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Abstract

We investigate the distribution of the well-studied Shapley–Shubik values in weighted voting
games where the agents are stochastically determined. The Shapley-Shubik value measures
the voting power of an agent, in typical collective decision making systems. While easy to
estimate empirically given the parameters of a weighted voting game, the Shapley values are
notoriously hard to reason about analytically.

We propose a probabilistic approach in which the agent weights are drawn i.i.d. from
some known exponentially decaying distribution. We provide a general closed-form charac-
terization of the highest and lowest expected Shapley values in such a game, as a function of
the parameters of the underlying distribution. To do so, we give a novel reinterpretation of
the stochastic process that generates the Shapley variables as a renewal process. We demon-
strate the use of our results on the uniform and exponential distributions. Furthermore, we
show the strength of our theoretical predictions on several synthetic datasets.
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1. Introduction

Weighted voting games are a fundamental model in cooperative game theory, used to
formalize collective decision making processes. A weighted voting game is given by a set
of n positively-weighted agents, and a positive quota value, also known as the threshold.
A set of agents (a coalition) is said to be winning if their combined weight exceeds the
prescribed quota. This setting was inspired by parliamentary systems. Indeed, when forming
a coalition following an election, or when legislating a law, there is a minimal threshold
(e.g., the minimal number of parliament seats needed to form a coalition, or the necessary
amount of votes required to pass a bill), which requires the agents to cooperate. Due to
its direct relevance to such political bodies, much work has been done on modelling real-
life parliamentary systems as weighted voting games, and studying their properties from
this perspective. Some examples include the European Council of Ministers (e.g., Leech,
2002a; Algaba et al., 2007; Felsenthal and Machover, 2004), the International Monetary
Fund studied by Leech Leech (2002b), and the United Nations Security Council Strand and
Rapkin (2011). Furthermore, weighted voting games have also been used to formalize other
decision-making processes in companies, where the votes are cast by the shareholders (e.g.,
Arcaini and Gambarelli, 1986).

A recurring thread in many of these works is the study of the voting power of agents
in these systems. To that end, a number of measures called “power indices” have been
proposed. Informally, a power index quantifies the amount of influence each agent has in a
particular game.
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Two well-known examples of such power indices are the Shapley power index (Shapley
and Shubik, 1969)2 and the Banzhaf index (Banzhaf, 1964). Both of these power indices
build on the notion of a pivotal agent: an agent is pivotal to a given coalition A, if A is
a losing coalition (the combined weight of its agents does not exceed the quota), and upon
joining it, the coalition becomes a winning one. A particular use of these measures pertains
to the design of voting systems, where the goal is usually to reach a certain state of power
distribution, by either assigning the agents their weights, or by judiciously selecting the
quota. The goal of this paper is very much related to the latter approach. That is, we are
interested in analyzing the effects of varying the quota on the resulting Shapley values.

In general though, it is well-known that weighted voting games are hard to reason about.
The task of computing the Shapley values exactly is known to be computationally intractable
(Matsui and Matsui, 2001). More importantly, for an arbitrary weighted voting game, the
values can exhibit acute fluctuations with even minute changes to the quota value. Given
this fact, we revisit the model by considering the manner by which the weights are deter-
mined. We assume that the weights are determined according to an underlying stochastic
process. This additional layer is relevant to many of the settings to which our theoretical
model applies to. For example, in the case of a parliamentary system, the number of seats
each party depends greatly on the size of the population that it represents. However, it is
often assumed that the sizes of populations are not fixed, but rather, vary stochastically for
various reasons (e.g., Matis and Kiffe, 2000). In accordance with this added distributional as-
sumption, we revisit the study of Shapley values by considering the expected Shapley values.
More precisely,we ask the following question: Assuming that weights are drawn i.i.d. from a
certain distribution, can we give a closed-form description of the expected Shapley values, as
a function of the quota? In this paper we assume that the agent weights are drawn i.i.d.
from an exponentially decaying distribution. This assumption allows us to provide a strong
characterization of the highest and lowest Shapley values. We accomplish this using a novel
connection to renewal theory. To illustrate our general result, we apply it to a number of
well-known distributions. We empirically demonstrate our findings using simulations.

Structure of the paper. We outline some of the relevant previous work in Section 2. In
Section 3 we provide the necessary notation, definitions, and some basic properties of the
Shapley value. In Section 4, we formally present our main problem of interest, along with
an empirical illustration, based on simulation results for the case of the uniform distribution
on the unit interval. We also present our main result (Theorem 4.1) in that section, that
pertains to the two extreme agents (those with the highest and lowest weights).

Before we prove Theorem 4.1, we first apply it to a number of interesting distributions.
We begin with the case of the uniform distribution in Section 5. This provides a theoretic
validation of our empirical results given in Section 4. We tackle the case of the exponential
distribution in Section 6. We then prove Theorem 4.1 in Section 7, and discuss conjectural
extensions in Section 8. Our proof uses a technical result on renewal processes that may be
of independent interest (Proposition 7.2), which is proved in Section 9. Finally, we provide
concluding remarks and directions for future research in Section 10.

2The more specific term for our case is the Shapley–Shubik, which pertains to the special case of the
Shapley value in weighted voting games. We use the term Shapley value for succinctness purposes only.
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2. Related Work

Ample work has been done on characterizing the power distribution in weighted voting
games. The focus of this paper is the study of the Shapley–Shubik value (Shapley and
Shubik, 1969), which is a special case of the more general Shapley value (Shapley, 1953).
For succinctness, we use the term Shapley value for the special case of weighted voting
games as well. Another well-studied measure is the Banzhaf power index (Banzhaf, 1964).
See Felsenthal and Machover (1998) for a survey of these power indices.

Shapley values pose a number of difficulties: from a computational perspective, Shapley
values have been shown to be hard to compute; see Chalkiadakis et al. (2010) for details.
That said, they can easily be approximated using sampling techniques (e.g., Mann and
Shapley, 1962; Bachrach et al., 2010). Moreover, power indices have been shown to exhibit
considerable volatility to changes in the quota, in the absence of any structural guarantees
on the weights (e.g., Zuckerman et al., 2012; Zick, 2013). Zick et al. (2011) demonstrats the
effect of changes in the quota to the agents’ Shapley values under a uniform distribution of
agent weights. Recent work by Oren et al. (2014) studies similar questions under different
probabilistic models of the weights, and in the case of (fixed) super-increasing weight vectors.

