
A Correctness Result for Reasoning about One-Dimensional Planning Problems∗

Yuxiao Hu and Hector J. Levesque
Department of Computer Science

University of Toronto
Toronto, Ontario M5S 3G4, Canada
{yuxiao, hector}@cs.toronto.edu

Abstract

A plan with rich control structures like branches
and loops can usually serve as a general solution
that solves multiple planning instances in a domain.
However, the correctness of such generalized plans
is non-trivial to define and verify, especially when
it comes to whether or not a plan works for all of
the infinitely many instances of the problem. In
this paper, we give a precise definition of a gen-
eralized plan representation called an FSA plan,
with its semantics defined in the situation calcu-
lus. Based on this, we identify a class of infinite
planning problems, which we call one-dimensional
(1d), and prove a correctness result that 1d prob-
lems can be verified by finite means. We show
that this theoretical result leads to an algorithm
that does this verification practically, and a plan-
ner based on this verification algorithm efficiently
generates provably correct plans for 1d problems.

Introduction
Planning with rich control structures like branches and
loops is drawing increasing attention from the AI commu-
nity [Manna and Waldinger, 1987; Levesque, 2005; Srivas-
tava et al., 2008]. One advantage of the resulting generalized
plan is that the same plan can work in different initial states
with very large numbers of objects.

For example, suppose we have the following variant of the
logistics problem: There are a number of objects at their
source locations (office or home), and the goal is to move
them all to their destinations with a truck. The available ac-
tions include moving the truck to a location, loading and un-
loading an object, finding the source and destination locations
of an object, and checking whether all objects have been pro-
cessed. Then, intuitively, the plan in Figure 1 achieves the
goal no matter how many objects there are.

Unfortunately, it is not easy to see formally why this plan
is correct for this problem. We need a formal definition of
a plan representation and we must be precise about what it

∗This is a reduced version of the paper with the same name from
KR-10. More details and proofs of theorems can be found there.

Figure 1: An example plan for the logistic problem

means for such a plan to be correct for all of the infinitely
many possible objects and source-destination combinations.

In this paper, we propose a solution to these in terms of a
Finite State Automaton plan (FSA plan), a generalized plan
representation inspired by and shown more expressive than
robot programs [Levesque, 1996]. The semantics of FSA
plans is declaratively defined in the situation calculus, so we
have a foundation to analyze planning problems, plans, and
their correctness. This notion of correctness, although precise
and general, has the disadvantage that it uses second-order
logic and is thus intractable in general. The intractability is
inevitable, since FSA plans, like robot programs, are Turing
complete in sufficiently expressive action domains [Lin and
Levesque, 1998].

However, for restricted action domains, we can do much
better. A number of real-world problems involve indepen-
dently processing an unbounded number of objects: deliver-
ing packages according to their shipping labels (as in the lo-
gistics example above), pushing the buttons on a safe accord-
ing to the digits of a combination, keeping or discarding eggs
according to their smell, etc. In this paper, we identify a class
of planning problems, which we call one-dimensional or 1d,
that includes these, based on the shape of their action theory.
We introduce a verification procedure, which we prove is cor-
rect for all 1d problems. We also present empirical evidence
that a planner based on this verification procedure efficiently
generates provably correct plans on planning problems that
appear to be beyond the algorithmic reach of other planners.

Problem and Plan Representation
In order to represent and reason about the planning problem
sketched above, we need a formal action language. In this



paper, we appeal to the situation calculus, although the re-
sults introduced here could be adapted to other formalisms
like A [Gelfond and Lifschitz, 1993], and the fluent calcu-
lus [Thielscher, 1998].

The situation calculus is a first-order, multi-sorted logical
language with limited second-order features for representing
and reasoning about dynamical environments [McCarthy and
Hayes, 1969; Reiter, 2001]. Objects in the domain of the
logic are of three disjoint sorts: situation for situations, action
for actions and object for everything else. The only situation
constant S0 denotes the initial situation where no action has
yet occurred, and do(a, s) represents the situation after per-
forming action a in situation s. We use do([a1, · · · , an], s)
as an abbreviation for do(an, do(· · · , do(a1, s))). Functions
(relations) whose value may vary from situation to situation
are called functional (relational) fluents, and denoted by a
function (relation) whose last argument is a situation term.
Functions and relations whose value do not change across
situations are called rigids. Without loss of generality, we
assume that all fluents are functional. The special relation
Poss(a, s) states that action a is executable in situation s,
and the function SR(a, s) indicates the sensing result of a
when performed in s. The latter is introduced by Scherl and
Levesque (2003) to accommodate knowledge and sensing in
the situation calculus. We assume that ordinary actions, not
intended for sensing purposes, simply return a fixed value
(ok). A formula φ is uniform in s if it does not mention Poss,
SR, or any situation term other than s. We call a fluent for-
mula φ with all situation arguments eliminated a situation-
suppressed formula, and use φ[s] to denote the uniform for-
mula with all situation arguments restored with term s.

