
A Generic Framework and Solver for Synthesizing Finite-State Controllers

Yuxiao Hu
Department of Computer Science

University of Toronto
Toronto, ON M5S3G4, Canada
yuxiao@cs.toronto.edu

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

SAPIENZA Università di Roma, Italy
Via Ariosto 25, 00185 Roma, Italy
degiacomo@dis.uniroma1.it

Abstract

Finite-state controllers are a compact and effective plan rep-
resentation for agent behavior control widely used in AI. In
this paper, we propose a generic framework and related solver
for synthesizing bounded finite-state controllers, and show its
instantiations to three different applications, including gener-
alized planning, planning programs and service composition
under partial observability and controllability. We show that
our generic solver is sound and complete, and is amenable to
heuristics that take into account the structure of the specific
target instantiation. Experimental results show, quite surpris-
ingly, that instantiations of our solver to the problems above
outperform most of the tailored approaches in the literature.
This suggests that our proposal is a promising base point for
future research on finite-state controller synthesis.

Introduction
Finite-state controllers are a compact and effective plan rep-
resentation for agent behavior control widely used in AI.
Consider, for example, the following recently-proposed do-
mains:

Generalized planning: Bonet et al (2009) presented a sim-
ple but interesting example of a type of contingent planning:
In a 1 × 5 grid world shown in Figure 1(a), the robot is ini-
tially in one of the leftmost two cells. The goal is to visit
cell B, and then go to A. The robot can perform left and
right moves within the grid, and can observe whether its
current location is A, B or neither of them. Bonet et al.
claim that the finite-state controller in Figure 1(c) represents
a notable alternative to traditional “conditional plans,” as the
controller is not only a correct plan for this particular in-
stance, but also for all 1×N grids with N ≥ 2. In a sense,
Figure 1(c) is a generalized plan for all planning problems of
the form shown in Figure 1(b). A number of similar general-
ized planning problems with controller-based solutions have
recently been proposed, e.g., treechopping (Levesque 2005),
delivery (Srivastava, Immerman, and Zilberstein 2008), etc.

Service composition: Imagine a service composition task
(De Giacomo, De Masellis, and Patrizi 2009), where the
goal is to provide a target service (e.g., MT shown in Fig-
ure 2(a)) from a set of available services (e.g. M1 and M2

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Generalized planning example.

Figure 2: Service composition example.

shown in Figure 2(b)). Initially, both the target and the avail-
able services are in their initial states. At any time, the tar-
get service may request an action from its current state, and
an orchestrator should select one of the available services
to perform this requested action. Upon action completion,
the target and the chosen services will update their control
states according to the transitions, but the orchestrator only
has partial observability as which states the services are in
(e.g. o0 and o1). It is the orchestrator’s responsibility to
guarantee that all legal requests of the target can be satisfied
at any time, and when the target is in its final states, so must
be all the available services. Figure 2 shows one possible
orchestrator for our example problem.

Planning programs: As a middle ground of AI planning
(Ghallab, Nau, and Traverso 2004) and high-level action lan-
guages (Levesque et al. 1997), De Giacomo et al. (2010)
proposed a new approach to agent programming via “plan-
ning programs.” Given a dynamic domain (e.g., the re-
searcher’s world involving walking, driving and bus-riding
between her home, department, the parking lot and the pub,
shown in Figure 3(a)), and a goal network involving main-
tenance and achievement goals (Figure 3(b)), the planning
problem is to find a strategy such that all goal requests can
be accommodated for the long-lived agent. For example,
if the current goal node is t1 in Figure 3(b), the next goal
may be either a transition to t0, requesting to “be home

Figure 3: Planning program example.

with the car parked at home while maintaining a non-empty
fuel tank,” or a transition to t2, requesting to “be in the pub
while maintaining a non-empty tank.” In either case, the re-
searcher must behave in a way that not only achieves the cur-
rent goals, but also ensures that all possible future requests
can still be satisfied after her actions. Figure 3(c) shows a
policy for this problem.

The three applications are very different in structure, but
share one thing in common: the desired plans are all finite-
state controllers, e.g., the generalized plan in Figure 1(c), the
orchestrator in Figure 2(c), and the policy in figure 3(c).

Such controllers are usually hand-written by domain ex-
perts, so the design process may involve tremendous amount
of time and expertize, especially when the systems become
complex. It is thus desirable to generate the controllers au-
tomatically from a declarative specification of the agent’s
bahavior. This idea is drawing increasing attention in the re-
search community, and leading to nice theoretical and algo-
rithmic results, e.g., in the aforementioned literature (Bonet,
Palacios, and Geffner. 2009; De Giacomo, Patrizi, and Sar-
dina 2010; De Giacomo, De Masellis, and Patrizi 2009).

