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Abstract

This paper surveys existing work on iterative planning.1 It starts with

the motivation and background knowledge in Section 1, and then reviews

some existing approaches to finding loopy plans in Section 2. Section 3

discusses about the underlying theory, which is followed by the possible

directions for future work in Section 4 and conclusion in Section 5.

1 Introduction

In this section, I will introduce classical planning and the motivation for gener-
ating program-like plans. A logic for reasoning about such planning domains,
along with candidate languages for representing the plans, will then be intro-
duced. Finally, some related problems, including program synthesis and gram-
mar induction, will be mentioned, and their differences from planning with loops
discussed.

1.1 Automated Planning

In artificial intelligence, the area of automated planning usually refers to finding
a sequence of legal actions whose execution will change the world from the
specified initial state to one that satisfies some goal condition [32].

A classical model for planning is STRIPS [7], where the problem is described
by a set of conditions that characterize what is true in a state, a set of action
operators that transforms a state into another, an initial state, and a goal condi-
tion. States and conditions are typically represented by a list of atomic formulas
that hold in them. An action operator consists of a precondition that must be
satisfied before the the action can be executed, an add list of facts that will
become true after its execution and a delete list of facts that will cease to be
true. A plan for a STRIPS problem is a sequence of ground action, which is
guaranteed to be executable from the initial state, and the goal condition is
satisfied after the execution.

1I use the terms iterative plan and loopy plan interchangeably to refer to program-like
plans possibly with loops and/or recursions.
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The STRIPS model of planning is extended by Pednault in his ADL to handle
disjunctive and quantified conditions, conditional effects, etc [27]. With the
introduction of the International Planning Competition [8] in 1998, McDermott
et al. proposed PDDL [11], a standard language for describing planning domains
and problems that includes STRIPS and ADL as fragments. Recently, the
planning community has explored further extensions including numerical fluents,
time, concurrency [9], temporally-extended constraints and preferences [10],etc.

All the work in this branch shares one thing in common: the solution to the
planning problem is a sequence of actions, due to the determinism of actions
and states. We call this type of problem sequential planning.

Consider a STRIPS problem in the blocks world, where block A is initially
on C, C on B, and B on the table. If the goal is to move all the blocks to the
table, then the following action sequence is a valid plan:

unstack(A,C); putdown(A); unstack(C,B); putdown(C)

where unstack(X,Y ) means to pick up block X which is located on Y , and
putdown(X) means to put X onto the table.

As another example, consider a “tree-chopping” problem,2 where the goal is
to let down a tree and put away the axe. Assume that two consecutive chops
will bring the tree down, provided the tree is up before the chops and the axe
is available, and a store action will put away the axe. If in the initial state, the
tree is up and axe out, then the sequential plan

chop; chop; store

is a valid solution to the planning problem.
Another type of planning where the plan is a straight line sequence of actions

is conformant planning [35], where both the states and the actions may be non-
deterministic. The task is to find a linear plan, whose execution guarantees to
achieve the goal, no matter what the true state or effect of actions turn out
to be within the non-determinism. In conformant planning, the world state is
assumed to be unobservable, i.e., there is no way for either the planner or the
plan executor to rule out any possible world within the known non-determinism.

For instance, in the tree chopping example above, if we only know that the
tree may need 0, 1 or 2 chops to fell, the problem is insoluble, because it is not
known whether the tree is up (needing 1 or 2 chops) or down (needing 0 chop),
and chopping is only possible if the tree is known to be up. However, if we
assume chopping is allowed as well even when the tree is down, then the plan

chop; chop; store

will still work, although the chop actions may or may not be necessary.
If one assumes that the world is observable but possibly non-deterministic,

then the plan need no longer be a sequence, but instead, may have branches
based on the facts at run time in the real world. This type of problem is called
conditional planning.

2Both the problem and the plan representation are adapted from [16].

