CSC258 Computer Organization (Winter 2009) Assignment 1

Due Monday, Feb. 2 at 6:00pm in BA2220

1 [10] Using two different methods, prove that the following circuits are functionally equivalent.

2 [10] Simplify the following boolean expression. Show your work.

$$
((a \leq c) \neq(b \leq c)) \vee(((a \leq b) \triangle(b \leq a)) \wedge c)
$$

3 Show that
(a) $[5]\{\leq\}$ is not complete.
(b) [5] Using only 2 -input ∇ gates, one can build the circuit $a \leq b$.

4 [15] Consider the encrypt/decrypt function $f(x)=3 x \bmod 8$.
For any integer $0 \leq x<8, y=f(x)$ is a number that can be considered the encrypted code of x. For example, the encryption of 2 is $f(2)=(3 \times 2) \bmod 8=6$, i.e., 2 is encrypted into 6 .

To decrypt, simply apply the function to the encrypted code y, and obtain $x=f(y)$. For the example above, $f(6)=(3 \times 6) \bmod 8=18 \bmod 8=2$, i.e., 6 is decrypted and the original number 2 is obtained.

Design a circuit that computes, for any integer input $0 \leq x<8$, the encrypt/decrypt function $f(x)$.