In this paper, we propose a generic framework and related
solver for the synthesis of bounded finite-state controller. In
particular, the solver is based on direct search in AND-OR
trees that incrementally capture the possible executions of
the (partial) controller in its environment. We show that
our generic solver is indeed sound and complete, and is
amenable to heuristics that take into account the structure of
the specific problem it is applied to. We also show that sim-
ple adaptations of our solver to the different problems above,
are sound and complete (notice that all such problems allows
for bounded controllers), and, quite surprisingly, outperform
most of the tailored approaches in the literature. This sug-
gests that our proposal is a promising base point for future
research on finite-state controller synthesis.

In the following, we first give a formal definition of
the controller synthesis framework, and then elaborate our
generic solver with correctness guarantee. After that, we ex-
plain the instantiation of our framework to the three types of
problems above, and show the very encouraging experimen-
tal results. We conclude with a note on immediate future
work.

Controller Synthesis Framework
We are interested in control problems of the following form:
given a dynamic environment and a behavior specification
for an agent acting in this environment, find a strategy in
the form of a finite-state controller so that the behavior is

realized.
Formally, we define the dynamic environment as a tuple

E = 〈A,O,S, I,∆,Ω〉, where

• A is a finite set of actions,

• O is a finite set of observations,

• S is a finite set of world states (the state space),

• I ⊆ S is a set of possible initial states,

• ∆ ⊆ S ×A× S is the transition relation, and

• Ω : S → O is the observation function.

We use the notation s a−→ s′ to denote 〈s, a, s′〉 ∈ ∆.
An (N -bounded) finite-state controller for an environ-

ment E = 〈A,O,S, I,∆,Ω〉 is a tuple C = 〈Q, q0, T 〉,
where

• Q = {1, . . . , N} is the finite set of control states,

• q0 = 1 is the initial control state,

• T : 〈Q×O〉 → 〈Q×A〉 is the transition function.

We use q
o/a−→ q′ to denote T (q, o) = 〈q′, a〉. It is easy to

see that finite-state controllers with this definition are essen-
tially Mealy machines, and have a natural graphical repre-
sentation.

An (execution) history of controller C in environment
E is a finite sequence h = 〈q0, s0〉, 〈q1, s1〉, · · · , 〈qn, sn〉,
such that there is a corresponding sequence of actions r =
a1a2 · · · an, called the run of C in E , satisfying

• s0 ∈ I (recall that q0 = 1 by definition),

• qi
Ω(si)/ai+1−→ qi+1 and si

ai+1−→ si+1.

We use h � h′ to mean that the history h is a prefix of the
history h′. We call extension of an history h any history h′
such that h � h′.

For the purpose of this paper, we focus on finitely veri-
fiable controller specifications bounded by state repetition.
Intuitively, if an execution history contains repeating states,
then there is no need to consider any extension of it.

Formally, a controller specification for E and control
statesQ is a function β : (Q×S)∗ → {true, false, unknown}
satisfying the following condition: for all h′ ∈ (Q × S)∗,
if 〈qi, si〉, 〈qj , sj〉 ∈ h′ for some i 6= j, qi = qj and
si = sj , then there exists a prefix h � h′ such that
β(h) ∈ {true, false}. Intuitively, a true value for β(h) means
that h is valid and conclusive, i.e., there is no need to further
extend it; false means it is invalid, i.e., h should never be
generated by the controller; unknown means validity cannot

be concluded yet, so all one-step extensions of h need to be
examined.

We say that a controller C for an environment E satisfies
the controller specification β iff for all its histories h in E we
have that β(h) 6= false and there exists an extension h′ such
that β(h′) = true. (In fact after a certain number of steps
all its extension become true, due to the required condition
above.) Given a controller C in E we can check whether it
satisfies β. More interestingly, if we do not have the con-
troller yet, we can use β to actually search for it. This is
what we study next.

Generic Solver
Associated to the above framework, we propose a (surpris-
ingly simple) generic solver that systematically searches the
space of bounded finite-state controllers by traversing the
AND-OR execution tree of incremental partial controllers.
Here, the OR nodes are the choice points for the controller’s
actions and transitions, while the AND nodes handle all pos-
sible environment feedback. Each node of the search tree
keeps a current partial controller, along with its current con-
trol state, the world states and the execution history so far.

Given a dynamic environment E , a bound N on the num-
ber of control states, and a behavior specification β, the al-
gorithm in Figure 4 generates a controller C by a call to
synthesizeE,N (I), where I is the set of initial states in E
(line 1). This creates the root of the search tree, which is
an AND node containing an empty controller ∅,1 the initial
control state 1, initial world states I, and empty history ∅.