Tauman and Jelnov (2012) consider the case in which the agent weights are drawn i.i.d.
from an exponential distribution. They show that the Shapley value of an agent is pro-
portional to its weight in expectation, for a wide range of quota values. Their method can
potentially be used to analyze other distributions. The main difference between their work
and ours is that they consider the unsorted Shapley values while we consider the sorted
Shapley values. It seems that for technical reasons, their line of reasoning cannot be used to
derive our results.

Finally, there has been a growing body of literature on the so-called inverse Shapley value
problem of selecting the weights vector so as to obtain a resulting vector of desired power
indices (e.g., de Keijzer et al., 2010; De et al., 2012; Aziz et al., 2007). This line of work can
be thought of as being tangential to our study.

3. Definitions

General notation. We use the notation [n] = {1, . . . , n}. A permutation π is a one-to-one
mapping π : [n] → [n]. The symmetric group on [n] (the set of all permutations of [n]) is
denoted Sn. The notation U(a, b) signifies the uniform distribution over the interval [a, b].
The notation Exp(λ) signifies the exponential distribution with density λe−λt and mean 1/λ.
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For a random variable Z and a real number t, Z≤t is the distribution of Z conditioned
on being at most t, and Z≥t is the distribution of Z conditioned on being at least t. Given
an integer n, we let the random variable Zn

max denote max(Z1, . . . , Zn), where Z1, . . . , Zn are
n independent copies of Z; we define Zn

min analogously.

Weighted voting games. A weighted voting game (WVG) is specified by a set of agents
N = [n], with a corresponding non-decreasing sequence of assigned weights w1, . . . , wn, and
a quota q ≥ 0. We think of the weights as being fixed and of the quota as a parameter. A
subset (a coalition) S ⊆ [n] is said to be winning if w(S) =

∑
i∈S wi ≥ q; otherwise, it is a

losing coalition. An agent i ∈ N is said to be pivotal with respect to a coalition S ⊆ N if
S ∪ {i} is winning, whereas S is not. In other words, i is pivotal if q ∈ (w(S), w(S ∪ {i})].
The Shapley value (Shapley and Shubik, 1954) of an agent i ∈ N is the probability that,
if one selects a random permutation π ∈ Sn uniformly at random, agent i would be pivotal
with respect to its predecessors in the permutation. Formally, the Shapley value of agent i
is defined as follows:

ϕi(q) = Pr
π∈Sn

[wπ(1) + · · ·+ wπ(π−1(i)−1) < q ≤ wπ(1) + · · ·+ wπ(π−1(i))]

= Pr
π∈Sn

[q − wi ≤ wπ(1) + · · ·+ wπ(π−1(i)−1) < q],

where π(j) denotes the agent at position j in the permutation π.
Some elementary properties of the Shapley value include:

• If i ≤ j (and so wi ≤ wj) then ϕi(q) ≤ ϕj(q).

• For 0 ≤ q ≤ w1 + · · ·+ wn we have
∑

i ϕi(q) = 1.

4. Main result and applications

Consider a weighted voting game in which the weights are sampled independently from
some “reasonable” continuous distribution D. We call this the natural iid model. In this
paper we analyze the expected largest and smallest Shapley values in terms of the continuous
distribution D, for all values of the quota bounded away from 0 and nE[D].

Another natural model to consider is very similar: the weights are sampled independently
from D, and then normalized to have unit sum. We call this the normalized iid model.
Simulation results show that both models behave very similarly. We analyze the natural iid
model since it is easier to work with.

In order to estimate the Shapley value of the highest-weighted agent n, it is not hard to
see that an answer to the following question would prove instrumental:

Conditioning on them being at most the highest weight wn, let Y1, . . . , Yn−1 ∼ D, and
define Sm =

∑m
i=1 Yi. What is the expected number of points from {S1, . . . , Sn−1} that lie in

the interval [q − wn, q)?

A symmetric question can be phrased for the lowest-weighted agent as well. Put in these
terms, we can think of the process that generates the n − 1 weights (conditioning on the
highest weight) as a renewal process. Roughly speaking, a renewal process (see e.g., Gallager,
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Figure 1: Shapley values for X = U(0, 1) and n = 10, 20 of both minimal and maximal agents, multiplied
by n, for the normalized iid model. Results of 106 experiments.

1995) is defined by sequential arrivals, where the gap between every two arrivals (the inter-
arrival times) are stochastic. In our case, the inter-arrival times are given by the agent
weights, and the measure in question is the expected number of arrivals within the specified
interval. Our analysis gives a powerful characterization of the Shapley values of both the
highest- and lowest-weighted agents.

Before we begin to analyze the Shapley values, we consider the special case of the uniform
distribution, for which our simulation results (for the normalized iid model) are depicted in
Figure 1. Intuitively, we can see that apart from two relatively short intervals at the two
extremes of the interval [0, 1], the Shapley values are stable at 2/n for the highest Shapley
value, and roughly 2/n2 (this estimate will be justified momentarily) for the lowest Shapley
value. From a more practical point of view, this means that as the number of agents increases,
the ratio of the highest to lowest Shapley values grows at a linear rate.

Given the above results, we proceed to a rigorous analysis of the two extreme Shapley
values. Let X be a non-negative continuous random variable whose density function f has
exponential decay: f(t) ≤ Ce−λt for some λ > 0. Note that any bounded continuous random
variable trivially has exponential decay, and that the exponential decay guarantees that X
has moments of all orders. Let χmin be the infimal x such that Pr[X ≥ x] > 0, and let χmax

be the supremal x such that Pr[X ≤ x] > 0 (possibly χmax =∞). For example, the uniform
distribution U(a, b) has χmin = a and χmax = b, and the exponential distribution Exp(λ) has
χmin = 0 and χmax =∞.

For technical reasons, we need to make an additional assumption on X: that the sup-
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port of X can be partitioned into finitely many intervals, in each of which the density f
is differentiable and is monotone (non-decreasing or non-increading). This assumption is
satisfied by our main examples, the uniform and exponential distributions. We believe that
this assumption can be weakened.

