A Correctness Result for Reasoning about One-Dimensional Planning Problems

Yuxiao (Toby) Hu Hector J. Levesque

Department of Computer Science
University of Toronto

{yuxiao,hector}@cs.toronto.edu

July 20, 2011

Previously presented at KR’10
Motivation

• Classical planning produces action sequences in complete worlds.

 • e.g.: given, \textit{obj1} at home, \textit{obj2} in office and a \textit{truck}, make \textit{obj1} be in office and \textit{obj2} at home.

 • Resulting sequential plan only works for this particular setting.
Motivation

- Classical planning produces action sequences in complete worlds.
 - e.g.: given, \textit{obj1} at home, \textit{obj2} in office and a \textit{truck}, make \textit{obj1} be in office and \textit{obj2} at home.
 - Resulting sequential plan only works for this particular setting.

- Conditional planning allow incomplete knowledge by allowing branching on run-time world states.
 - e.g.: given a truck, \textit{obj1} and \textit{obj2}, location and destination unknown, make both objects be at their destinations.
 - Resulting tree-like plan can handle 16 different cases.
Classical planning produces action sequences in complete worlds.

- *e.g.:* given, *obj1* at home, *obj2* in office and a *truck*, make *obj1* be in office and *obj2* at home.
- Resulting sequential plan only works for this particular setting.

Conditional planning allow incomplete knowledge by allowing branching on run-time world states.

- *e.g.:* given a truck, *obj1* and *obj2*, location and destination unknown, make both objects be at their destinations.
- Resulting tree-like plan can handle 16 different cases.

An even more general form of planning?

- Given a truck and an unknown number of objects, make them all be at their desired destination!
- Incomplete knowledge about number results in infinitely many cases.
Motivation

An intuitive plan:
Motivation

An intuitive plan:

Questions:
1. How do we characterize a planning problem that requires loopy plans?
2. What exactly is a plan with loops?
3. When is a plan “correct” for a problem?
4. ...
Outline of the Talk

1. Planning with Loops
2. A Formal Notion of Correctness
3. Finite Verifiability
4. Conclusion
Planning with Loops

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

1. generating a plan with loops that works for small instances;

2. testing if the plan also works for other instances. (If not, return to Step 1.)
Planning with Loops

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

1. generating a plan with loops that works for small instances;
2. testing if the plan also works for all (?) other instances.
 (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for all instances of the planning problem.
Planning with Loops

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

1. generating a plan with loops that works for small instances;
2. testing if the plan also works for all (?) other instances.
 (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for all instances of the planning problem.
- However, this seems impossible with infinitely many cases.
FSAPLANNER (Hu & Levesque 09) generates plans with loops by

1. generating a plan with loops that works for small instances;
2. testing if the plan also works for some other instances. (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for all instances of the planning problem.
- However, this seems impossible with infinitely many cases.
- In practice, we only test against finitely many larger instances.
Planning with Loops

FSAPLANNER (Hu & Levesque 09) generates plans with loops by

1. generating a plan with loops that works for small instances;
2. testing if the plan also works for some other instances.
 (If not, return to Step 1.)

Plan Verification...

- Ideally, a candidate plan may pass the testing phase, only if it works for all instances of the planning problem.
- However, this seems impossible with infinitely many cases.
- In practice, we only test against finitely many larger instances.

Needed: finite verification with general correctness guarantee!
Contributions

In this paper, we

1. formally define a representation (FSA plan) for plans with loops;
2. identify a class of (one-dimensional) planning problems whose plan correctness can be finitely verified;
3. show that this verification algorithm enables FSAPLANNER to efficiently generate provably correct plans for this problem class.
The situation calculus is a multi-sorted logic for modeling dynamic environments, with sorts *situation*, *action* and *object*.

- S_0 is the unique initial situation, and $do(a, s)$ is the situation obtained by performing action a in situation s.
- Changing properties modeled by fluents, i.e., functions and predicates whose last argument is a situation term, e.g.,

$$loc(S_0) = home \land Loaded(do(load, S_0)).$$

- $Poss(a, s)$ is a special relation that holds iff action a is executable in situation s.
- $sr(a, s)$ denotes the sensing result of action a when performed in situation s.