The function AND step (lines 4–7) represents AND
nodes in the search tree that handle all contingencies in the
world states. For this, the function OR step is called for each
possible state s ∈ S, with the history h augmented with the
current control and world states 〈q, s〉. Note that C is up-
dated after each call to OR step (line 6), so that the resulting
controller is incrementally implemented to handle all states
in S.

The function OR step (lines 9–20) simulates a one-step
execution of the current partial controller C for a given con-
trol state q and world state s with execution history h. Four
different cases may arise during this simulation:
1. If the behavior specification function β(h) returns true,
it means the current controller C has generated a valid and
conclusive history, so no further extension is necessary. In
this case, C is returned as a good partial controller (line 10).
2. If β(h) returns false, it indicates that h is illegal, so no
extension of C can be a valid controller. In this case, the
current search branch fails, and the algorithm backtracks to
the most recent non-deterministic choice point (see below),
from where alternative choices are explored (line 11).
3. Otherwise, β(h) must have returned unknown, indicating
a legal but non-conclusive history, so further simulation of
the controller is needed. If an action and transition is already
specified in C for the current control state q and observa-
tion Ω(s), then we simply follow it by recursively calling
AND step with the current controller C and history h, but
successor control state q′ and the set S′ of all possible suc-
cessor world states (lines 12–14).

1〈{1, . . . N}, 1, ∅〉 to be precise, but we only denote the transi-
tion relation when there is no ambiguity, since Q and q0 are fixed.

1: C =synthesizeE,N (I)
2: return AND stepE,N (∅, 1, I, ∅);
3:
4: AND stepE,N (C, q, S, h)
5: for each s ∈ S
6: C := OR stepE,N (C, q, s, h · 〈q, s〉);
7: return C;
8:
9: OR stepE,N (C, q, s, h)

10: if β(h) = true return C;
11: else if β(h) = false fail;
12: else if (q

Ω(s)/a−→ q′) ∈ C
13: S′ := {s′ | s a−→ s′};
14: return AND stepE,N (C, q′, S′, h);
15: else
16: NON-DETERMINISTICALLY CHOOSE
17: a ∈ A and 1 ≤ q′ ≤ N ;
18: S′ := {s′ | s a−→ s′};
19: C ′ := C ∪ {q Ω(s)/a−→ q′};
20: return AND stepE,N (C ′, q′, S′, h);

Figure 4: A generic algorithm for controller synthesis.

4. If, on the other hand, no action or transition is speci-
fied in C for q and Ω(s), then the algorithm makes a non-
deterministic choice for a and q′ (lines 16–17). We recur-
sively call AND step to handle all successor states in the
same way as in the previous case, except that the new tran-
sition is appended to the controller before calling (lines 19–
20).

The algorithm above is formulated using nondeterminis-
tic choices to reveal the compactness of our solution. It is
not hard to see that the resulting search actually strategi-
cally enumerates all valid controllers with up to N states,
e.g. never revisiting isomorphic (identical by state renam-
ing) controllers and avoiding controllers with unreachable
states, so we have:

Theorem 1 (Soundness and Completeness). Given environ-
ment E with initial states I, and a behavior specification
β, C = synthesizeE,N (I) iff C is an N -bounded finite-state
controller in E that satisfies β, up to isomorphism.

Throughout this paper, we assume that the bound N is
given. If not, an iterative deepening search over N could be
used, which is guaranteed to terminate, since the environ-
ment, the controller and required behavior tests are all finite.

In practice, for the generic solver to work well, the non-
deterministic choice at line 16 must be resolved wisely, mak-
ing use of the structure of the target problem. For example,
in most application domains, compact controllers are prefer-
able, so one should try to reuse control states as much as pos-
sible; for planning tasks like generalized planning and plan-
ning programs, one could make use of domain-independent
heuristics developed in the state-of-the-art planners (Hoff-
mann and Nebel 2001; Richter and Westphal 2010) for ef-
fective action selection. In the following, we will show how
our generic solver can be instantiated to efficiently synthe-
size controllers in the different applications illustrated in the
introduction.

Generalized Planning
Problem Formalization. Bonet et al. (2009) formalize the
generalized planning problem (what they call “control prob-
lem”) as P = 〈F, I,A,G,R,O,D〉, where
• F is a set of (primitive) fluents,
• I is a set of F-clauses representing the initial situation,
• A is a set of actions with conditional effects,
• G is a set of literals representing the goal situation,
• R is a set of non-primitive fluents,
• O is the set of observable fluents, O ⊆ R, and
• D is the set of axioms defining the fluents in R.