The dynamics of a planning problem is formalized by a
basic action theory (BAT) of the form

D = FA ∪ Σpre ∪ Σpost ∪ Σsr ∪ Σ0 ∪ Σuna

where

• FA is a set of domain-independent axioms defining the
legal situations [Reiter, 2001].

• Σpre is a set of action precondition axioms, one for each
action symbol of the form Poss(A(~x), s) ≡ ΠA(~x, s).

• Σpost is a set of successor-state axioms, one for each flu-
ent f of the form f(~x, do(a, s))=y ≡ Φf (~x, a, y, s).

• Σsr is a set of sensing result axioms, one for each sensing
action of the form SR(A(~x), s)=r ≡ ΘA(~x, r, s).

• Σ0 is the initial knowledge base stating facts about S0.

• Σuna is a set of unique names axioms for actions.

Figure 2 shows a complete specification for the logistic
problem above as a BAT.1 There are four fluents, loc (the lo-
cation of the truck), loaded (the loading status of the truck),
parcels left (the number of parcels remaining to be delivered),
and misplaced (whether any processed object has been mis-
placed). The initial value of parcels left is non-negative but
unknown. There is a sensing action check done that tells

1We omit the foundational axioms FA, the unique names axioms
Σuna, and any domain closure axiom for objects (as will be intro-
duced in Definition 6 below).

Precondition Axioms:
Poss(move(x), s) ≡ TRUE

Poss(load, s) ≡ loc(s) = source(parcels left(s)) ∧
loaded(s) = FALSE

Poss(unload, s) ≡ loaded(s) = TRUE

Poss(find src, s) ≡ parcels left(s) 6= 0

Poss(find dest, s) ≡ parcels left(s) 6= 0

Poss(check done, s) ≡ TRUE

Successor State Axioms:
loc(do(a, s)) = x ≡ ∃y. x = y ∧ a = move(y) ∨

x = loc(s) ∧ a 6= move(y)

misplaced(do(a, s)) = x ≡
x = TRUE ∧ a = unload ∧

loc(s) 6= dest(parcels left(s)) ∨
x = misplaced(s) ∧ (a 6= unload ∨

loc(s) = dest(parcels left(s)))
loaded(do(a, s)) = x ≡ x = TRUE ∧ a = load ∨

x = FALSE ∧ a = unload ∨
x = loaded(s) ∧ a 6= load ∧ a 6= unload

parcels left(do(a, s)) = x ≡
x = parcels left(s)− 1 ∧ a = unload ∨
x = parcels left(s) ∧ a 6= unload

Sensing Result Axioms:
SR(find src, s) = r ≡ source(parcels left(s)) = r

SR(find dest, s) = r ≡ dest(parcels left(s)) = r

SR(check done, s) = r ≡
r = yes ∧ parcels left(s) = 0 ∨
r = no ∧ parcels left(s) 6= 0

SR(move(x), s) = r ≡ r = ok
SR(load, s) = r ≡ r = ok
SR(unload, s) = r ≡ r = ok

Initial Situation Axiom:
∀n. (source(n) = home ∨ source(n) = office) ∧

∀n. (dest(n) = home ∨ dest(n) = office) ∧
loc(S0) = home ∧ loaded(S0) = FALSE ∧
parcels left(S0) ≥ 0 ∧ misplaced(S0) = FALSE

Goal Condition:
parcels left = 0 ∧ misplaced = FALSE

Figure 2: Axiomatization of logistic in the situation calculus

whether or not all parcels have been processed. In addition
to the four fluents, we assume there are two rigid functions,
source and dest that provide the shipping label for each ob-
ject. For example, dest(7) = home would mean that the des-
tination of the 7th object is home. The values of these func-
tions is not specified, but the sensing action find src returns
the source for the current object (according to parcels left),
and similarly for find dest.