2



There are two different ways to formalize how a plan can gain this run-time
information. The first is based on the idea of sensing actions. For example,
in the tree-chopping problem, if we return to the assumption that chop is only
possible when the tree is up, but assume there is a sensing action “look”, which
will tell the plan executor whether the tree is up or down, then the following
conditional plan will solve the problem:

CASE look OF
- down: store
- up: chop;

CASE look OF
- down: store
- up: chop; store

ENDC
ENDC

The second way is to assume the plan has access to some observation variables
in the domain at run time, and can branch according to their values. In the
tree chopping example, if we assume there is no sensing action, but the plan
executer knows the condition of the tree, then we may have a different style of
conditional plan:

IF tree=down THEN store
ELSE chop

IF tree=down THEN store
ELSE chop

store
ENDIF

ENDIF

Existing work on conditional planning includes Petrick and Bacchus [28, 29],
Bertoli et al [1], etc.

1.2 Motivation for Iterative Planning

The planning tasks above are concerned with individual problems, e.g., the
blocks problem only asks for a plan for three blocks on one stack, and the tree
chopping only for a plan where (at most) two chops are needed.

If we are given a new problem with 5 blocks in two stacks or a tree that
needs 8 chops, for example, then the planner has to be run from scratch to find
the plans, though these instances seem to be in the same “style” as the previous
cases.

It would thus be ideal to find a plan that works for a class of problems, so
that it can achieve the goal for any problem instance in the class. For example,
in the blocks world, we may like to have a plan, which can move all the blocks
onto the table, no matter how many blocks there are and how they are stacked;
in the tree chopping example, it would be desirable to have a plan that chops
the tree down no matter how many (finite) chops are actually needed to fell it.
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For this purpose, sequential and conditional plans are not sufficient, and we
need loops (or recursion) in the plan [16].

For example, if we are only told that the tree will eventually fall, but the
required number of chops is unknown, the following plan with a loop will do.

LOOP
CASE look OF

- down: EXIT
- up: chop;

NEXT
ENDC

ENDL;
store

This loopy plan can be considered a generalization of the conditional plan
in the previous subsection, in that it works for any tree-chopping problem with
arbitrary (finite) number of required chops.

Similarly, in the blocks world, the following loopy plan always achieves the
goal to move all the blocks to the table.3

LOOP
CASE exist clear(X) on(Y) OF

- yes: unstack(X,Y);
putdown(X)

- no: EXIT
ENDC

ENDL

Intuitively, the “sensing action” exist clear(X) on(Y) checks if there is a clear
block on top of another block. If so, then the top one is unified with X and the
one beneath it with Y.

Apart from the generality of the plans, finding a loopy plan may also be con-
sidered as a learning process, and contribute to the solution of large sequential.
Typically, it is difficult to find a plan for a large domain. For instance, it may
take much longer time to find a plan for a blocks world with 100 blocks than
for 3 blocks. However, if we can efficiently learn a loopy plan that works for
any number of blocks from some example problems with only 3 blocks, then the
100-block solution is simply the sequence of actions obtained by executing the
loopy plan, which can be done extremely efficiently.

1.3 Logical Foundations

The informal discussion above introduces the main idea of planning and mo-
tivates planning with loops in particular. To formally reason about planning
domains and represent plans, we introduce, in this subsection, the situation
calculus and two robot programming languages based on it.

3Abusing Levesque’s syntax of robot programs in [15].

4



1.3.1 The Situation Calculus

First proposed by McCarthy [26] and later refined by Reiter [31], the situation
calculus is a logical language for representing and reasoning about dynamical
worlds.

The domain of the logic has three sorts, namely, action for actions, situa-
tion for situations, and object for everything else. The world evolves with the
execution of an action from one situation to another. A situation is represented
by a sequence of actions, with S0 denoting the initial situation where no action
has occurred yet. The binary function do(a, s) denotes the situation obtained
by executing action a in situation s. In the language, the only function sym-
bols of sort situation are S0 and do(a, s). Properties that may change their
value from situation to situation are called fluents. A relational (respectively,
functional) fluent is a predicate (respectively, function) that carries a situation
term as its last argument. We use φ[s] to denote the formula obtained from φ

by restoring the situation argument to all fluents in φ with s. Predicates and
functions carrying no situational arguments are rigids, which have fixed values
in all situations.