Without going into the details, e.g., the evaluation of non-
primitive fluents in R using the axioms in D, we note that
this problem can be modeled in our framework by defining
the dynamic environment as E = 〈A,O,S, I,∆,Ω〉, where
• A = A, O = d(O), S = d(F), where d(V) is the cross

product of the domains for all variables v ∈ V ,
• I = {s ∈ S | s |= I},
• 〈s, a, s′〉 ∈ ∆ iff action a changes state s to s′ in P ,
• Ω(s) = o iff o is observed in state s in P .
Notice that with this definition, we can allow actions to have
preconditions like in (Pralet et al. 2010), by eliminating il-
legal transitions, as well as non-deterministic effects.

The behavior specification accepts all legal execution his-
tories leading to a state satisfying the goal, and rejects
those that contain repeated configurations (indicating infi-
nite loop) and that cannot be extended (indicating dead end).
Formally,

β(〈q0, s0〉, · · · , 〈qk, sk〉) =
true if sk |= G;
false if 〈sk, a, s′〉 6∈ ∆ for all a ∈ A, s′ ∈ S, or

〈qk, sk〉 = 〈qi, si〉 for some 0 ≤ i < k;
unknown otherwise.

Solver adaptation. The structure of the generalized plan-
ning problems is very close to that of our generic problem,
so the adaptation of the solver is straightforward. We imple-
mented a planner in SWI-Prolog, whose body is shown in
Figure 5.

After the list of all initial states is obtained by initStates/1,
andStep/5 is activated to process each of the possible states
in it (line 1). The parameters to andStep are the input plan,
the output plan, the current control state, the list of current
possible world states, and the execution history, respectively.
(orStep below has similar parameters except that the fourth
parameter is a single world state instead of a list of states.)
Lines 3–5 here are the AND step (corresponding the lines
4–7 in Figure 4). Notice the use of variable P in line 5
for updating the current plan after each state is handled by
orStep/5.

Lines 7–18 are the OR step (corresponding to lines 9–
20 in Figure 4), with line 7 handling goal achievement, line
8 enforcing backtracking due to state repetition, lines 12–
13 following existing transition, and 14–17 trying new tran-
sitions. In the last case, bestAct/2 succeeds with all pos-
sible actions for the current state, so heuristics could be

1: plan(P) :- initStates(SL), andStep([], P, 1, SL, []).
2:
3: andStep(P, P, , [],).
4: andStep(P0, P1, Q, [S|SL], H) :-
5: orStep(P0, P,Q, S,H), andStep(P, P1, Q, SL,H).
6:
7: orStep(P, P, , S,) :- goal(G), holds(G,S), !.
8: orStep(, , Q, S,H) :- member(〈Q,S〉, H), !, fail.
9: orStep(P0, P1, Q, S,H) :-

10: observation(S,O), H ′ = [〈Q,S〉|H],
11: (
12: member(〈Q,O,A,Q′〉, P0), !, legalAct(A,S),
13: nextStates(S,A, SL′), andStep(P0, P1, Q′, SL′, H ′);
14: bestAct(A,S), nextStates(S,A, SL′), size(P0,M),
15: (between(1,M,Q′);
16: Q′ is M + 1, bound(N), Q′ =< N),
17: andStep([〈Q,O,A,Q′〉|P0], P1, Q′, SL′, H ′)
18:).

Figure 5: Prolog code for generalized planning.

implemented here so that the most promising actions are
unified first. For choosing the target control state Q′ for
the transition, line 15 enumerates all currently used states,
before attempting to create a new one (not exceeding the
bound) in line 16. More advanced ordering, e.g., the “most-
recently used state” heuristics, could be explored here for
better search efficiency.
Theorem 2 (Correctness). If the predicate “plan(P)” suc-
ceeds, then P is anN -bounded plan that solves the general-
ized planning problem, and vice versa (up to isomorphism).

Experimental Results. We run our planner on a set of
benchmark problems, and compared its performance with
the compilation approach of Bonet, Palacios and Geffner
(BPG) (2009) and the constraint programming based planner
(Dyncode) by Pralet et al. (2010). Since their planners are
not publicly available, we did not rerun their experiments,
but instead used the data in the respective paper directly, so
this comparison only serves as a feasibility check for our ap-
proach, due to the different experiment settings explained in
Table 1.

In the table, columnN shows the number of control states
required for the smallest plan, and for each planner, “Solve”
is the solution time (in seconds) with N states, and “Prove”
is the time (in seconds) needed for the planner to prove that
no plan exists with less than N states. Surprisingly, the sim-
ple adaptation of our generic solver, which essentially per-
forms depth-first search, achieves comparable performance
to Dyncode, and works much faster than BPG in some cases.
We believe that rewriting our planner in a compiled language
like C and including effective heuristics will further improve
the performance of our planner. Especially the latter may
play a big role when we are faced with more difficult prob-
lems.