Another helpful technical assumption is that x = O(E[X≤x]) for x near χmin, or more
formally, for some C, ε > 0 we have x ≤ C E[X≤x] for all x ∈ (χmin, χmin + ε). While
it is possible to construct random variables invalidating this property, all natural random
variables do satisfy the property. For example, the property trivially holds when χmin > 0,
and if χmin = 0, then it holds when f(x) = O(xδ) near zero for any δ > 0, and in particular
when f is real analytic near zero. In our applications we verify this property explicitly.

Consider the following random process for generating weights (the natural iid model):
sample x1, . . . , xn from X independently. We define the weights w1, . . . , wn to be the sequence
obtained from x1, . . . , xn by sorting them in non-decreasing order, i.e., w1 is the smallest
weight and wn is the largest weight.

The following is our main theorem. We defer its proof to Section 7 in favor of discussing
a couple of its implications.

Theorem 4.1. Let X be a non-negative continuous random variable whose density function
f satisfies f(t) ≤ Ce−λt for some C, λ > 0, and additionally, the support of f can be
partitioned into finitely many intervals on which f is differentiable and monotone, and that
x = O(EX≤x[X]) for x near χmin.

For all ε > 0 there exists ξ < 1 such that the following holds. For all Q ∈ [n1/4, (1 −
ε)E[X]],

E[ϕ[x]
max(Q)] =

1

n
E

x∼Xn
max

[ x

E[X≤x]

]
±O(ξn

1/4

).

Similarly, for all Q ∈ [n1/4, (n− n2/3)E[X]],

E[ϕ
[x]
min(Q)] =

1

n
E

x∼Xn
min

[ x

E[X≥x]

]
±O(ξn

1/4

).

In particular, we can determine the limiting values of nE[ϕn(Q)] and nE[ϕ1(Q)].

Corollary 4.2. Let X be a random variable satisfying the requirements of Theorem 4.1.
Suppose that q ∈ (0, 1) and (for the first statement) χmax < ∞, where χmax = sup{x :
Pr[X ≤ x] > 0}. Then for Q = qnE[X],

lim
n→∞

nE[ϕn(Q)] =
χmax

E[X]
,

lim
n→∞

nE[ϕ1(Q)] =
χmin

E[X]
.

If χmax =∞ then as n→∞ we have nE[ϕn(qnE[X])]→∞ and

nE[ϕn(Q)] ∼ E
x∼Xn

max

[
x

E[X≤x]
].
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Proof. Let Q = qnE[X]. We start by proving the result for ϕ1. For large enough n, it is the
case that Q ∈ [n1/4, (n− n2/3)E[X]], and so we can apply the theorem to obtain

E[ϕ
[x]
min(Q)] =

1

n
E

x∼Xn
min

[ x

E[X≥x]

]
±O(ξn

1/4

).

As n→∞, the random variable Xn
min tends to the constant χmin, and so since x/E[X≥x] is

continuous, this implies the formula for ϕ1.
The proof for ϕn is similar but has an extra complication. Suppose first that χmax <∞.

Take m large enough so that E[X≤m] > q E[X]. For large enough n, it is the case that
Q ∈ [n1/4, (n− n2/3)E[X≤m]], and so we can apply the theorem to obtain

E[ϕ[x]
max(Q)] =

1

n
E

x∼Xn
max

[ x

E[X≤x]

]
±O(ξn

1/4

).

As before, the random variable Xn
max tends to the constant distribution χmax, and this implies

the formula for ϕn.
Finally, suppose that χmax = ∞. For the same choice of m and for large enough n, the

theorem implies that

nE[ϕn(Q)] = E
x∼Xn

max

[
x

E[X≤x]
]± o(1).

In order to finish the proof, it remains to show that the expectation on the right tends to
infinity. Indeed, this expectation is at least E[Xn

max]/E[X], and it is not hard to check that
E[Xn

max]→∞.

5. The Uniform Distribution

Given the general result given in Theorem 4.1, we now demonstrate one application of
it on the uniform distribution U(a, b) , where 0 ≤ a < b. It is easy to see that χmin = a
and χmax = b in this case. When X = U(a, b), Corollary 4.2 shows that for q ∈ (0, 1),
nϕn(qnE[X]) → 2b/(a + b) and nϕ1(qnE[X]) → 2a/(a + b). Theorem 4.1 implies the
following more precise statement, illustrated by Figure 1 for the case X = U(0, 1):

Theorem 5.1. Let X = U(a, b), where 0 ≤ a < b. For all ε > 0 there exist ψ < 1 and
K > 0 such that the following hold:

• For all q ∈ [n−3/4, 1− ε],

E[ϕn(qnE[X])] =
1

b− a

∫ b

a

(
t− a
b− a

)n−1
2t

a+ t
dt±O(ψn

1/4

).

We can evaluate the integral as a series:

1

b− a

∫ b

a

(
t− a
b− a

)n−1
2t

a+ t
dt =

2b

a+ b

1

n
− 2a

a+ b

∞∑
d=1

(
b− a
a+ b

)d
d!

n(n+ 1) · · · (n+ d)
.

In particular, when a = 0 the integral is equal to 2
n

.
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• For all q ∈ [n−3/4, 1−Kn−1/3],

E[ϕ1(qnE[X])] =
1

b− a

∫ b

a

(
b− t
b− a

)n−1
2t

b+ t
dt±O(ψn

1/4

).

We can evaluate the integral as a series:

1

b− a

∫ b

a

(
b− t
b− a

)n−1
2t

b+ t
dt =

2a

a+ b

1

n
− 2b

a+ b

∞∑
d=1

(
a− b
a+ b

)d
d!

n(n+ 1) · · · (n+ d)
.

In particular, when a = 0 the integral is equal to

2
∞∑
d=1

(−1)d+1d!

n(n+ 1) · · · (n+ d)
=

2

n(n+ 1)
− 4

n(n+ 1)(n+ 2)
+ · · · .

Proof. If a = 0 then E[X≤x] = x/2 and so x = O(E[X≤x]) for all x ∈ [a, b]. If a > 0 then
for x ≥ a we trivially have E[X≤x] ≥ a and so x = O(E[X≤x]) again for all x ∈ [a, b]. In
both cases we see that Theorem 4.1 applies. We have χmin = a, χmax = b, E[X] = (a+ b)/2,
E[X≤x] = (a+ x)/2 and E[X≥x] = (b+ x)/2.