[Hu & Levesque (UofT)]

Correctness Result for 1-D Problems

July, 2011
The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

\[\Sigma = \mathcal{FA} \cup \Sigma_{\text{una}} \cup \Sigma_{\text{pre}} \cup \Sigma_{\text{ssa}} \cup \Sigma_{\text{sr}} \cup \Sigma_{0}. \]
The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

\[\Sigma = \mathcal{FA} \cup \Sigma_{una} \cup \Sigma_{pre} \cup \Sigma_{ssa} \cup \Sigma_{sr} \cup \Sigma_0. \]

Definition

A planning problem is a pair \(\langle \Sigma, G \rangle \), where \(\Sigma \) is a basic action theory and \(G \) is a situation-suppressed goal formula.
Problem Representation

The dynamics of a planning problem is axiomatized by a Basic Action Theory (Reiter 01) with sensing (Scherl & Levesque 03)

\[\Sigma = \mathcal{FA} \cup \Sigma_{una} \cup \Sigma_{pre} \cup \Sigma_{ssa} \cup \Sigma_{sr} \cup \Sigma_0. \]

Definition

A planning problem is a pair \(\langle \Sigma, G \rangle \), where \(\Sigma \) is a basic action theory and \(G \) is a situation-suppressed goal formula.

Both infinite domain and incomplete initial state allowed.
Plan Representation

We use a finite-state automaton-like plan representation (called FSA plan), which can be viewed as a directed graph, where

- Each node represents a program state
 - One unique “start state”
 - One unique “final state”
 - Non-final states associated with action
- Each edge labeled with a sensing result (omitted for non-sensing).
Plan Representation

To formalize FSA plans, we introduce a new sort “program states” with Q_0 and Q_F being two constants, and a set of axioms FSA, consisting of:

1. domain closure axioms for program states

\[(\forall q).q = Q_0 \lor q = Q_1 \lor \cdots \lor q = Q_n \lor q = Q_F;\]

2. unique names axioms for program states

\[Q_i \neq Q_j \text{ for } i \neq j;\]

3. action association axioms

\[\gamma(Q) = A;\]

4. transition axioms

\[\delta(Q, R) = Q';\]
Plan Correctness

We use $T(q, s, q', s')$ to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \overset{\text{def}}{=} \exists a, r. \gamma(q) = a \land \text{Poss}(a, s) \land \text{SR}(a, s) = r \land \delta(q, r) = q' \land s' = \text{do}(a, s)$$
Plan Correctness

We use $T(q, s, q', s')$ to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \overset{\text{def}}{=} \exists a, r. \gamma(q) = a \land \text{Poss}(a, s) \land \text{SR}(a, s) = r \land \delta(q, r) = q' \land s' = \text{do}(a, s)$$

$T^*(q, s, q', s')$ denotes the reflexive transitive closure of T, i.e., $T^*(q, s, q', s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s'.
Plan Correctness

We use $T(q, s, q', s')$ to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \overset{\text{def}}{=} \exists a, r. \gamma(q) = a \land \text{Poss}(a, s) \land \text{SR}(a, s) = r \land \delta(q, r) = q' \land s' = \text{do}(a, s)$$

$T^*(q, s, q', s')$ denotes the reflexive transitive closure of T, i.e., $T^*(q, s, q', s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by FSA is correct iff

$$\Sigma \cup \text{FSA} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$$
Plan Correctness

We use $T(q, s, q', s')$ to denote legal one-step transitions, i.e.,

$$T(q, s, q', s') \overset{\text{def}}{=} \exists a, r. \gamma(q) = a \land \text{Poss}(a, s) \land \text{SR}(a, s) = r \land \delta(q, r) = q' \land s' = \text{do}(a, s)$$

$T^*(q, s, q', s')$ denotes the reflexive transitive closure of T, i.e., $T^*(q, s, q', s')$ is true iff starting from program state q and situation s, the FSA plan may reach state q' and situation s', then plan correctness is defined by:

Definition

Given a planning problem $\langle \Sigma, G \rangle$, where Σ is an action theory and G is a goal formula, a plan axiomatized by FSA is correct iff

$$\Sigma \cup \text{FSA} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$$

Need Second-Order Reasoning!
A planning problem \(\langle \Sigma, G \rangle \) is one-dimensional if (intuitively)

- Only one fluent \(p \) (called the planning parameter) may take unbounded values from natural numbers;
- All functions other than \(p \) take values from a finite set, and apart from a possible situation argument
 - either have no argument (finite functions),
 - or have \(p \) as its argument (sequence functions);
- Initially, \(p \) may be an arbitrary natural number;
- The only effect on \(p \) is to decrease it by one, i.e.,

\[
p(do(a, s)) = x \equiv x = p(s) - 1 \land Dec(a) \lor \\
 x = p(s) \land \neg Dec(a);
\]

- The only primitive test involving \(p \) in \(\Sigma \) and \(G \) is \(p = 0 \).
Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
Suppose we are given a one-dimensional planning problem and a candidate FSA plan.