Service Composition
Problem formalization. We consider service composition
problems (Calvanese et al. 2008) where the task is to realize
a target service, represented by a finite-state machine MT ,

BPG Dyncode Our solver
Problem N Solve Solve Proof Solve Proof
Hall-A 1× 4 2 0.0 0.01 0.02 0.01 0.0
Hall-A 4× 4 4 5730.5 0.26 2.35 0.21 1.86
Hall-R 1× 4 1 0.0 0.01 0 0.01 0
Hall-R 4× 4 1 0.0 0.02 0 0.01 0
Prize-A 4× 4 1 0.0 0.02 0 0.01 0
Corner-A 4× 4 1 0.1 0.02 0 0.01 0
Prize-R 3× 3 2 0.1 0.03 0.03 0.04 0.01
Prize-R 5× 5 3 2.7 2.37 0.97 2.71 1.3
Corner-R 2× 2 1 0.0 0.01 0 0.01 0
Corner-R 5× 5 1 1.6 0.02 0 0.01 0
Prize-T 3× 3 1 0.1 0.05 0 0.01 0
Prize-T 5× 5 1 0.3 0.34 0 0.02 0
Blocks 6 2 0.8 0.02 0.02 0.02 0.0
Blocks 20 2 34.8 0.04 0.02 0.02 0.0
Visual-M (8, 5) 2 1289.5 3.59 0.27 0.02 0.0
Gripper (3, 5) 2 4996.1 0.06 0.02 0.01 0.0

Table 1: Comparison of generalized planning approaches.
BPG is run on a Xeon 1.86GHz CPU with 2GB RAM, Dyn-
code on a Xeon 2GHz CPU with 1GB RAM, and our Prolog
adaptation on an Intel Core2 3.0GHz CPU with 3GB RAM.

by choosing from a set of available services M1, · · · ,Mn at
each step. The example in the introduction is a generalized
case studied by De Giacomo et al. (2009), who define each
service Mi as a tuple 〈A,Oi, Si, si0, Fi, δi, oi〉, where
• A is the (shared) set of actions;
• Oi is a set of observations;
• Si is a set of service states;
• si0 ∈ Si is the initial service state;
• Fi ⊆ Si is a set of final states, where the service is al-

lowed to terminate;
• δi ⊆ Si ×A× Si is the transition relation of the service;
• oi : Si → Oi is the observation function.

To formalize their definition in our framework, we model
the joint behavior of the services as a dynamic environment
E = 〈A,O,S, I,∆,Ω〉, where
• A = {1, · · · , n}
• O = O1 × · · · ×On ×A;
• S = ST × S1 × · · · × Sn ×A;
• I = {〈sT0, s10, · · · , sn0, a〉 | 〈sT0, a, ·〉 ∈ δT },
• ∆(〈sT , s1, · · · , sn, a)〉, k, 〈s′T , s′1, · · · , s′n, a′〉) iff

1. δT (sT , a, s
′
T),

2. δk(sk, a, s
′
k),

3. si = s′i for all i 6∈ {T, k}, and
4. δT (s′T , a

′, s) for some s ∈ ST .

• Ω(〈sT , s1, · · · , sn, a〉) = 〈o1(s1), · · · , on(sn), a〉.
Notice that the state of the target serviceMT is not observed,
but the orchestrator can keep track of it using its internal
states, since the target service is deterministic. Intuitively,
the behavior specification needs to consider the following
factors (i) at any time, the requested action (stored as the

last element of a state tuple) must be executable by at least
one service; (ii) (final state constraint:) whenever the target
service is in a final state, so must be all composing services;
(iii) (state repetition:) if we reach a configuration (control
state and world state combined) that has been visited already
in the execution history, then all future executions from the
current configuration would be handled in the same way as
from its previous occurrence, so there is no need to consider
further extensions.

Formally, we define the behavior specification as
β(〈q0, σ0〉, · · · , 〈qk, σk〉) =

true if qi = qk and σi = σk for some 0 ≤ i < k;
false if 〈σk, a, σ〉 6∈ ∆ for all a ∈ A, σ ∈ S, or

σk = 〈sT , s1, · · · , sn〉 where sT ∈ FT

but si 6∈ Fi for some i ∈ {1, · · · , n};
unknown otherwise.

