexive transitive closure of *T*, *i.e.*, $T^{\star}(q, s, q', s')$ is true iff starting from program state *q* and situation *s*, the FSA plan may reach state *q'* and situation *s'*

The Situation Calculus Problem Representation Plan Representation **Plan Correctness**

< ロ > < 同 > < 三 > < 三 >

Plan Correctness

 $T^*(q, s, q', s')$ denotes the reflexive transitive closure of T, *i.e.*, $T^*(q, s, q', s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by *FSA* is correct iff

 $\Sigma \cup FSA \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$

Correctness for Reasoning about One-Dimensional Problems Hu & Levesque May 12, 2010 11 / 19

The Situation Calculus Problem Representation Plan Representation **Plan Correctness**

Plan Correctness

 $T^*(q, s, q', s')$ denotes the reflexive transitive closure of T, *i.e.*, $T^*(q, s, q', s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by *FSA* is correct iff

 $\Sigma \cup FSA \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$

Need Second-Order Reasoning!

< ロ > < 同 > < 三 > < 三 >

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

One-Dimensional Planning Problems

A planning problem $\langle \Sigma, G \rangle$ is *one-dimensional* if (intuitively)

- Only one fluent p (called the planning parameter) may take unbounded values from natural numbers;
- All fluents other than p take values from a finite set V.
- Initially, p may be arbitrary natural number.
- The only effect on p is to decrease it by one, *i.e.*,

$$p(do(a, s)) = x \equiv x = p(s) - 1 \land Dec(a) \lor$$

 $x = p(s) \land \neg Dec(a).$

• The only primitive test involving p in Σ and G is p = 0.

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Intuitions on Finite Verifiability

• Suppose we are given a one-dimensional planning problem and a candidate FSA plan.

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Intuitions on Finite Verifiability

- Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
- We have verified that the FSA plan correctly achieves the goal for

$$p=0,1,2,\cdots,N.$$

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Intuitions on Finite Verifiability

- Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
- We have verified that the FSA plan correctly achieves the goal for

$$p=0,1,2,\cdots,N.$$

• Can we now conclude that the FSA plan is correct in general??

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatize an FSA plan. Then there is an N₀ such that

 $\begin{array}{ll} If \quad \Sigma \cup FSA \cup \{p(S_0) \leq N_0\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s], \\ then \qquad \Sigma \cup FSA \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s]. \end{array}$

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatize an FSA plan. Then there is an N₀ such that

If $\Sigma \cup FSA \cup \{p(S_0) \leq N_0\} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s],$ then $\Sigma \cup FSA \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ is a one-dimensional planning problem with planning parameter p, and FSA axiomatize an FSA plan. Then there is an N₀ such that

 $\begin{array}{ll} If \quad \Sigma \cup FSA \cup \{p(S_0) \leq N_0\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s], \\ then \qquad \Sigma \cup FSA \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s]. \end{array}$

In particular, $N_0 = 1 + k \cdot m^{|V|}$, where

- *m* is the number of finite fluents in Σ;
- each such fluent may take at most |V| different values;
- k is the number of the program states in the FSA plan.

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Proof Sketch

Suppose, for the sake of contradiction, that there is a smallest $N > N_0$ such that if we start from p = N the FSA plan fails.

$$\begin{array}{cccc} \langle \vec{b}, N, Q_0 \rangle \rightarrow & \langle \vec{b}^{(N_0)}, N, q^{(N_0)} \rangle \rightarrow \\ & & \langle \vec{b}^{(N_0-1)}, N-1, q^{(N_0-1)} \rangle \rightarrow \\ & & & \\$$

Correctness for Reasoning about One-Dimensional Problems Hu & Levesque May 12, 2010 15 / 19

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Proof Sketch

Suppose, for the sake of contradiction, that there is a smallest $N > N_0$ such that if we start from p = N the FSA plan fails.