The distribution of Xn
max is given by

Pr[Xn
max ≤ t] = Pr[X ≤ t]n =

(
t− a
b− a

)n
.

The corresponding density function is the derivative n
b−a

(
t−a
b−a

)n−1
. The formula for ϕn(qnE[X])

follows from

E
x∼Xn

max

[
x

E[X≤x]
] = E

x∼Xn
max

[
2x

a+ x
] =

1

b− a

∫ b

a

n

(
t− a
b− a

)n−1
2t

a+ t
dt.

Similarly, the distribution of Xn
min is given by

Pr[Xn
min ≥ t] = Pr[X ≥ t]n =

(
b− t
b− a

)n
.

The corresponding density function is the negated derivative n
b−a

(
b−t
b−a

)n−1
. The formula for

ϕ1(qnE[X]) follows from

E
x∼Xn

min

[
x

E[X≥x]
] = E

x∼Xn
min

[
2x

b+ x
] =

1

b− a

∫ b

a

n

(
b− t
b− a

)n−1
2t

b+ t
dt.

We proceed to evaluate the integrals, starting with the first one. The basic observation
is

1

b− a

∫ b

a

(
t− a
b− a

)n−1(
b− t
b− a

)d
dt =

∫ 1

0

sn−1(1− s)d dt =
d!

n(n+ 1) · · · (n+ d)
, (1)
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using the substitution s = (t− a)/(b− a) and the Beta integral. A simple calculation shows
that

t

a+ t
=

b

a+ b
− a

a+ b

∞∑
d=1

(
b− t
a+ b

)d
.

Therefore, using (1),

1

b− a

∫ b

a

(
t− a
b− a

)n−1
2t

a+ t
dt =

2

b− a

∫ b

a

(
t− a
b− a

)n−1
[

b

a+ b
− a

a+ b

∞∑
d=1

(
b− t
a+ b

)d]
dt

=
2b

a+ b

1

n
− 2a

a+ b

∞∑
d=1

(
b− a
a+ b

)d
d!

n(n+ 1) · · · (n+ d)
.

The second integral can be evaluated in the same way. Alternatively, substitute (a, b) =
(b, a) in the formula for the first integral to obtain

1

b− a

∫ b

a

(
b− t
b− a

)n−1
2t

b+ t
dt =

1

a− b

∫ a

b

(
t− b
a− b

)n−1
2t

b+ t
dt

=
2a

a+ b

1

n
− 2b

a+ b

∞∑
d=1

(
a− b
a+ b

)d
d!

n(n+ 1) · · · (n+ d)
.

6. The Exponential Distribution

In this section we analyze the exponential distribution X = Exp(1), whose bounds are
χmin = 0 and χmax = ∞. Corollary 4.2 shows that nϕ1(qnE[X]) → 0 for all q ∈ (0, 1) and
implies that nϕn(qnE[X])→∞. Theorem 4.1 implies the following more precise statement,
illustrated by Figure 2:

Theorem 6.1. Let X = Exp(1). For all ε > 0 there exist ψ < 1 and K > 0 such that the
following hold:

• For all q ∈ [n−3/4, 1− ε],

E[ϕn(qnE[X])] =

∫ ∞
0

(1− e−x)n x

ex − (1 + x)
dx+O(ψn

1/4

),

and the integral satisfies∫ ∞
0

(1− e−x)n x

ex − (1 + x)
dx =

log n+ γ

n
+O

(
log2 n

n2

)
.

• For all q ∈ [n−3/4, 1−Kn−1/3],

E[ϕ1(qnE[X])] =

∫ ∞
0

e−nx
x

x+ 1
dx+O(ψn

1/4

),

and the integral satisfies ∫ ∞
0

e−nx
x

x+ 1
dx =

1

n2
−O

(
1

n3

)
.
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Proof. Notice first that

E[X≤x] =

∫ x
0
e−tt dt∫ x

0
e−t dt

=
1− (x+ 1)e−x

1− e−x
.

For small x the numerator is 1− (x + 1)(1− x + x2/2 + O(x3)) = (3/2)x2 + O(x3) and the
denominator is x+O(x2), and so E[X≤x] ∼ (3/2)x. We conclude that x = O(E[X≤x]) for x
near 0, and so Theorem 4.1 applies.

Using the formula for E[X≤x], we have

φ(x) :=
x

E[X≤x]
=

x(1− e−x)
1− (x+ 1)e−x

.

It is easy to calculate Pr[Xn
max ≤ x] = (1 − e−x)n, and so the density of Xn

max is n(1 −
e−x)n−1e−x. We conclude that

E
x∼Xn

max

[φ(x)] = n

∫ ∞
0

(1− e−x)n x

ex − (1 + x)
dx

= n

∫ 1

0

(1− t)n log
1

t

dt

1− (t+ t log 1
t
)
.

In order to estimate the integral, write∫ 1

0

(1− t)n log
1

t

dt

1− (t+ t log 1
t
)

= In + Jn +Kn,

where In, Jn, Kn are given by

In =

∫ 1

0

(1− t)n log
1

t
dt,

Jn =

∫ 1

0

(1− t)n log
1

t
(t+ t log 1

t
) dt,

Kn =

∫ 1

0

(1− t)n log
1

t
(t+ t log 1

t
)2 dt

1− (t+ t log 1
t
)
.

Surprisingly, we can calculate In, Jn exactly in terms of the harmonic numbers Hn:

In =
Hn+1

n+ 1
=

1

n+ 1

n∑
i=0

1

i+ 1
, (2)

Jn =
1

(n+ 1)(n+ 2)

n∑
i=0

2

i+ 2
Hi −

i2 − i− 4

(i+ 1)(i+ 2)2
. (3)

In order to get the formula for In, notice first that t + t log 1
t

is an antiderivative of log 1
t
.