Solver adaptation. Although the non-determinism of the
environment is specified as a single transition relation in
our formalization above, it is not hard to see that the non-
determinism comes from two different sources, namely, the
uncertainty as which action the target may request, and the
nondeterministic effect of each composing service. Dur-
ing our instantiation of the generic solver, we take this spe-
cial structure of the problem into account, by creating two
AND steps, one for each source of non-determinism above.
This dramatically reduces the observation cases in the search
nodes, since only the state of the chosen service changes
and thus needs to be observed, and observations on all other
services can be safely ignored. Exploiting this structure
makes the branching factor of the AND nodes exponentially
smaller, and thus contributes to a much more efficient solver.

Following these intuitions, we implemented a general
solver for service composition problems in Prolog, the body
of which is shown in Figure 6, where procReqs/7 (lines
10–15) is the AND step for processing all possible requests
from the target and procTrans/9 (lines 22-26) handle all non-
deterministic effects of the executed service. Following a
similar idea, we also separate the OR step into chuzServ/7
(lines 17–20) which tries all possible services and chuz-
Tran/9 which tries the control state to transition to next. Fi-
nally, procStates/6 (lines 4–8) checks the behavior specifi-
cation according to the history and the current states.
Theorem 3 (Correctness). If the predicate “compose(C)”
succeeds, thenC is anN -bounded orchestrator that realizes
the composition, and vice versa (up to isomorphism).

The problem is known to be EXPTIME-complete, even
with complete observability. Moreover, from an analysis
of the composition technique in (De Giacomo, De Masel-
lis, and Patrizi 2009), one can conclude that the size of the
orchestrator is bounded by the size of target services in the
fully observable case, and by the size of the Cartesian prod-
uct of the powerset of the states of the target and the avail-
able services in the partially observable case. As a result,
if we perform an iterative deepening search starting with N
equal to 1 and stopping when we reach the above bound,
we get a sound and complete technique to compute com-
positions, which has the notable property of computing the
smallest orchestrator possible.

Experimental Results. We experimented our solver on
18 benchmark problems on an Intel Core2 3.0GHz CPU

Target Services orchestrator Target Services orchestrator

No Solution.

No Solution.

No Solution.

No Solution.

Figure 7: Example composition problems used in our experiments. Labels of sensing results are omitted when the service is
fully observable.

1: compose(C) :-
2: procState(sT0, 〈s10, · · · , sn0〉, 1, [], [], C).
3:
4: procState(ST , SL,Q,H,C,C) :-
5: member(〈ST , SL,Q〉, H), !.
6: procState(ST , SL,Q,H,C0, C1) :-
7: (isFinal(ST)->allFinal(SL);true),
8: procReqs(ST , δT , SL,Q, [〈ST , SL,Q〉|H], C0, C1).
9:

10: procReqs(, [], , , , C, C).
11: procReqs(ST , [〈ST , A, S

′
T 〉|T], SL,Q,H,C0, C1) :- !,

12: chuzServ(S′T , SL,Q,A,H,C0, C),
13: procReqs(ST , T, SL,Q,H,C,C1).
14: procReqs(ST , [|T], SL,Q,H,C0, C1) :-
15: procReqs(ST , T, SL,Q,H,C0, C1).
16:
17: chuzServ(ST , SL,Q,A,H,C0, C1) :-
18: (member(〈Q,A,K, , 〉, C0), !; between(1,n,K)),
19: findall(X ,member(〈SK , A,X〉, δK),SL′K),
20: procTrans(ST , SL,Q,A,K, SLK , H,C0, C1).
21:
22: procTrans(, , , , , [], , C, C).
23: procTrans(ST , SL,Q,A,K, [S

′
K |SL′K], H,C0, C1) :-

24: replace(SL, SK , S
′
K , SL

′), observe(S′K , O),
25: chuzTran(ST , SL

′, Q,A,K,O,H,C0, C),
26: procTrans(ST , SL,Q,A,K, SL

′
K , H,C,C1).

27:
28: chuzTran(ST , SL,Q,A,K,O,H,C0, C1) :-
29: member(〈Q,A,K,O,Q′〉,C0), !,
30: procState(ST , SL,Q

′, H,C0, C1).
31: chuzTran(ST , SL,Q,A,K,O,H,C0, C1) :-size(C0,M),
32: (between(1,M,Q′); Q′ is M + 1, bound(N), Q′ ≤ N),
33: procState(ST , SL,Q

′, H, [〈Q,A,K,O,Q′〉|C0], C1).

Figure 6: Prolog code for service composition.

with 3.0GB memory. The problems requires the compo-
sition of target services of 2–4 states from 2–5 available
services ranging from 2 to 10 states. Twelve of the smaller
problem instances used in the experiments are shown in
Figure 7, and the full list of problems is available online at
http://www.cs.toronto.edu/˜yuxiao/compose.tgz.
All problems are either solved or proved unsolvable within
less than 0.01 second. This matches the results obtained
by model checking for problems with full observability,
and is much faster, finding smaller orchestrators, for case
with partial observability (De Giacomo, De Masellis, and
Patrizi 2009). The obtained results are not definitive since
the existing benchmarks are quite small, but certainly they
show the effectiveness of the proposed approach in practice.