Given the dynamics, the planning task is to find a plan that
is executable in the given environment, and whose execution



achieves some desired goal. Here, we only consider planning
problems with final-state goals, defined as follows:
Definition 1 (The Planning Problem). A planning problem is
a pair 〈D, G〉, where D is a basic action theory, and G is a
situation-suppressed formula in the situation calculus.

In the case of logistic, the goal G is to make parcels left be
0 while keeping misplaced as FALSE. Since the number of
parcels and their sources and destinations are left open, this
planning problem is not soluble with a sequential plan. We
need a more general plan representation with branches and
loops to handle the contingencies.

One candidate representation is Levesque’s robot pro-
grams [Levesque, 1996]. Recently, Hu and Levesque (2009)
proposed an alternative representation called the FSA plan,
and showed that it is more general than robot programs, in
that all robot programs have an FSA plan representation but
not vice versa. Moreover, they also presented a planning al-
gorithm with this representation, which greatly outperforms
the robot-program based KPLANNER [Levesque, 2005]. As
a result, we appeal to FSA plans in this paper.
Definition 2 (FSA Plan [Hu and Levesque, 2009]).
An FSA plan is a tuple 〈Q, γ, δ,Q0, QF 〉, where
• Q is a finite set of program states;
• Q0 ∈ Q is an initial program state;
• QF ∈ Q is a final program state;
• γ : Q− → A is a function, where Q− = Q \ {QF } and
A is the set of primitive actions;
• δ : Q− × R → Q is a function, where R is the set of

sensing results, that specifies the program state to tran-
sition to for each non-final state and valid sensing result
for the associated action.

An example of an FSA plan (shown as a graph) appears in
Figure 1. The execution of an FSA plan starts from q = Q0,
and executes the action γ(q) associated with program state
q. On observing sensing result r, it transitions to the new
program state δ(q, r). This repeats until QF is reached.

In order to represent FSA plans in the situation calculus,
we assume that there is a sub-sort of object called program-
state, with Q0 and QF being two constants of this sort, and
two rigid function symbols γ and δ. We use a set of sentences
FSA to axiomatize the plan:
Definition 3. FSA is a set of axioms consisting of

1. Domain closure axiom for program states
(∀q). {q = Q0 ∨ q = Q1 ∨ · · · ∨ q = Qn ∨ q = QF };

2. Unique names axioms for program states
Qi 6= Qj for i 6= j;

3. Action association axioms, one for each program state
other than QF , of the form γ(Q) = A

4. Transition axioms of the form δ(Q,R) = Q′

To capture the desired execution semantics, we introduce a
transition relation T ?(q1, s1, q2, s2), which intuitively means
that from program state q1 and situation s1, the FSA plan
will reach q2 and s2 at some point during the execution. The
formal definition is given in Definition 4.

Definition 4. We use T ?(q1, s1, q2, s2) as abbreviation for
(∀T ).{. . . ⊃ T (q1, s1, q2, s2)}, where the ellipsis is the con-
junction of the universal closure of the following:

• T (q, s, q, s)

• T (q, s, q′′, s′′) ∧ T (q′′, s′′, q′, s′) ⊃ T (q, s, q′, s′)

• γ(q) = a ∧ Poss(a, s) ∧ SR(a, s) = r ∧ δ(q, r) = q′ ⊃
T (q, s, q′, do(a, s))

Notice that this definition uses second-order quantification to
ensure that T ? is the least predicate satisfying the three prop-
erties above. This essentially constrains the set of tuples sat-
isfying T ? to be the reflexive transitive closure of the one-step
transitions in the FSA plan.

With this transition relation, we can now characterize the
correctness of FSA plans as follows.

Definition 5 (Plan correctness). Given a planning problem
〈D, G〉, a plan axiomatized by FSA is correct iff

D ∪ FSA |= ∃s. T ?(Q0, S0, QF , s) ∧G[s].

The definition essentially says that for an FSA plan to be
correct, it must guarantee that for any model of D, the ex-
ecution of the FSA plan will reach the final state QF , and
the goal is satisfied in the corresponding situation s. (In the
case of logistic, a plan needs to work for any initial value of
parcels left and any value for the functions source and dest.)

