1. [10] Simplify the following circuit. (Use binary gates only, and as few as possible.)

2. [15] Design a circuit that takes as input a 4 -bit binary number $x_{3} x_{2} x_{1} x_{0}$, and computes a 1-bit output y, such that $y=\mathrm{T}$ if and only if the input is a prime number. Make the circuit as readable as you can. (Note: Prime numbers between 0 and 15 are 2, 3, 5, 7, 11 and 13.)
3. Do the following conversion.
(a) [5] Convert decimal number 22.3 to binary (ordinary binary with a binary point, not IEEE).
(b) [5] Convert 22.3 from base 5 to decimal. (Base 5 is a numbering system where each digit can take values $0,1,2,3$ and 4 . For example, 12 in base 5 is 7 in base 10.)
(c) [5] Convert the 8-bit two's complement number 11001100 to decimal.
4. [10] Complete the timing diagram for signals x_{3} and x_{4} based on the circuit.

x_{4}

CSC258 Computer Organization (Winter 2009) Mid-Term Test

Febrary 23, 2009
50 minutes, 4 questions, 50 marks.

FAMILY NAME:

GIVEN NAME(S):

STUDENT ID:

TUTORIAL ROOM (circle one): BA2135 / BA2139 / BA2165

Question\#	Marks
1	$/ 10$
2	$/ 15$
3	$/ 15$
4	$/ 10$
Total	