Planning Programs
Problem Formalization. Next, we move on to planning
programs, like the researcher’s example in the introduction,
recently proposed by De Giacomo et al. (2010). According
to them, a domain is a tuple D = 〈P,A, S0, ρ〉, where P is
a set of propositions, A is a set of actions, S0 ∈ 2P is the
initial state, and ρ ⊆ 2P ×A×2P is the set of transitions. A
planning program for D is a tuple T = 〈T,G, t0, δ〉, where
• T = {t0, . . . , tq} is the finite set of program states;

• G is a finite set of goals of the form “achieve φ while
maintaining ψ,” denoted by pairs g = 〈ψ, φ〉, where ψ
and φ are propositional formulae over P ;

• t0 ∈ T is the program initial state;
• δ ⊆ T ×G× T is the program transition relation.

This synthesis problem for planning programs can be
modeled in our frame work as E = 〈A,O,S, I,∆,Ω〉,
where
• A = A is their set of available actions;
• O = S = 2P × T ×G× T ;
• I = {〈S0, t0, g, t〉 | 〈t0, g, t〉 ∈ δ};
• ∆(〈s, t, 〈ψ, φ〉, t′〉, a, 〈s′, t, 〈ψ, φ〉, t′〉) iff

(i) 〈s, a, s′〉 ∈ ρ,
(ii) s |= ψ and s′ |= ψ, and
(iii) s′ 6|= φ;

• ∆(〈s, t, 〈ψ, φ〉, t′〉, a, 〈s′, t′, g, t′′〉) iff
(i) 〈s, a, s′〉 ∈ ρ,
(ii) s |= ψ and s′ |= ψ,
(iii) s′ |= φ,
(iv) 〈t′, g, t′′〉 ∈ δ;

• Ω(σ) = σ.
Let σi = 〈si, ti, 〈ψi, φi〉, t′i〉, the behavior specification is

β(〈q0, σ0〉, · · · , 〈qk, σk〉) =
false if sk 6|= ψk, or 〈σk, a, σ〉 6∈ ∆ for all a, σ, or

σi = σk for some 0 ≤ i < k and tk = tk−1;
true if σi = σk if for some 0 ≤ i < k

and tk 6= tk−1;
unknown otherwise.

Solver adaptation. Like in service composition, a con-
troller for a planning program is faced with two sources of
nondeterminism in each cycle, namely, the uncertainty about
goal request, and the nondeterministic effects of the actions.
Figure 8 shows the body of the Prolog code for planning
programs, where procGoals/6 (lines 8–11) is the AND step
for the former, and procEffects/9 (lines 24–27) for the lat-
ter source of nondeterminism. planGoal/9 (lines 13–22) im-
plements the OR step that makes the action choices, where
bestAct/3 (line 20) returns the most promising action by us-
ing the additive heuristics (Bonet and Geffner 2001).
Theorem 4 (Correctness). If the program “plan(P)” suc-
ceeds, then P is a controller that realizes the planning pro-
gram T in the domain D, and vice versa (up to isomor-
phism).

The problem is known to be EXPTIME-complete. More-
over, according to the analysis by De Giacomo et al. (2010),
the size of the controller can be bounded by 1. Interestingly,
if we assume that the planning programs to be determinis-
tic, we can avoid observing the target as in the case of ser-
vice composition, and then the controller may need multiple
states to remember the state of the target, in which case a
conservative bound for N can be identified similarly.

Experimental Results. We use our planner to solve the
researcher’s world example on an Intel Core2 3.0Hz CPU
with 3GB RAM, and it generated the correct solution within

1: plan(P) :- initState(S), procState(0, S, [], [], P).
2:
3: procState(T, S, U,C,C) :- member(〈T, S〉, U), !.
4: procState(T, S, U,C0, C1) :-
5: findall(〈M,G, T ′〉, goal(T,M,G, T ′), GL), !,
6: procGoals(T,GL, S, [〈T, S〉|U], C0, C1).
7:
8: procGoals(, [], , , C, C).
9: procGoals(T, [〈M,G, T ′〉|GL], S, U,C0, C1) :-