A basic action theory Σ is needed to characterize any dynamic domain, which
consists of the following five sets of axioms [31]:

• Precondition axioms Σpre, one for each action of the form
Poss(a, s) ≡ Π(a, s);

• Successor state axioms Σssa, one for each fluent of the form (in the case
of relational fluent) F

(

~x, do(a, s)
)

≡ Ψ(~x, a, s), to characterize the effects
of actions while avoiding the frame problem [25];

• The initial database Σ0 specifying facts about the initial state;

• Unique names axioms on actions Σuna;

• Foundational axioms for situations FA.

Given the action theory Σ = Σpre ∪Σssa ∪Σ0 ∪Σuna ∪FA, the task of rea-
soning about facts in a situation after a sequence of actions has been performed
is known as the projection problem. One way to solve the projection problem
is regression [31], which transforms a regressible formula ϕ that may mention
non-initial situations into R(ϕ) by repeatedly replacing Poss(a, s) with Π(a, s)
and F (~x, do(a, s)) with Ψ(vecx, a, s). Thus, the only situation term in R(ϕ) is
S0, and it can be proved that Σ |= ϕ if and only if Σ0 ∪ Σuna |= R(ϕ) [30]. As
a result, with regression, the projection problem can be reduced to first-order
theorem proving in the initial theory Σ0.

1.3.2 Golog

Golog is a logic programming language for high-level control of intelligent agents [14].
It is based on the basic action theory in the situation calculus introduced above,

5



and offers the possibility to express complex actions with basic control struc-
tures, such as if φ then δ1 else δ2 and while φ do δ, which are similar to the
constructs in conventional programming languages. Meanwhile, it allows for the
specification of non-deterministic behavior. All of these features are treated as
macros which finally expand to formulas in the situation calculus.

The semantics of Golog constructs is formally defined by an abbreviation
Do(δ, s, s′) as follows:

1. Primitive actions:

Do(a, s, s′)
def
= Poss(a, s) ∧ s′ = do(a, s)

where a is a primitive action.

2. Test actions:

Do(φ?, s, s′)
def
= φ[s] ∧ s = s′

where φ is a situation-suppressed fluent formula.

3. Sequence:

Do(δ1; δ2, s, s
′)

def
= ∃s′′.Do(δ1, s, s

′′) ∧ Do(δ2, s
′′, s).

4. Non-deterministic choice of two actions:

Do
(

(δ1|δ2), s, s
′
) def

= Do(δ1, s, s
′) ∨ Do(δ2, s, s

′).

5. Non-deterministic choice of action arguments:

Do
(

(πx)δ(x), s, s′
) def

= ∃x.Do
(

δ(x), s, s′
)

.

6. Non-deterministic iteration: Execute δ zero or more times.

Do(δ∗, s, s′)
def
=

∀P.
{

∀s1.P (s1, s1) ∧ ∀s1, s2, s3.
[

P (s1, s2) ∧ Do(δ, s2, s3) ⊃ P (s1, s3)
]

}

⊃ P (s, s′)

Conditionals and while loops can then be defined in terms of the above con-
structs as

if φ then δ1 else δ2 endIf
def
= [φ?; δ1]|[¬φ?; δ2]

while φ do δ endWhile
def
=

[

[φ?; δ]∗;¬φ?
]

Golog, as introduced here, is a powerful action language, yet it is not di-
rectly suitable for representing loopy plans. This is due to its non-deterministic
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nature, i.e., Golog programs may need to search different choices, possibly with
backtracking. If this non-determinism were allowed, then the Golog program

while ¬goal do (πa)[Appropriate(a)?; a] endWhile

would be a generic plan for solving any planning problem. However, running
this generic plan is as difficult as the planning task itself [15]. Ideally a “plan” is
a procedure for an agent to follow without further deliberation. This motivates
the introduction of a plan representation language, where the execution is fully
deterministic, so that the plan executer can follow it with no ambiguity or
backtracking. The robot programs described below is one such language.