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Proof Sketch

Suppose, for the sake of contradiction, that there is a smallest $N > N_0$ such that if we start from p = N the FSA plan fails.

$$\langle \vec{b}, N, Q_0 \rangle \rightarrow \langle \vec{b}^{(N_0)}, N, q^{(N_0)} \rangle \rightarrow \\ \langle \vec{b}^{(N_0-1)}, N-1, q^{(N_0-1)} \rangle \rightarrow \\ & \ddots & \ddots \\ \langle \vec{b}^*, u, q^* \rangle \rightarrow \\ & \ddots & \ddots \\ \langle \vec{b}^*, v, q^* \rangle \rightarrow \\ & \ddots & \ddots \\ \langle \vec{b}^{(2)}, N-N_0+2, q^{(2)} \rangle \rightarrow \\ \langle \vec{b}^{(1)}, N-N_0+1, q^{(1)} \rangle \rightarrow \quad \text{FAIL}$$

Then $\langle \vec{b}, N - (u - v), Q_0 \rangle \rightarrow \text{FAIL too}!$

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

Proof Sketch

Suppose, for the sake of contradiction, that there is a smallest $N > N_0$ such that if we start from p = N the FSA plan fails.

$$\langle \vec{b}, N, Q_0 \rangle \rightarrow \langle \vec{b}^{(N_0)}, N, q^{(N_0)} \rangle \rightarrow \\ \langle \vec{b}^{(N_0-1)}, N-1, q^{(N_0-1)} \rangle \rightarrow \\ \dots & \dots \\ \langle \vec{b}^*, u, q^* \rangle \rightarrow \\ \dots & \dots \\ \langle \vec{b}^*, v, q^* \rangle \rightarrow \\ \dots & \dots \\ \langle \vec{b}^{(2)}, N-N_0+2, q^{(2)} \rangle \rightarrow \\ \langle \vec{b}^{(1)}, N-N_0+1, q^{(1)} \rangle \rightarrow \quad \text{FAIL}$$

Correctness for Reasoning about One-Dimensional Problems Hu & Levesque May 12, 2010 15 / 19

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Towards a Tighter Bound

- N_0 is exponential and thus impractical for many cases.
- We proposed an algorithmically obtained bound N_t , which is usually much smaller than N_0 :
 - Verify that the FSA plan is correct for $p = 0, 1, 2, \cdots$.
 - Until for some N_t ,

$$\langle \vec{b}, N_t, Q_0 \rangle \rightarrow \langle \vec{b}^{\star}, u, q^{\star} \rangle \rightarrow \langle \vec{b}^{\star}, v, q^{\star} \rangle \rightarrow \text{SUCCESS}.$$

One-Dimensional Planning Problems Intuitions on Finite Verifiability Main Theorems Experimental Results

< ロ > < 同 > < 三 > < 三 >

Experimental Results

We used the different bounds in the test phase of FSAPLANNER on four one-dimensional planning problems (treechop, variegg, safe and logistic).

Problem	treechop	variegg	safe	logistic
N _{man} *	100	6	4	5
Time (secs)	0.1	0.12	0.09	3.93
N ₀	18	345	4098	514
Time (secs)	0.03	$> 1 \; day$	$> 1 {\sf day}$	$> 1 {\sf day}$
Nt	2	3	2	2
Time (secs)	0.01	0.08	0.08	3.56

*: N_{man} is the manually estimated test bound without correctness guarantee.

Conclusion and Future Work Related Work

< ロ > < 同 > < 三 > < 三 >

Conclusion and Future Work

Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Conclusion and Future Work Related Work

< ロ > < 同 > < 回 > < 三 > < 三 >

Conclusion and Future Work

Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Future work:

• Investigate correctness guarantee for more general classes.

on of Correctness Conclusion an For 1-D Problems Related Work

Related Work

- Simple problems for KPLANNER (Levesque 2005);
- Goal achievability for rank 1 theories (Lin 2008);
- Extended-LL problems (Srivastava et al. 2008);
- Abacus programs (Srivastava et al. 2010);
- Deductive approaches (Manna&Waldinger 1987, Magnusson&Doherty 2008);
- Weak guarantee (Winner&Veloso 2007, Bonet et al. 2009);

< ロ > < 同 > < 三 > < 三 >

• Model checking (Clarke et al. 1999).