11



This immediately implies that I0 = 1, and for n > 0, integration by parts givs

In =

∫ 1

0

(1− t)n log
1

t
dt

= (1− t)n
(
t+ t log

1

t

)∣∣∣∣1
0

+ n

∫ 1

0

(1− t)n−1t

(
1 + log

1

t

)
dt

= n

∫ 1

0

[(1− t)n−1 − (1− t)n] log
1

t
dt+ n

∫ 1

0

(1− t)n−1t dt

= n(In−1 − In) +
1

n+ 1
,

using the formula for the Beta integral. This shows that (n + 1)In = nIn−1 + 1/(n + 1),
which implies formula (2). Formula (3) is proved along the same lines. It is well-known that
Hn = log n+ γ +O(1/n), and this shows that

In =
Hn+1

n+ 1
=

log(n+ 1) + γ +O(1/n)

n+ 1
=

log n+ γ

n
+O

(
log n

n2

)
.

Similarly, using the integral
∫ n

1
2 logm
m

dm = log2 n to estimate the corresponding series, we
obtain

Jn =
1

Θ(n2)

n∑
i=0

O

(
log n

n

)
= O

(
log2 n

n2

)
.

It remains to estimate Kn. We break Kn into two parts, Ln =
∫ 1/e

0
and Mn =

∫ 1

1/e
, which we

bound separately. Since t+ t log 1
t

is increasing, when t ≤ 1/e we have t+ t log 1
t
≤ 2/e < 1,

and so

Ln =

∫ 1/e

0

(1− t)n log
1

t
(t+ t log 1

t
)2 dt

1− (t+ t log 1
t
)
≤ 1

1− 2/e
Jn = O

(
log2 n

n2

)
.

When t ≥ 1/e, we have log 1
t
≤ 1 and so

Mn ≤ 4

∫ 1

1/e

(1− t)n dt

1− (t+ t log 1
t
)

= 4

∫ 1−1/e

0

sn
ds

s+ (1− s) log(1− s)
,

where we applied the substitution s = 1− t. Taylor expansion shows that s+ (1− s) log(1−
s) ≥ s2/2, and so

Mn ≤ 8

∫ 1−1/e

0

sn−2 ds = 8
(1− 1/e)n−1

n− 1
.

We conclude that Jn +Kn = O(log2 n/n2), and so∫ 1

0

(1− t)n log
1

t

dt

1− (t+ t log 1
t
)

=
log n+ γ

n
+O

(
log2 n

n2

)
.

We move on to calculate E[ϕ1(qnE[X])]. We have

E[X≥x] =

∫∞
x
e−tt dt∫∞

x
e−t dt

=
(x+ 1)e−x

e−x
= x+ 1.

12
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Figure 2: Shapley values for the normalized iid model with X = Exp(1) and various n of both maximal and
minimal agent, multiplied by n and by n2, respectively, at the quota q = 1/2. Results of 106 experiments.
The experimental results are compared to the predictions of Theorem 6.1: the maximal Shapley value is
compared against (log n+ γ)/n, and the minimal Shapley value is compared against 1/n2.

It is easy to calculate Pr[Xn
min ≥ x] = e−nx, and so the density of Xn

min is ne−nx. We conclude
that

E
x∼Xn

min

[ x

E[X≥x]

]
= n

∫ ∞
0

e−nx
x

x+ 1
dx.

This gives us the stated formula. In order to estimate the integral, note that∫ ∞
0

e−nx
x

x+ 1
dx =

∫ ∞
0

e−nx dx−
∫ ∞

0

e−nx
dx

x+ 1

=
1

n
− en

∫ ∞
1

e−nx
dx

x
=

1

n
− en

∫ ∞
n

e−x

x
dx

The latter integral is an exponential integral, and its asymptotic expansion is∫ ∞
n

e−x

x
dx = e−n

(
1

n
− 1

n2
+O

(
1

n3

))
.

We conclude that ∫ ∞
0

e−nx
x

x+ 1
dx =

1

n2
−O

(
1

n3

)
.
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7. Proving Theorem 4.1

Recall the statement of Theorem 4.1:

Theorem 4.1. Let X be a non-negative continuous random variable whose density function
f satisfies f(t) ≤ Ce−λt for some C, λ > 0, and additionally, the support of f can be
partitioned into finitely many intervals on which f is differentiable and monotone, and that
x = O(EX≤x[X]) for x near χmin.

For all ε > 0 there exists ξ < 1 such that the following holds. For all Q ∈ [n1/4, (1 −
ε)E[X]],

E[ϕ[x]
max(Q)] =

1

n
E

x∼Xn
max

[ x

E[X≤x]

]
±O(ξn

1/4

).

Similarly, for all Q ∈ [n1/4, (n− n2/3)E[X]],

E[ϕ
[x]
min(Q)] =

1

n
E

x∼Xn
min

[ x

E[X≥x]

]
±O(ξn

1/4

).

Recall that we generated the weights w1, . . . , wn according to the following process. First,
we generate the sequence x1, . . . , xn by generating n samples from the distribution X. The
sequence w1, . . . , wn consists of the values x1, . . . , xn sorted in increasing order. It will be
simpler to analyze the original sequence x1, . . . , xn and some values derived from it:

• xmax = max(x1, . . . , xn), the corresponding distribution is Xn
max, and the corresponding

Shapley value (with respect to x1, . . . , xn) is ϕ
[x]
max.

• xmin = min(x1, . . . , xn), the corresponding distribution is Xn
min, and the corresponding

Shapley value (with respect to x1, . . . , xn) is ϕ
[x]
min.

Recall also that we defined

χmin = inf{x : Pr[X ≥ x] > 0}, χmax = sup{x : Pr[X ≤ x] > 0}.

The crux of the proof is the following formula for the Shapley values of the original
sequence x1, . . . , xn.

Lemma 7.1. For any quota value Q,

E[ϕ[x]
max(Q)] = E

x∼Xn
max

[
1

n

n∑
i=1

Pr
y1,...,yn−1∼X≤x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]]
, (4)

E[ϕ
[x]
min(Q)] = E

x∼Xn
min

[
1

n

n∑
i=1

Pr
y1,...,yn−1∼X≥x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]]
. (5)

Proof. The proofs of both formulas are similar, so we only prove the first one. We show that
conditioned on xmax = x,

E[ϕ[x]
max(Q)] =

1

n
Pr

y1,...,yn−1∼X≤x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
.
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We can assume without loss of generality that xmax = xn. Given only this data, the variables
x1, . . . , xn−1 are distributed independently according to X≤xn . Therefore

E[ϕ[x]
n (Q)] = E

π∈Sn
[xn is pivotal in xπ1 , . . . , xπn ]

=
1

n

n∑
i=1

E
π∈Sn :
πi=n

Pr[xn is pivotal in xπ1 , . . . , xπn ]

=
1

n

n∑
i=1

E
π∈Sn :
πi=n

Pr

[
i−1∑
j=1

xπj ∈ [Q− x,Q)

]
.