This criterion of correctness is general and concise, but
its second-order quantification and the potential existence of
infinitely many models make it less useful algorithmically.
Partly for this reason, existing iterative planners based on a
similar representation, like KPLANNER [Levesque, 2005]
and FSAPLANNER [Hu and Levesque, 2009], only come
with a very weak correctness guarantee: although the gener-
ated plan tends to work for all problems in the domain, only
certain instances can be proven correct. It is thus interesting
to ask whether we can generate provably correct plans for re-
stricted classes of planning problems. The rest of this paper
gives a positive answer to this question.

One-Dimensional Planning Problems
The major goal of this paper is to identify a class of planning
problems that has a complete procedure to reason about the
correctness of solution FSA plans. In this section, we define
the class of 1d planning problems, which is derived from the
more restricted finite problems.

Definition 6. A planning problem 〈D, G〉 is finite if D does
not contain any predicate symbol other than Poss and equal-
ity, and the sort object has a domain closure axiom

∀x. x = o1 ∨ · · · ∨ x = ol.

Intuitively, a finite problem has finitely many objects in the
domain. Therefore, the number of ground fluents as well as
their range is finite.

A 1d problem is like a finite problem except that there is
a special distinguished fluent (called the planning parameter)
that takes value from a new sort natural number, there is a
finite set of distinguished actions (called the decreasing ac-
tions) which decrement the planning parameter, and some of



the functions (called sequence functions) have an index ar-
gument of sort natural number.2 In the case of the logistic
example, the planning parameter is parcels left, the decreas-
ing action is unload, and the sequence functions are source
and dest. The idea of a 1d planning problem is that the ba-
sic action theory is restricted in how it can use the planning
parameter and sequence functions, as follows:

Definition 7. A planning problem 〈D′, G′〉 is 1d with re-
spect to an integer-valued fluent p, if there is a finite prob-
lem 〈D, G〉 whose functions include fluent f0 and rigids
f1, · · · , fm, and whose actions includeA1, · · · , Ad, such that
〈D′, G′〉 is derived from 〈D, G〉 as follows:

1. Replace the fluent f0 with a planning parameter p:

(a) replace successor-state axiom for f0 by one for p:
p(do(a, s)) = x ≡ x = p(s)− 1 ∧ Dec(a) ∨

x = p(s) ∧ ¬Dec(a),
where Dec(a) stands for (a = A1 ∨ · · · ∨ a = Ad);

(b) replace all atomic formulas involving the term
f0(s) in Π, Φ, Θ and G[s] by p(s) = 0, where s
is the free situation variable in those formulas;

(c) remove all atomic formulas mentioning f0(S0) in
Σ0, and add p(S0) ≥ 0 instead.

2. Replace the rigids f1, · · · , fm with sequence functions
h1, · · · , hm:

(a) replace all terms fi in Π, Φ, Θ and G[s] by
hi(p(s)), where s is the free variable as above;

(b) replace all fi in Σ0 with hi(n), where n is a univer-
sally quantified variable of sort natural number.

Observe that in a 1d problem, the occurrence of the integer
planning parameter is limited to its own successor state ax-
iom, in Σ0, and as an argument to a sequence function. Any
other use of it is to test whether it is 0. Similarly, we can only
apply a sequence function to the current object as determined
by the planning parameter (other than in Σ0 where we must
quantify over all natural numbers). This ensures that the ob-
jects can be accessed sequentially in descending order, and
that they do not interact with one another. It is not hard to see
that logistic conforms to these requirements.

Main Theorems
Given a planning problem and a candidate plan, an impor-
tant reasoning task is to decide whether the plan is guaran-
teed to achieve the goal according to the action theory. In a
1d setting, we need to ensure that the plan achieves the goal
no matter what values the planning parameter p and the se-
quence functions hi take. Unfortunately, there are infinitely
many values that need to be taken into account.

In this section, we consider a correctness result of the fol-
lowing form: if we can prove that a plan is correct under the
assumption that p(S0) ≤ N (for a constant N that we calcu-
late), it will follow that the plan is also correct without this

2For simplicity, we assume in this paper that all sequence func-
tions are rigid, but it is not hard to prove that the definitions and
theorems work for sequence fluents as well.

assumption. In other words, correctness of the plan for initial
values of p up to N will be sufficient.

The first theorem we can prove is the following:

Theorem 1. Suppose 〈D, G〉 is a 1d planning problem with
planning parameter p, and that D contains FSA axioms for
some plan. Let N0 = 2 + k0 · lm, where k0 is the number
of decreasing program states in the FSA plan, m is the total
number of finite and sequence functions, and l is the total
number of values that they can take. Then we have:

If D∪{p(S0) ≤ N0} |= ∃s.T ?(Q0, S0, QF , s)∧G[s],

then D |= ∃s.T ?(Q0, S0, QF , s) ∧G[s].