1.3.3 Robot Programs

When formalizing planning with sensing, Levesque proposed a simple robot
program language whose syntax and execution semantics is inductively defined
as follows [15, 16]:

1. nil is a robot program executed by doing nothing;

2. for any primitive action A and robot program P , seq(A,P ) is a robot
program executed by first performing action A, ignoring any sensing result,
and then performing the program P ;

3. for any sensing action A that has sensing result R1, · · · , Rn, and any pro-
gram P1, · · · , Pn, case

(

A, [if(R1, P1), · · · , if(Rn, Pn)]
)

is a robot program
executed by first performing action A, and then performing Pi if the re-
turned sensing result is Ri;

4. if P and Q are robot programs, and P ′ is the result of replacing some of
the occurrences of nil by exit and the rest by next, then loop(P ′, Q) is a
robot program executed by first executing P ′, and whenever P ′ ends with
next, then run P ′ again, until P ′ ends with an exit at which point Q is
executed.

The tree chopping plans in Section 1 can be considered as pretty-printed version
of robot programs.

The execution of a robot program generates a history, which is a sequence
of pairs (ai : ri), where the first element, ai, is the i-th action that the robot
program proposes to execute, and the second, ri, is the corresponding sensing
feedback from the environment. In the tree chopping example,

[look:up; chop:ok]

is a legal history, but a partial one in the sense that the robot program is not
run to termination to generate it. In contrast,

[look:down; store:ok]

and
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[look:up; chop:ok; look:up; chop:ok; look:down; store:ok]

are legal and complete histories.
This robot program language, though simple, is powerful. Indeed, Lin and

Levesque has shown that robot programs as defined above are expressive enough
to represent any effective controller, provided certain “Turing-machine” actions
are provided [20].

1.4 Work Related to Iterative Planning

1.4.1 Program Synthesis

Closely related to iterative planning is program synthesis, which refers to the
automatic derivation of a program to meet a given formal specification of its
behavior.[24]

Depending on their functionality, the programs are categorized as applicative
or imperative.

An applicative (or functional) program calculates an output based on the
given input, producing no side effect during the computation except for the
necessary modification of internal data structure. Problems of this type can be
expressed as

Given a constraint on valid input P (x) and the relationship between
input and output R(x, y), find a program f(x), such that for any
input a that satisfies P (a), the output z = f(a) satisfies R(a, z).

As an example, consider the task of synthesizing a program that reverses a list.
Let List(x) be the predicate “x is a list”, and R(x, y) be “x is y in reverse
order”, then the following is a specification for the task to synthesize a program
that reverses a list.

Find a program rev(x) such that for any l satisfying List(l), z =
rev(l) satisfies R(l, z).

Imperative programs, on the other hand, may alter the external data struc-
ture or to produce other side effects, apart from possibly returning an output of
some sort. An example of this type is the Golog program described in the pre-
vious section, which produces a sequence of actions as output, and also changes
the state of the world.

The loopy plans that we are interested in here fall into the category of
imperative programs. Indeed, if the behavior of the loopy plan is fully specified,
then iterative planning is simply a special case of imperative program synthesis.
Here, a fully specified behavior means a sound and complete axiomatization of
the planning domain. That is to say, any model of the theory corresponds to
a real world in the planning domain, and any possible world in the planning
domain corresponds to a model of the theory.

It may appear that iterative planning, as a special case of program synthesis,
is not worth separate research. Unfortunately, this is not true. First, much
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of the research on program synthesis is concerned with applicative programs,
so imperative program synthesis still needs further investigation. Second, as
a planning problem, iterative planning contains rich structures that may be
utilized in the algorithm, so that it may become easier to solve than general
program synthesis.