Here pivotal is always with respect to the threshold Q. Since x1, . . . , xn−1 are independent
and identically distributed, xπ1 , . . . , xπi−1

are distributed identically to y1, . . . , yi−1, prov-
ing (4). Formula (5) is proved along similar lines.

7.1. Estimating the formulas

Recall that our main approach is to use an analogy to renewal processes, in which each of
the agent weights can be thought of as a renewal ‘step’ and that furthermore, estimating the
expected number of points that land within the interval [q − wn, q) will be used for proving
the formulas for the highest Shapley value (and similarly for the lowest Shapley value).

The first step towards achieving this goal is to extend the sums in Lemma 7.1 to infinite
sums. Estimating these infinite sums will be done using the following lemma, which is
relevant to renewal processes with exponentially decaying renewal time distributions.

Proposition 7.2. Suppose Y is a continuous distribution supported on [0,∞) whose density
function f(t) is bounded by Ce−λt for some C, λ > 0. Furthermore, suppose that Y is I-
piecewise differentiable-monotone: the support of Y can be partitioned into I many intervals,
on each of which f is differentiable and monotone (non-increasing or non-decreasing). There
exist constants B, γ > 0, depending only on C, λ, I, such that for Q ≥ 0,

∞∑
i=1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj < Q

]
=

Q

EY
+

E(Y 2)

2(EY )2
+ ε, where |ε| ≤ Be−γQ.

We conjecture that Proposition 7.2 can be strengthened by removing the condition that
f is piecewise differentiable-monotone. This condition is only used in one place in the proof,
Lemma 9.7.

This form of the renewal theorem differs from others in the literature in that the error
term is uniform over all distributions with given decay. We prove Proposition 7.2 in Section 9.

In order to utilize this proposition for the estimation the sums in Lemma 7.1, we need
to restrict the value of x in X≥x and X≤x. For m ∈ (χmin, χmax), we say that Y is an m-
reasonable random variable if either Y = X≥x for x ≤ m or Y = X≤x for x ≥ m. These
variables enjoy the following properties.

Lemma 7.3. Let m ∈ (χmin, χmax), and define µ = min(Pr[X ≤ m],Pr[X ≥ m]) > 0.
Then the density g of every m-reasonable random variable Y satisfies g(t) ≤ C

µ
e−λt, and

E[Y ] ≤ C
µλ
· 1
λ

, E[Y 2] ≤ C
µλ
· 2
λ2

. Also, Pr[Y ≥ t] ≤ C
λµ
e−λt.
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Proof. When Y = X≥x, we have g(t) = 0 for t < x and g(t) = f(t)/Pr[X ≥ x] ≤ f(t)/µ ≤
(C/µ)e−λt. A similar calculation shows that g(t) ≤ (C/µ)e−λt when Y = X≤x. The bound on
the density, in turn, implies the bound on the moments, using the formulas E[Exp(λ)] = 1/λ,
E[Exp(λ)2] = 2/λ2:

E[Y ] =

∫ ∞
0

g(t)t dt ≤ C

λµ

∫ ∞
0

λe−λtt dt =
C

λµ
· 1

λ
.

The bound on E[Y 2] is obtained similarly. The bound on Pr[Y ≥ t] is obtained using a
similar calculation applied to Pr[Exp(λ) ≥ t] = e−λt.

We can now apply Proposition 7.2.

Corollary 7.4. Let Y be an m-reasonable random variable, for some m ∈ (χmin, χmax).
Then for some γ < 1 depending only on m and for all Q ≥ 0,

∞∑
i=1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj < Q

]
=

Q

EY
+

E(Y 2)

2(EY )2
±O(γQ).

In particular, for all x ≥ 0 and Q ≥ x,

∞∑
i=1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
=

x

EY
±O(γQ−x).

Proof. The first statement of the corollary follows directly from Proposition 7.2, given
Lemma 7.3; note that any m-reasonable variable is I-piecewise differentiable-monotone. The
second statement follows by applying the first statement to Q and to Q−x, and subtracting
the two estimates.

The corollary affords us with a good estimate of the sums in Lemma 7.1, when extended
from n to ∞. In order to estimate the actual sums, we estimate the tail from n+ 1 to ∞.

Lemma 7.5. Let Y be an m-reasonable random variable, for some m ∈ (χmin, χmax). For
some δ < 1 depending only on m and for all Q ≤ (n− n2/3)EY ,

∞∑
i=n+1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj < Q

]
= O(δn

1/4

),

where the constant in O(·) depends only on m.

Proof. The idea of the proof is to apply Bernstein’s inequality to show that it is highly
improbable that the sum of n variables (or more) distributed according to Y be significantly
smaller than nE[Y ]. One complication is that Bernstein’s inequality only applies to bounded
random variables, whereas Y could be unbounded. In order to fix this, we choose a cut-off
M and consider the random variable Z = min(Y,M) instead. Note that

E[Y ]− E[Z] =

∫ ∞
M

g(t)(t−M) dt ≤ C

λµ

∫ ∞
M

λe−λt(t−M) dt

=
C

λµ
λe−λM

∫ ∞
0

λe−λtt dt =
C

λ2µ
e−λM = O(e−λM).
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Therefore, if we choose M = K log n for some constant K depending only on X and m then
we can ensure that E[Y ]−E[Z] ≤ (1/(2n1/3))E[X≤m] and so E[Y ]−E[Z] ≤ (1/(2n1/3))E[Y ].

For the rest of this proof, let y1, y2, . . . ∼ Y be independent copies of Y , and let z1, z2, . . . ∼
Z be independent copies of Z. Bernstein’s inequality implies that when Q ≤ (n + k)E[Z]
(which always holds, as we show below),

Pr

[
n+k∑
j=1

yj < Q

]
≤ Pr

[
n+k∑
j=1

zj < Q

]

≤ exp− ((n+ k)E[Z]−Q)2/2

(n+ k)V[Z] + ((n+ k)E[Z]−Q)(M/3)

≤ exp− ((n+ k)E[Z]−Q)2/2

(n+ k)(V[Z] + (M/3)E[Z])

≤ exp−((n+ k)E[Z]−Q)2

(n+ k)(3M2)
.