What the proof does is to show that despite the fact that the
value of the planning parameter is not bounded, the number of
situations that can be distinguished in a 1d BAT is bounded.
So if a plan were to fail to achieve the goal in a model where
p(S0) > N0, then according to the BAT, it would also fail in
a model where p(S0) ≤ N0.

The bound N0 in this theorem is exponential in the num-
ber of ground functions, however. It can therefore can be
extremely large even for relatively simple action theories.

To obtain a more practical bound in a similar vein, we in-
troduce another theorem, where we do not declaratively spec-
ify the bound, but instead only spell out the necessary condi-
tion for an integer Nt to be a valid bound.

Theorem 2. Suppose 〈D, G〉 is a 1d planning problem with
planning parameter p, and that D contains FSA axioms for
some plan. Let Seen(q, s) be the abbreviation for

∃s′. T ?(Q0, S0, q, s
′) ∧ p(s′) > 1 ∧∧

f(s) = f(s′) ∧
∧
h(p(s)) = h(p(s′))

where the first conjunction is over the finite fluents f , and the
second over sequence functions h. Suppose Nt > 0 satisfies

D ∪ {p(S0) = Nt} |=
∀q, s. T ?(Q0, S0, q, s) ∧ p(s) = 1 ⊃ Seen(q, s)

Then we have the following:

If D∪{p(S0) ≤ Nt} |= ∃s.T ?(Q0, S0, QF , s)∧G[s],

then D |= ∃s.T ?(Q0, S0, QF , s) ∧G[s].

Intuitively, the Nt here has to be large enough so that a
similar situation to the one that decrements the planning pa-
rameter from 1 to 0 occurs earlier in the execution trace.

Experimental Results
Given an FSA plan for a 1d planning problem, Theorems 1
and 2 suggest two algorithms to verify its correctness, which
can then be used for plan generation.

Plan verification
To utilize the idea in Theorem 1, we only need to execute the
FSA plan for p(S0) = 0, 1, · · · , N0. If the goal is achieved



in all cases, then the FSA plan is correct in general, accord-
ing to the theorem, and otherwise, it is incorrect. However,
when the bound is large, this algorithm becomes impracti-
cal, since the number of possible initial worlds is exponential
in the planning parameter. In the logistic example, for in-
stance, each parcel has four possible source-destination com-
binations, so if we consider a problem containing 514 parcels
(see the bounds for logistic below), the total number of possi-
ble combinations would be 4514.

Fortunately, the bound N0 is a loose, worst-case estimate,
and Theorem 2 suggests a better algorithm. We execute the
FSA plan starting from p(S0) = 0, 1, 2, · · · . In each execu-
tion, whenever the planning parameter p decreases from 1 to
0, we record the program state, as well as the value of all finite
and sequence functions in a table. If for some Nt, the execu-
tion for p(S0) = Nt does not add any new row into the table,
then this Nt satisfies the criterion of Theorem 2, and thus the
plan is guaranteed to be correct in general. If the FSA plan
fails before reaching such an Nt, then it is incorrect. Notice
that when the plan is correct, this algorithm will terminate,
since if we reach N0, it is guaranteed correct by Theorem 1.

Plan generation
With the complete verification algorithms in hand, we can
now generate plans that are correct for 1d planning prob-
lems. This is done by slightly modifying FSAPLANNER
introduced by Hu and Levesque (2009).

The FSAPLANNER works by alternating between a gen-
eration and a testing phase: it generates plans for values of the
planning parameter up to a lower bound, and then tests the
resulting candidate plans for a higher value of the planning
parameter. Although this appears to work for many applica-
tions, it has at least two serious problems: (1) the lower and
higher bounds must be set by hand and (2) the only formal
guarantee is that the plan works for the given values.

The verification algorithms proposed above resolve both of
these problems. The idea is to replace the test phase of FSA-
PLANNER by this verification. Then whenever a plan passes
the testing phase, it is guaranteed to be correct. Notice that
in both cases, the bounds N0 and Nt can be obtained me-
chanically from the planning problem itself without manual
intervention. The former only depends on the number of flu-
ents and constants that appear in Σ0 and Σpost, whereas the
latter is identified by table saturation.