1.4.2 Grammar Induction

If the dynamics of the planning domain is fully specified, but no complete ax-
iomatization for the initial possible worlds is given, then the correctness of the
resulting program cannot be guaranteed, because the plan can guarantee to
work only for the known initial worlds. In this case, iterative planning is a form
of inductive inference, and shares some commonality with grammar induction
(Section 8.7 of [6]).

The goal of grammar induction is to find the underlying grammar that can
generate the observed strings from a language. There can be three types of
inputs to the learner: positive examples only, positive and negative examples,
or oracle feedback [12]. With positive examples only, the learner is only provided
with a sequence of positive examples of the language; for the case of positive and
negative examples, the learner is given a sequence of strings, each labeled with
whether or not the string belongs to the language; for the oracle feedback type,
the learner is allowed to give any string to an oracle, which will then return
whether or not the proposed string belongs to the language.

If we consider the set of all legal and complete histories of a planning problem
as a formal language where the alphabet consists of actions and sensing outcomes
of the problem, and the loopy plan as a grammar that generates or accepts the
language, then the iterative planning problem is cast into a grammar induction
problem. Furthermore, it falls into the category “oracle feedback”, since the
action theory serves as an oracle that tells the planner whether a history is legal
and achieves the goal.

1.4.3 Repeated-Attempts Problems

Another related type of problems involves probabilistic domains, where the out-
come of actions are non-deterministic and outcomes independent, so repeated
attempts may be needed for a desired outcome of the action to occur. Unlike
in the previous two subsections where the seemingly unrelated problems have a
deep connection with iterative planning, problems of the repeated-attempt style
are less close to our notion of iterative planning than they may first appear.

One special case of the repeated-attempts category involves probability,
which is studied in-depth in decision-theoretic planning. For example, when
picking up a block on the table, there is possibility p that the block is success-
fully picked up and 1 − p that it remains on the table [17]. So, if one wants
to guarantee the block in hand, the pick-up action will need to be performed
repeatedly. A similar problem is in the omelette domain where the chance of
getting a good egg is a fixed number [3]. In these examples, the repetition of
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actions have independent outcomes, but such independence does not exist in
deterministic domains like tree chopping or clearing blocks.

Cimatti et al. proposed three criteria for plan validity in non-deterministic
domains [5]. A weak plan is one that may achieve the goal, but not guaranteed to
do so; a strong plan is one that always achieves the goal, no matter what output
each action generates; a strong cyclic plan is one that guarantees to achieve the
goal under a “fairness assumption” and possibly after repeated trial and error.
According to this definition, all repeated-attempts problems that need loopy
plans can at best have strong cyclic, and cannot have strong solutions. This
is due to the outcome-independence assumption that they insist on the action
definition. The iterative planning problems that we are interested in, in contrast,
may have “strong” solutions even though loops are needed in them.

2 Existing Approaches to Iterative Planning

In this section, I will survey existing work on iterative planning, which falls
roughly into two categories, namely, deductive and non-deductive (inductive)
approaches.

2.1 Deductive Approaches

Deductive approaches to planning typically generate a plan as a by-product
of proving a mathematical theorem. A short survey on deductive planning is
conducted by Biundo in [2]. However, most work in this category does not
attempt to generate loopy or recursive plans, but here are a few exceptions.

In an early work, Manna and Waldinger proposed a tableau-based sequent
calculus to deductively synthesize applicative programs [22]. Domain axioms
and the program specification are represented by sequents, along with a math-
ematical induction rule. Each sequent is a three-column table representing as-
sertions, goals and outputs. For example, the program specification “find a
program f(x) such that for all input a satisfying constraint P (a), the output
f(a) satisfies R(a, f(a))” can be represented by

assertions goals outputs f(a)
P (a)

R(a, z) z

The meaning of a sequent is that if all instances of the assertions are true,
then at least one of the goals is true. Associated with this sequent notation is
a set of derivation rules, which preserves correctness and can be used to obtain
new sequents. The deduction terminates whenever the assertion false or the
goal true is derived. At this point, the content in the “outputs” column of this
sequent is a program that satisfies the problem specification.