Note that

nE[Z]−Q ≥
(
n− n2/3

2

)
E[Y ]−Q ≥ 1

2
n2/3 E[Y ],

and therefore, using E[Z] ≥ E[Y ]/2,

((n+ k)E[Z]−Q)2 ≥ (k E[Z] + 1
2
n2/3 E[Y ])2 ≥ 1

4
E[Y ]2(k + n2/3)2.

When k ≤ n, we have

exp−((n+ k)E[Z]−Q)2

(n+ k)(3M2)
≤ exp−

1
4
E[Y ]2n4/3

(2n)(3M2)
= exp−E[Y ]2n1/3

24M2
.

When k ≥ n, we have

exp−((n+ k)E[Z]−Q)2

(n+ k)(3M2)
≤ exp−

1
4
E[Y ]2k2

(2k)(3M2)
= exp−E[Y ]2k

24M2
.

Therefore

∞∑
k=0

Pr

[
n+k∑
j=1

yj < Q

]
≤ n exp−E[Y ]2n1/3

24M2
+
∞∑
k=n

exp−E[Y ]2k

24M2

≤ n exp−E[Y ]2n1/3

24M2
+

exp−E[Y ]2n
24M2

1− exp−E[Y ]2

24M2

.

Since E[Y ] ≥ E[X≤m] and M = O(log n), we can conclude that

∞∑
k=0

Pr

[
n+k∑
j=1

yj < Q

]
≤ ne

−Ω

(
n1/3

log2 n

)
+O

(
log2 ne

−Ω
(

n
log2 n

))
,

implying the lemma.
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Combining this with Corollary 7.4, we obtain the following estimate.

Corollary 7.6. Let Y be an m-reasonable random variable, for some m ∈ (χmin, χmax).
Then for some ζ < 1 depending only on m, for all x ≥ 0 and for all Q ∈ [x, (n−n2/3)E[Y ]],

n∑
i=1

Pr
y1,...,yn−1∼Y

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
=

x

E[Y ]
±O(ζn

1/4

+ ζQ−x).

Proof. Clearly

∞∑
i=n+1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
≤

∞∑
i=n+1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj < Q

]
= O(δn

1/4

),

using Lemma 7.5. Therefore Corollary 7.4 implies that

n∑
i=1

Pr
y1,...,yn−1∼Y

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
=

x

E[Y ]
±O(δn

1/4

+ γQ−x).

The corollary follows by taking ζ = max(δ, γ).

Using this estimate, we can estimate the sums in Lemma 7.1. The idea is to focus on the
case in which the variable X≤x or X≥x is m-reasonable.

Lemma 7.7. Let m ∈ (χmin, χmax). For some ξ < 1 depending on m and for all Q ∈
[n1/4, (n− n2/3)E[X≤m]],

E[ϕ[x]
max(Q)] =

1

n
E

x∼(Xn
max)≥m

[ x

E[X≤x]

]
±O(ξn

1/4

).

Similarly, for all Q ∈ [n1/4, (n− n2/3)E[X]],

E[ϕ
[x]
min(Q)] =

1

n
E

x∼Xn
min

[ x

E[X≥x]

]
±O(ξn

1/4

).

Proof. We start with the first formula. Let µ≤ = Pr[X ≤ m] and µ≥ = Pr[X ≥ m] = 1−µ≤.
Clearly Pr[Xn

max ≤ m] = µn≤. Using Lemma 7.1, we get for any M > m that

E[ϕ[x]
max(Q)] = E

x∼(Xn
max)≥m,≤M

[ 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≤x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

] ]
±O(µn≤+Pr[Xn

max > M ]]).

Corollary 7.6 implies that for all Q ∈ [M, (n− n2/3)E[X≤m]],

E[ϕ[x]
max(Q)] =

1

n
E

x∼(Xn
max)≥m,≤M

[ x

E[X≤x]

]
±O(ζn

1/4

+ ζQ−M + µn≤ + Pr[Xn
max > M ]).
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(We need the restriction x ≤ M so that we can bound the term ζQ−M .) We proceed to
estimate the main term, aiming to remove the restriction x ≤M . Define φ(x) = x/E[X≤x],
and note that φ(x) ≤ x/E[X≤m] when x ≥ m. We have

E
x∼(Xn

max)≥m
[φ(x)] = Pr[(Xn

max)≥m > M ] E
x∼(Xn

max)>M
[φ(x)]

+ (1− Pr[(Xn
max)≥m > M ]) E

x∼(Xn
max)≥m,≤M

[φ(x)].

Note that Pr[(Xn
max)≥m > M ] is at most the probability that the maximum of n variables

distributed X≥m is more than M . Lemma 7.3 and a union bound show that this probability
is at most n C

λµPr[X≥m]
e−λM = O(ne−λM). Together with φ(x) ≤ M/E[X≤m] whenever

m ≤ x ≤M , this shows that

E
x∼(Xn

max)≥m
[φ(x)] = E

x∼(Xn
max)≥m,≤M

[φ(x)] + Pr[(Xn
max)≥m > M ] E

x∼(Xn
max)>M

[φ(x)]−O(nMe−λM).

Suppose that for some integer K > 0, M ≥ Kλ−1 log n. Lemma 7.3 shows that Pr[X > t] ≤
C
λµ
e−λt, and so

Pr[(Xn
max)≥m > M ] E

x∼(Xn
max)>M

[φ(x)]

≤ 1

E[X≤m]
Pr[(Xn

max)≥m > M ] E
x∼(Xn

max)>M
[x]

≤ 1

E[X≤m]
Pr[(Xn

max)≥m > Kλ−1 log n] E
x∼(Xn

max)>Kλ−1 logn

[x]

≤ 1

E[X≤m]

∞∑
r=K

λ−1(r + 1) log nPr[λ−1r log n ≤ Xn
max ≤ λ−1(r + 1) log n]

≤ C

λµE[X≤m]

∞∑
r=K

λ−1(r + 1) log ne−r logn

=
O(C)

λµE[X≤m]
λ−1 log n

K

nK
.