We ran several experiments with variants of FSAPLAN-
NER on four example domains: treechop, variegg, safe and
logistic. (The first two are adapted from [Levesque, 2005].)

treechop: The goal is to chop down a tree, and put away
the axe. The number of chops needed to fell the tree is
unknown, but a look action tells whether the tree is up or
down. Intuitively, a solution involves first look and then
chop whenever up is sensed. This repeats until down is
sensed, in which case we store the axe, and are done.

variegg: The goal is to get enough good eggs in the bowl
from a sequence of eggs, each of which may be either
good or bad, in order to make an omelette. A sensing
action check bowl tests if there are enough eggs in the
bowl, and another smell dish tests whether the egg in

Problem treechop variegg safe logistic
Nman 100 6 4 5

Time (secs) 0.1 0.12 0.09 3.93
N0 18 345 4098 514

Time (secs) 0.03 > 1 day > 1 day > 1 day
Nt 2 3 2 2

Time (secs) 0.01 0.08 0.08 3.56

Figure 3: Comparison of FSAPLANNER using different ver-
ification modules

the dish is good or bad. Other actions include breaking
an egg in the sequence to the dish, moving the egg from
dish to bowl and dumping the dish.

safe: The goal is to open a safe whose secret combination is
written on a piece of paper as a binary string. The ac-
tion pick paper picks up the paper, and the sensing ac-
tion read reads the first unmarked bit of the combination
and return either 0 or 1, or “done” if the end of string is
reached. The action process(x) crosses the current bit on
the paper, and pushes button x on the safe, where x can
be 0 or 1. Finally, open unlocks the safe if the correct
combination is pushed, and jams the safe otherwise.

We summarize the parameters/bounds and computation
times on the four sample problems in Figure 3. Here, Nman
is the manually specified test parameter in the original FSA-
PLANNER, N0 is the exponential bound obtained from The-
orem 1, and Nt is the tighter bound based on table-saturation
derived from Theorem 2. The corresponding CPU time to
generate a correct plan is listed below each parameter/bound.
(All runs are in SWI-Prolog under Ubuntu Linux 8.04 on a
Intel Core2 3.0GHz CPU machine with 3.2GB memory.)

Comparing the bounds that have guarantees, Nt is much
tighter than N0. N0 is impractical for larger planning prob-
lems like safe and logistic, whereas Nt is consistently small
for all problems. Note that this planner can do even better
than the original FSAPLANNER when the manually speci-
fied test bound is overestimated. In sum, the table saturation
based verification algorithm enables us to efficiently generate
correctness-guaranteeing FSA plans for these 1d problems.

Related Work
The work most similar to ours in this paper is the theorem that
“simple problems” can be finitely verified [Levesque, 2005].
However, the definition of simple problems is based on prop-
erties of the plan, and thus somewhat ad hoc. Our definition
of 1d problems, in contrast, is rooted in the situation calculus,
and therefore inherits its rigorous proofs.

Another closely related work is Lin’s proof technique for
goal achievability for rank 1 action theories by model sub-
sumption [Lin, 2008]. His rank 1 action theory is more gen-
eral than our 1d theory, but the type of plan that can be rea-
soned about is more restricted: plans with all actions located
in a non-nested loop. Efficiently generating iterative plans is
also outside of the scope of his work.

The planner Aranda [Srivastava et al., 2008] learns “gen-
eralized plans” that involve loops by using abstraction on an



example plan. They prove that their planner generates correct
plans for problems in “extended-LL” domains. However, it
not clear what sort of action theories can or cannot be char-
acterized as extended-LL. It is thus interesting future work
to compare the relative expressiveness between extended-LL
and 1d problems, and identify a more general class that ac-
commodates both formalisms.

There is also important work on planning in domains where
loops are required but correctness in general is not considered
at all. The planner loopDistill [Winner and Veloso, 2007]
learns from an example partial-order plan. Similarly, the
planner introduced by Bonet, Palacios and Geffner (2009)
synthesizes finite-state controllers via conformant planning.
In both cases, the resulting plans can usually solve problems
similar to the examples used to generate them, but under what
conditions they will be applicable is not addressed.

Earlier work on deductive synthesis of iterative or recursive
plans represents another approach based on theorem prov-
ing. For example, Manna and Waldinger (1987) finds re-
cursive procedures to clear blocks in the blocks world, and
the resulting plan comes with a strong correctness guarantee.
Unfortunately, the price to pay is typically manual interven-
tion (for example, to identify induction hypotheses) and poor
performance. Magnusson and Doherty recently proposed to
use heuristics to automatically generate induction hypotheses
for temporally-extended maintenance goals (2008). However,
their planner is incomplete, and for which subclass their ap-
proach is complete remains to be investigated.