We have verified that the FSA plan correctly achieves the goal for

\[p(S_0) = 0, 1, 2, \ldots, N. \]
Intuitions on Finite Verifiability

- Suppose we are given a one-dimensional planning problem and a candidate FSA plan.
- We have verified that the FSA plan correctly achieves the goal for
 \[p(S_0) = 0, 1, 2, \ldots, N. \]

- Can we now conclude that the FSA plan is correct in general??
The Main Theorem

Theorem

Suppose $\langle \Sigma, G \rangle$ *is a one-dimensional planning problem with planning parameter* p, *and FSA axiomatizes an FSA plan. Then there is an* N_0 *such that*

\[
\text{If } \Sigma \cup \text{FSA} \cup \{p(S_0) \leq N_0\} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s],
\]

then $\Sigma \cup \text{FSA} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s].$
The Main Theorem

Theorem

Suppose \(\langle \Sigma, G \rangle \) is a one-dimensional planning problem with planning parameter \(p \), and FSA axiomatizes an FSA plan. Then there is an \(N_0 \) such that

If \(\Sigma \cup \text{FSA} \cup \{ p(S_0) \leq N_0 \} \models \exists s. \; T^*(Q_0, S_0, Q_F, s) \land G[s] \),

then \(\Sigma \cup \text{FSA} \models \exists s. \; T^*(Q_0, S_0, Q_F, s) \land G[s] \).
The Main Theorem

Theorem

Suppose \(\langle \Sigma, G \rangle \) is a one-dimensional planning problem with planning parameter \(p \), and FSA axiomatizes an FSA plan. Then there is an \(N_0 \) such that

\[
\text{If } \Sigma \cup \text{FSA} \cup \{ p(S_0) \leq N_0 \} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s],
\]

\[
\text{then } \Sigma \cup \text{FSA} \models \exists s. \ T^*(Q_0, S_0, Q_F, s) \land G[s].
\]

In particular, \(N_0 = 2 + k \cdot l^m \), where

- \(m \) is the number of finite and sequence functions in \(\Sigma \);
- each such fluent may take at most \(l \) different values;
- \(k \) is the number of the program states in the FSA plan.
Towards a Tighter Bound

- N_0 is exponential and thus impractical for many cases.
- We proposed an algorithmically obtained bound N_t (Theorem 2), which is usually much smaller than N_0, such that

\[
\text{If } \Sigma \cup \text{FSA} \cup \{p(S_0) \leq N_t\} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s],
\]

\[
\text{then } \Sigma \cup \text{FSA} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].
\]
Towards a Tighter Bound

- N_0 is exponential and thus impractical for many cases.
- We proposed an algorithmically obtained bound N_t (Theorem 2), which is usually much smaller than N_0, such that

$$\text{If} \quad \Sigma \cup \text{FSA} \cup \{p(S_0) \leq N_t\} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s],$$

$$\text{then} \quad \Sigma \cup \text{FSA} \models \exists s. T^*(Q_0, S_0, Q_F, s) \land G[s].$$

With Theorem 2, we can verify that an FSA plan is correct in general by verifying that it is correct for $p(S_0) = 0, 1, 2, \cdots N_t$.
Experimental Results

We used the different bounds in the test phase of FSAPLANNER on four one-dimensional planning problems (treechop, variegg, safe and logistic).

<table>
<thead>
<tr>
<th>Problem</th>
<th>treechop</th>
<th>variegg</th>
<th>safe</th>
<th>logistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{man}^*</td>
<td>100</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Time (secs)</td>
<td>0.1</td>
<td>0.12</td>
<td>0.09</td>
<td>3.93</td>
</tr>
<tr>
<td>N_0</td>
<td>18</td>
<td>345</td>
<td>4098</td>
<td>514</td>
</tr>
<tr>
<td>Time (secs)</td>
<td>0.03</td>
<td>> 1 day</td>
<td>> 1 day</td>
<td>> 1 day</td>
</tr>
<tr>
<td>N_t</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Time (secs)</td>
<td>0.01</td>
<td>0.08</td>
<td>0.08</td>
<td>3.56</td>
</tr>
</tbody>
</table>

*: N_{man} is the manually estimated test bound without correctness guarantee.
Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Future work:
Investigate correctness guarantee for more general classes.
Conclusion and Future Work

Planning with loops is an interesting and challenging problem. In this paper, we

- define a generalized plan representation that allows loops;
- give a formal notion of plan correctness under this representation;
- identify the class of one-dimensional problems whose correctness can be finitely verified;
- show that a planner based on this theoretical result efficiently generates provably correct plans for one-dimensional problems.

Future work:

- Investigate correctness guarantee for more general classes.
Simple problems for KPLANNER (Levesque 2005);
Goal achievability for rank 1 theories (Lin 2008);
Extended-LL problems (Srivastava et al. 2008);
Abacus programs (Srivastava et al. 2010);
Deductive approaches (Manna&Waldinger 1987, Magnusson&Doherty 2008);
Weak guarantee (Winner&Veloso 2007, Bonet et al. 2009);
Model checking (Clarke et al. 1999).