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Background on Automated Planning

Automated Planning

Given a formal specification of a dynamical system, the initial
state and a goal condition, find an action strategy that realizes
the goal.

Different types of planning
Classical planning: STRIPS [Fikes et al. 71], ADL [Pednault 89];
Sequential extensions: numerics and time [Fox and Long 03], temporally
extended goals [Gerevini and Long 05], etc;
Conformant planning [Smith and Weld 98];
Conditional planning [Petrick and Bacchus 98; Bertoli et al. 98].
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Motivation for Iterative Planning

Planning tasks above are concerned with individual problems,
e.g.

Three blocks are on the table. Stack them into a tower!
A tree can be felled with no more than two chops. Chop it
down!

What if we have 5 blocks on table or a tree needing 4 chops?

It is desirable to find a solution to a class of problems. Then
solving a problem in the class is simply an instantiation of the
solution. This requires loops [Levesque 05]!

Learn from small problems so as to more efficiently solve
larger ones.
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Plan Representation

Robot Programs

Ideally, a plan is a deterministic procedure to follow without
further deliberation.

Robot programs are defined inductively for representing loopy
plans [Levesque 96]

1 nil is a robot program;
2 if A is a primitive action and P is a robot program, then seq(A, P) is also

a robot program;
3 if A is a sensing action with sensing results R1, · · · ,Rn, and P1, · · · , Pn

are robot programs, then case(A, [if(R1, P1), · · · , if(Rn,Pn)]) is also a
robot program;

4 if P and Q are robot programs, and P′ is the result of replacing some of
the occurrances of nil by exit and the rest by next, then loop(P′

, Q) is a
robot program.
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An Example

loop(
case(look,

[if(down,exit),
if(up,seq(chop,next))
]

),
seq(store,nil)

)
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Related Problems

Program synthesis [Manna and Waldinger 92; 80]
Given a constraint on valid input P(x) and the relationship between input

and output R(x , y), find a program f (x) such that for any input a

satifsying P(a), the output z = f (a) satisfies R(a, z).

Grammar induction [Section 8.7 of Duda et al. 01]
Find the underlying grammar that can generate the observed strings from

a language.

Repeated-attempt problems
Pick up block with success probability p [Haddawy and Ngo 95]
The probability of getting a good egg is p [Bonet and Geffner 01]
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Deductive Approaches

Generate a loopy plan as a by-product of proving a mathematical
theorem.

Tableau-based sequent calculus [Manna & Waldinger 80; 87]

Use an <assertion,goal,output> triple (sequent) to represent
theorems
A set of derivation rules to obtain correct new sequents
Recursion introduced by a well-founded induction rule
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Deductive Approaches

Deduction-based refinement planning [Stephan & Biundo 96]

Problem specification and executable plan represented in a
unified language
Refinement rules to gradually substitute specification with
executable plan
Loop structure exists in the original non-executable problem
specification
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Non-Deductive Approaches

KPLANNER: Generate and Test [Levesque 05]

Solves a class of planning problems parameterized by an
integer (plan parameter)

Generate a loopy plan that works for a small integer N1 (the
generation bound)

Exhaustively search for a conditional plan that works for N1

Wind the conditional plan into a loopy plan

Test the resulting plan with a larger integer N2 (the test
bound)

If it passes the test, the plan is returned.
If it fails, go back to the generation phase.

Correctness
The returned plan is guaranteed to work for N1 and N2 only,
but in practice, it usually works for all integers.
For problems with certain properties, the returned plan is
guaranteed to work in general.
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Non-Deductive Approaches

loopDistill: Identifying Regularity in Partial-Order Plans
[Winner & Veloso 07]

Given a partial order plan for a planning problem, find
instances of a same action.

Greedily identify a largest matching subplan by considering
neighboring actions.

Conditionals and loops are constructed from the matching
subplans
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Non-Deductive Approaches

Role-Based Abstraction [Srivastava et al. 08]

Characterize the role of an object by the truth values of all
unary predicates applied to the object.

Given a concrete plan for an example problem, construct an
abstract plan where objects are replaced by their roles.

Based on the repetition pattern of actions in the abstract
plan, identify loops.

Guaranteed correctness for extended-LL domains.
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Non-Deductive Approaches

Explanation-Based Generalization

Bagger2 generates recursive concepts as explanation-based
learning with the ability of “generalization-to-N” [Shavlik 90].

With a similar idea, [Schmid & Wysotzki 00] learns recursive
macro operators for planning domains.

Predefined data-type structures (natural numbers, lists, sets,
etc.);
Explore problems of small complexity to generate loops that
work for all, like in KPLANNER.
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Summary of Different Approaches

Deductive approach

Provable correctness
Slow and may require human expertise

Non-deductive approach

Efficient and automatic
Weak guarantee of correctness
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Underlying Theory: Finite Verification

Finitely verifiable theories have the property that whether a
sentence is a theorem can be checked wrt a finite set of
models of the theory [Lin 2007].

Applied to planning domains, to see if a loopy plan works for
a finitely verifiable problem

Identify the models that is sufficient for the judgment
Correctness verified by finite model checking
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Underlying Theory: Identification in the Limit

Provable correctness relies on the assumption that there is a
complete characterization of legal initial states.

When no such complete characterization is available, finding
loopy plans resembles “identification in the limit” [Caldon &
Martin 07; Gold 67].

There is an infinite supply of instances of a concept
The goal is to learn the concept
The learner has a hypothesis that explains the observations so
far
The learner revises its hypothesis when it does not explain the
newly observed instance
The concept is considered learnable if the learner identifies it
after finite mind changes
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Possibilities for Future Work

Find algorithms that

are more efficient
solve more problems

Identify classes of problems with provable correctness
guarantees

Applications to learning for planning (IPC learning track)
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