Manna and Waldinger later extended this tableau-based approach with a
variant of the situation calculus for representing actions dynamics, so as to
synthesize recursive plans in planning domains [23]. Recursion is introduced
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by the well-founded induction rule, i.e., an induction rule over a well-founded
relation. This works well when there is a perfect match between the current goal,
plan and the induction hypothesis. However, when the matching is close but
not perfect, generalization is needed to prove a stronger induction hypothesis.
Unfortunately, how this generalization can be automated remains unclear.

With a similar goal, Stephan and Biundo proposed a deduction-based refine-
ment planning approach based on a temporal planning logic [38]. Their idea of
refinement planning is to start from a non-constructive problem specification,
and gradually refine it to generate an executable plan. Since representations of
specifications and plans are on the same linguistic level in temporal planning
logic, the object of the refinement is a mixed representation of the two, where
some part of the specification is replaced by executable plan segments in each
of the refinement steps. Due to the soundness of the refinement rule, the plan
that they finally derive is guaranteed to be provably correct.

Unlike Manna and Waldinger’s approach [23], loops are not introduced in
the refinement steps, but instead prefabricated in the initial abstract problem
specification. As a result, this approach falls into the category of refining human-
designed abstract loopy plans, instead of creating them automatically.

In both approaches above, iterative planning is an interactive process, where
human is needed to provide either the strengthened loop invariant or the high
level plan. Indeed, no complete, fully automatic procedure exists for deductive
iterative planning, since plans with recursion are Turing complete. However, if
we are only after an incomplete algorithm which can solve interesting special
cases, such deductive approach may still work, armed with clever heuristics.

For example, Magnusson and Doherty recently proposed a deductive plan-
ning framework for maintenance-goal problems in temporal action logic [21]. In
order to get around the invariant strengthening problem also faced by Manna
and Waldinger, they incorporated a regularity heuristic and a synchronization
heuristic to help the deductive reasoner find useful invariants. An induction rule
is then used to automatically form a plan with loops, after the induction hy-
potheses as well as the base cases are identified. Magnusson and Doherty proved
that both the heuristics and the induction rule are sound, i.e., whenever their
algorithm outputs a plan, it is guaranteed to be correct. They also showed that
their planner solves a practical surveillance problem based on this approach.

2.2 Non-deductive Approaches

In this section, I will review work on non-deductive approaches to iterative plan-
ning. These methods are typically based on identifying repeating patterns in
loopless plans, and then greedily form loops from them, so they sidestep the
reasoning about induction hypothesis and loop termination. As a result, non-
deductive approaches are typically more efficient than their deductive counter-
parts, but meanwhile offer a much weaker correctness guarantee.
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2.2.1 Generate and Test

In a recent work [16], Levesque implemented a planner called KPLANNER that
automatically identifies loopy plans represented with robot programs defined in
Section 1.3.3.

KPLANNER is designed for automatically finding robots program for plan-
ning problems with a “planning parameter”. This parameter is a numerical
fluent in the planning problem that is not known or even bounded at planning
time, and thus requires the existence of loops in the plan.

To solve this type of problems, KPLANNER repeatedly shifts between a
generation and a testing phase. In the generation stage, the planner is provided
with a small constant N1 called the generation bound as the value of the planning
parameter, and is asked to exhaustively search for loopy plans that works for
this value. This is done by first finding a conditional plan that works for N1.
Then, the planner attempts to wind the conditional plan into a loopy one, and
whenever the winding succeeds, the resulting plan is passed to the testing phase.

During the testing phase, the plan is tested against a larger constant N2

called the testing bound. If the plan fails in this phase, then KPLANNER
enters the generation phase again, and continues with the search for loopy plans
that works for N1, until some plan passes the testing phase, at which point the
plan is returned as the output.