Finally, there is a separate branch of research in model
checking for automatically verifying correctness of computer
programs [Clarke et al., 1999]. It is concerned with correct-
ness of programs in predefined computer languages instead
of general action domains, and does not aim for program syn-
thesis. However, results and techniques from this community
may shed light on our goal of iterative plan verification and
generation in the long run.

Conclusion and Future Work
In this paper, we identified a class of planning problems
which we called 1d, and proved that plan correctness for un-
bounded 1d problems could be checked in a finite and prac-
tical way. Based on this theoretical result, we developed a
variant of FSAPLANNER, and showed that it efficiently gen-
erates provably correct plans for 1d problems.

In the future, we intend to investigate planning problems
beyond the 1d class. Consider, for example, the following:

We start with a stack A of blocks, with the same
number of blue and red ones. We can pick up a
block from stack A or B, and put a block on stack
B or C. We can also sense when a stack is empty
and the color of a block being held. The goal is to
get all the blocks onto stack C, alternating in color,
with red on the bottom.

What makes this problem challenging is that we may need to
put a block aside (onto stack B) and deal with any number
of other blocks before we can finish with it. In a still more
general example, consider the Towers of Hanoi. In this case,
we spend almost all our time finding a place for disks that are

not ready to be moved to their final location. In the future, we
hope to develop finite techniques for such problems too.

References
[Bonet et al., 2009] B. Bonet, H. Palacios, and H. Geffner.

Automatic derivation of memoryless policies and finite-
state controllers using classical planners. In Proc. of Intl.
Conf. on Automated Planning and Scheduling, 2009.

[Clarke et al., 1999] Edmund M. Clarke, Orna Grumberg,
and Doron A. Peled. Model Checking. MIT Press, 1999.

[Gelfond and Lifschitz, 1993] M. Gelfond and V Lifschitz.
Representing actions and change by logic programs. Jour-
nal of Logic Programming, pages 301–323, 1993.

[Hu and Levesque, 2009] Y. Hu and H.J. Levesque. Planning
with loops: Some new results. In ICAPS Workshop on
Generalized Planning, 2009.

[Levesque, 1996] H.J. Levesque. What is planning in the
presence of sensing. In Proceedings of National Confer-
ence on Artificial Intelligence, 1996.

[Levesque, 2005] H.J. Levesque. Planning with loops. In
Proc. of Intl. Joint Conf. on Artificial Intelligence, 2005.

[Lin and Levesque, 1998] F. Lin and H.J. Levesque. What
robots can do: robot programs and effective achievability.
Artificial Intelligence, 1998.

[Lin, 2008] F. Lin. Proving goal achievability. In Pro-
ceedings of International Conference on the Principles of
Knowledge Representation and Reasoning, 2008.

[Magnusson and Doherty, 2008] M. Magnusson and P. Do-
herty. Deductive planning with inductive loops. In Pro-
ceedings of National Conference on Artificial Intelligence,
2008.

[Manna and Waldinger, 1987] Z. Manna and R. Waldinger.
How to clear a block: a theory of plans. Journal of Auto-
mated Reasoning, 3(4):343–377, 1987.

[McCarthy and Hayes, 1969] J. McCarthy and P.J. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. Machine Intelligence, 1969.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logi-
cal Foundations for Specifying and Implementing Dynam-
ical Systems. MIT Press, 2001.

[Scherl and Levesque, 2003] R. Scherl and H. Levesque.
Knowledge, action, and the frame problem. Artificial In-
telligence, 144, 2003.

[Srivastava et al., 2008] S. Srivastava, N. Immerman, and
S. Zilberstein. Learning generalized plans using abstract
counting. In Proceedings of National Conference on Arti-
ficial Intelligence, 2008.

[Thielscher, 1998] M. Thielscher. Introduction to the flu-
ent calculus. Electronic Transactions on Artificial Intel-
ligence, 2(3-4):179–192, 1998.

[Winner and Veloso, 2007] E. Winner and M. Veloso.
LoopDISTILL: Learning domain-specific planners from
example plans. In Proceedings of ICAPS-07 Workshop on
AI Planning and Learning, 2007.