10: planGoal(T,M,G, T ′, S, [], U, C0, C),
11: procGoals(T,GL, S, U,C,C1).
12:
13: planGoal(,M, , , S, , , ,) :- \+ holds(M,S), !, fail.
14: planGoal(, , , , S,H, , ,) :- member(S,H), !, fail.
15: planGoal(T,M,G, T ′, S, , , C,C) :-
16: member(〈T,M,G, T ′, S, 〉, C), !.
17: planGoal(, , G, T, S, , U, C0, C1) :-
18: holds(G,S), !, procState(T, S, U,C0, C1).
19: planGoal(T,M,G, T ′, S,H,U,C0, C1) :-
20: bestAct(G,A, S), nextStates(S,A, SL′),
21: H ′ = [S|H], C = [〈T,M,G, T ′, S,A〉|C0],
22: procEffects(T,M,G, T ′, SL′, H ′, U, C,C1).
23:
24: procEffects(, , , , [], , , C, C).
25: procEffects(T,M,G, T ′, [S|SL], H, U,C0, C1) :-
26: planGoal(T,M,G, T ′, S,H,U,C0, C),
27: procEffects(T,M,G, T ′, SL,H,U,C,C1).

Figure 8: Prolog code for planning programs

0.04 second, while the model checking approach in (De Gi-
acomo, Patrizi, and Sardina 2010) requires several minutes.

Recently, De Giacomo et al. (2011) applied this algorithm
on a much more complicated smart home application, which
involves routinely controlling the services (e.g. controlling
air temperature, filling and emptying bathtub, etc.) in an in-
telligent home environment shown in Figure 9. Their exper-
imental results show that this algorithm solves the challeng-
ing task, with far better efficiency than the existing model-
checking based approaches.

Conclusion and Future Work
We have presented a generic framework and a related solver
for the synthesis of bounded controllers, which can be in-
stantiated for several diverse problems. The solver appears
to be quite effective, surpassing specific techniques, typ-
ically based on compilation, constraint programming, or
model checking technology. Moreover, it is very suitable
for heuristic pruning of the search space, a feature that we
only partially exploited in this work. Given the promising re-
sults, we are currently eager to experiment (instantiations of)
our solver in more real cases, e.g., to explore industrial/web
service composition and to extend the smart home applica-
tions. Regarding planning programs, recently Gerevini et
al. (2011) proposed an approach based on repetitively solv-
ing planning problems to handle planning programs running
over deterministic domains. We are indeed quite interested
in comparing it with our generic solver. Also, our approach
is based on finite history, though all the problem considered
here can be seen as special cases of LTL synthesis (Vardi

Figure 9: The smart home environment in (De Giacomo et
al. 2011).

1996). It remains open whether our approach can be ex-
tended to handle full LTL synthesis, despite LTL requiring
infinite runs (vs. finite histories), using e.g. Schuppan and
Biere’s result (2004).

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129:5–33.
Bonet, B.; Palacios, H.; and Geffner., H. 2009. Automatic deriva-
tion of memoryless policies and finite-state controllers using clas-
sical planners. In ICAPS.
Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Mecella, M.; and
Patrizi, F. 2008. Automatic service composition and synthesis:
the roman model. IEEE Data Eng. Bull. 31(3):18–22.
De Giacomo, G.; Ciccio, C. D.; Felli, P.; Hu, Y.; and Mecella, M.
2011. Goal-based process composition. In preparation, available
from the authors.
De Giacomo, G.; De Masellis, R.; and Patrizi, F. 2009. Composi-
tion of partially observable services exporting their behaviour. In
ICAPS.
De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent pro-
gramming via planning programs. In AAMAS.
Gerevini, A. E.; Patrizi, F.; and Saetti, A. 2011. An effective
approach to realizing planning programs. In ICAPS. (to appear).
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Plan-
ning: Theory and Practise. Morgan Kaufmann.
Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of Artificial
Intelligence Research 14:253–302.
Levesque, H.; R., R.; Lesperance, Y.; F., L.; and R., S. 1997.
GOLOG: A logic programming language for dynamic domains.
Journal of Logic Programming 31:59–84.
Levesque, H. 2005. Planning with loops. In ICAPS.
Pralet, C.; Verfaillie, G.; Lemaı̂tre, M.; and Infantes, G. 2010.
Constraint-based controller synthesis in non-deterministic and
partially observable domains. In ECAI.
Richter, S., and Westphal, M. 2010. The lama planner: Guiding
cost-based anytime planning with landmarks. Journal of Artificial
Intelligence Research 39:127177.
Schuppan, V., and Biere, A. 2004. Efficient reduction of finite
state model checking to reachability analysis. STTT 5(2-3):185–
204.
Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008. Learning
generalized plans using abstract counting. In AAAI.
Vardi, M. Y. 1996. An Automata-Theoretic Approach to Linear
Temporal Logic. In Logics for Concurrency: Structure versus
Automata. Springer.