As we can see, the output plan is not guaranteed to work for all possible
values of the planning parameter, but instead only for N1 and N2. However, for
many practical problems as shown in the paper, the resulting plan is indeed a
valid solution that works for all values. Levesque also proved as a theorem that
if the planning problem satisfies certain constraints, then the plan generated by
KPLANNER is guaranteed to be correct for all possible values of the planning
parameter.

2.2.2 Identifying Regularity in Partial-Order Plans

In contrast to using a planning parameter, Winner and Veloso developed algo-
rithms for finding program-like “domain specific planners” (dsPlanners), for a
class of ADL problems [41, 42].

The input to their first algorithm, Distill [41], is the domain specification,
along with solutions to some example problems, which are processed sequentially
to revise the current dsPlanner starting from an empty program. The output
of Distill is a compact conditional plan that solves all the examples and likely
other similar problems.

To accommodate an example solution, the plan is first parametrized to best
match the current dsPlanner, and then converted into a new dsplanner by intro-
ducing if statements for selecting objects for the parameters. The conditions
for the if statement are the initial, current and goal state terms that are relevant
to the plan, which can be obtained using the minimal annotated consistent par-
tial ordering [40] of the observed plan. This partial ordering information is also
stored for later merging the existing dsPlanner with the newly obtained one.
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To merge the two dsPlanners, the Distill algorithm searches through each
of the if statement in the current program, and tries to find a matching in the
new dsPlanner. If such a matching is found, then the two if statements are
combined; otherwise, a new if statement is appended to the end of the current
dsPlanner.

Distill, in its simplest form, cannot introduce loops to the resulting dsPlan-
ners. To overcome this drawback, Winner and Veloso later proposed a variant
of the algorithm called LoopDistill, which is able to automatically identify
parallel and serial loops [42].

The basic idea is similar to that of Distill. Here, instead of finding a
dsPlanner for the whole parametrized plan, it identifies the largest matching
subplan, and convert the repeating occurrences of these subplans into a loop.
This procedure is repeated greedily, until no further loops can be formed. Unlike
in the Distill algorithm, no procedure for merging dsPlanners with loops is
given in the paper, so LoopDistill essentially only uses one single plan for
generalization, and it is unclear how multiple example plans can be taken into
account.

Winner and Veloso claim that LoopDistill can synthesize dsPlanners with
complex but non-nested loops.

2.2.3 Using Role-Based Object Abstraction

With a similar goal to find loopy plans for a class of STRIPS-like problems,
Srivastava et al. proposes to use state aggregation to group objects in the same
role into equivalence classes, and obtain an abstract state representation [36].

In their formalism, a role is defined as a conjunction of literals consisting of
every abstraction (unary) predicate or its negation. As a result, a domain with
N unary predicates can have at most 2N roles and thus at most 2N abstract
objects, no matter how many actual objects exist in the domain.

To obtain a loopy plan, their algorithm only needs one concrete plan contain-
ing sufficient un-rollings of some loops. From this plan, all the actual objects are
replaced by their corresponding abstract objects. At this point, the repeating
pattern of the plan becomes obvious, and loops can be obtained by folding the
repeating sections in the abstract plan [37].

Like Winner and Veloso’s approach, their algorithm can only detect non-
nested loops. However, Srivastava et al. require the stronger assumption that
independent actions within each repetition must happen in the same order so
that loops can be detected, which is less general than Winner and Veloso’s par-
tial order representation. Like LoopDistill, it is unclear how multiple example
plans can help improve the generality or accuracy of the resulting loopy plan in
Srivastava et al.

On the other hand, the role-based formalism has the advantage that it can
identify sufficient conditions for the resulting loopy plan to be provably cor-
rect. This is done by back-propagating constraints on three-valued structures
in the abstract space [36]. As a theorem, they proved that extended-LL (linked-
list) domains are amenable to back propagation, and thus loopy plans in these
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domains found by their algorithm are always correct.

2.2.4 Explanation-Based Generalization

Shavlik’s bagger2 views the problem of generating recursive and iterative con-
cepts as an explanation-based learning problem extended with the ability of
“generalizing to N” [34], and the system applies naturally in planning domains
such as blocks world. Based on a similar idea, Schmid and Wysotzki learn
iterative macro operators for a planning domain [33] by inductive program syn-
thesis [13]. Unlike bagger2, where the generalization is done over the proof
tree of the background theory, they assume basic data type structures (natural
numbers, lists, sets, etc.), explore problems of small complexity, and generate
finite programs from the universal plans of these problems, whose syntactical
structure is then explored to generate loops.

3 Theories on Correctness

3.1 Finite Model Checking

Lin recently proposed the concept of finitely-verifiable theories [18]. Intuitively,
a finitely-verifiable class of sentenses has the property that whether or not a
sentence in the class is a theorem can be checked with respect to a finite set of
models of the theory.

This idea, applied to the action domain, can be used to prove goal achievabil-
ity in a set of initial states [19]. In particular, to see if a loopy plan solves all the
problems in a finitely-verifiable planning domain, one can use Lin’s result, and
identify the finite set of models that is sufficient for the judgment. Then, the
correctness of the loopy plan can be concluded by model checking. As a result,
Lin’s result serves as an alternative way of proving plan correctness, and may
be an especially useful supplement to the non-deductive planning approaches
where correctness is not guaranteed by the planner itself.

3.2 Identification in the Limit

When using Lin’s notion of finite-verifiability in planning domains, meta-theoretic
analysis must be performed over the models characterizing legal initial states [19].

When this characterization is not available, it is not possible to obtain similar
correctness result. This happens, for example, under the common paradigm
where a list of possible initial states are given, and the planner does not have
clue about validity of other initial states.

As Caldon and Martin pointed out [4], this setting can be understood with
Gold’s learnability model of identification in the limit [12]. It is a grammar
learning model where the learner is required to learn a grammar from an infinite
supply of sentences generated by the grammar. After seeing each new sentence
in the sequence, the learner knows immediately whether its current hypothesis
(of the grammar) is wrong. If it is, then the learner may revise its hypothesis,
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before observing the next example. A grammar is then considered learnable
in this model, if the learner can make at most finite mind-changes before its
hypothesis is correct.

Although the connection has be identified, how this learnability model can
contribute to theoretical results in planning with loops, such as proving correct-
ness properties, remains an interesting question and left to be explored.

4 Future Work

As can be seen from our discussion in Section 2, iterative planning remains
a challenging task in that deductive approaches are slow and requires human
interaction, whereas non-deductive approaches typically have limited applica-
bility. Finding an efficient and more general algorithm is a candidate direction
for future work.

It is also interesting to apply the idea of iterative planning to other problem
domains. For example, in 2008, the International Planning Competition (IPC)
introduced a new learning track [39], where each participating planner is first
given a few domains and a dozen example problems in each of them in the
learning phase. The planner then can take one week’s time to extract knowledge
from these examples, which can be used in the testing phase to help improve
efficiency and/or plan quality on new problems in the same domain.

This paradigm is very close to the non-deductive iterative planning themes
that we covered in Section 2.2. It is likely that results in iterative planning can
be applied or otherwise contribute to more efficiently solving the competition
domains or improve plan quality.

On the theoretical side, correctness guarantee is of of the areas to be ex-
plored. As mentioned, many of the non-deductive approaches, including KPLAN-
NER, do not have a strong guarantee on the correctness of the generated plan.
It is thus important to identify classes of problems that these algorithms guar-
antee to work. Besides, identifying the complexity of the planning task is also
a promising yet challenging line of research.

5 Conclusion

This paper serves as a short survey on the existing approaches to planning
with loops or recursions. Although this is not a new topic, progress has been
limited with the deductive approach in the past three decades, due to its intrinsic
difficulty. Recently, however, there is a revitalization of this topic, and many
non-deductive alternatives are proposed and analyzed. Further investigation
and extension of these ideas remains an interesting research direction, and new
theories about iterative planning may be yet to be explored.
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