If M ≥ 2λ−1 log n then we can choose K = bλM/ log nc ≥ λM/(2 log n) and so nK ≥ e(λ/2)M

and K/nK ≤ λMe−(λ/2)M . Therefore

E
x∼(Xn

max)≥m
[φ(x)] = E

x∼(Xn
max)≥m,≤M

[φ(x)]±O(nMe−(λ/2)M).

Lemma 7.3 and a union bound show that Pr[Xn
max > M ] = O(ne−λM), and we deduce that

for M ≥ 2λ−1 log n,

E[ϕ[x]
max(Q)] =

1

n
E

x∼(Xn
max)≥m,≤M

[ x

E[X≤x]

]
±O(ζn

1/4

+ ζQ−M + µn≤ + ne−λM)

=
1

n
E

x∼(Xn
max)≥m

[ x

E[X≤x]

]
±O(ζn

1/4

+ ζQ−M + µn≤ +Me−(λ/2)M).
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Choosing M = Q/2, we deduce that

E[ϕ[x]
max(Q)] =

1

n
E

x∼(Xn
max)≥m

[ x

E[X≤x]

]
±O(ζn

1/4

+ ζQ/2 + µn≤ + log ne−(λ/4)Q).

This implies the formula in the statement of the lemma, with ξ > max(
√
ζ, e−λ/4, µ≤, µ≥)

(we need µ≥ for the other part of the lemma).
We continue with the second formula. As before, we have

E[ϕ
[x]
min(Q)] = E

x∼(Xn
min)≤m

[ 1

n

n∑
i=1

Pr
y1,...,yn−1∼X≥x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

] ]
±O(µn≥).

Corollary 7.6 implies that for all Q ∈ [m, (n− n2/3)E[X]],

ϕ
[x]
min(Q) =

1

n
E

x∼(Xn
min)≤m

[ x

E[X≥x]

]
±O(ζn

1/4

+ ζQ + µn≥). (6)

Now, as by definition Pr[Xn
min ≥ m] = µn≥, we have that

E
x∼Xn

min

[ x

E[X≥x]

]
= µn≥ · E

x∼(Xn
min)≥m

[ x

E[X≥x]

]
+ (1− µn≥) · E

x∼(Xn
min)≤m

[ x

E[X≥x]

]
= E

x∼(Xn
min)≤m

x

E[X≥x]
+ µn≥ ·

(
E

x∼(Xn
min)≥m

[ x

E[X≥x]

]
− E

x∼(Xn
min)≤m

[ x

E[X≥x]

])
= E

x∼(Xn
min)≤m

x

E[X≥x]
+O(µn≥), (7)

where the last line follows from the fact that x
EX≥x

≤ 1. Combining this with (6) gives the

second formula in the statement of the lemma.

We can now prove out main result.

Theorem 4.1. Let X be a non-negative continuous random variable whose density function
f satisfies f(t) ≤ Ce−λt for some C, λ > 0, and additionally, the support of f can be
partitioned into finitely many intervals on which f is differentiable and monotone, and that
x = O(EX≤x[X]) for x near χmin.

For all ε > 0 there exists ξ < 1 such that the following holds. For all Q ∈ [n1/4, (1 −
ε)E[X]],

E[ϕ[x]
max(Q)] =

1

n
E

x∼Xn
max

[ x

E[X≤x]

]
±O(ξn

1/4

).

Similarly, for all Q ∈ [n1/4, (n− n2/3)E[X]],

E[ϕ
[x]
min(Q)] =

1

n
E

x∼Xn
min

[ x

E[X≥x]

]
±O(ξn

1/4

).

Proof. The formula for E[ϕ
[x]
min(Q)] is already stated in Lemma 7.7, so we only prove the

formula for E[ϕ
[x]
max(Q)]. Given ε > 0, we choose m large enough so that E[X≤m] > (1 −
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ε)E[X]. For large enough n, the condition Q ≤ (1 − ε)nE[X] implies the condition Q ≤
(n− n2/3)E[X].

Since x = O(E[X≤x]) for x near χmin, the expectation Ex∼(Xn
max)≤m [ x

E[X≤x]
] converges.

Therefore we similarly have

E
x∼Xn

max

[ x

E[X≤x]

]
= µn≤ · E

x∼(Xn
max)≤m

[ x

E[X≤x]

]
+ (1− µn≤) · E

x∼(Xn
max)≥m

[ x

E[X≤x]

]
= E

x∼(Xn
max)≥m

x

E[X≤x]
+ µn≥ ·

(
E

x∼(Xn
max)≤m

[ x

E[X≤x]

]
− E

x∼(Xn
max)≥m

[ x

E[X≤x]

])
= E

x∼(Xn
max)≥m

x

E[X≤x]
+O(µn≤), (8)

implying the formula for E[ϕ
[x]
max(Q)].

8. Conjuctural extensions

8.1. Normalized iid model

Theorem 4.1 predicts the values of the minimal and maximal Shapley values in the natural
iid model. We conjecture that a similar theorem holds for the normalized iid model.

Conjecture 8.1. Let X be a non-negative continuous random variable whose density func-
tion f satisfies f(t) ≤ Ce−λt for some C, λ > 0, and additionally, the support of f can
be partitioned into finitely many intervals on which f is differentiable and monotone. Fur-
thermore, for the first statement, assume also that x = O(E[X≤x]) for x near χmin, where
χmin = inf{x : Pr[X ≥ x] > 0}.

Generate weights w1, . . . , wn according to the normalized iid model: generate n i.i.d.
samples x1, . . . , xn of X, let S = x1 + · · · + xn, and let w1, . . . , wn consist of the values
x1/S, . . . , xn/S sorted in increasing order.

For all ε > 0 there exist ψ < 1 and K > 0 such that:

• For all q ∈ [Kn−3/4, 1− ε],

E[ϕn(q)] =
1

n
E

x∼Xn
max

[
x

E[X≤x]
]±O(ψn

1/4

).

• For all q ∈ [Kn−3/4, 1−Kn−1/3],

E[ϕ1(q)] =
1

n
E

x∼Xn
min

[
x

E[X≥x]
]±O(ψn

1/4

).

This implies the following corollary, whose proof is very similar to the proof of Corol-
lary 4.2.

Conjecture 8.2. Let X be a random variable satisfying the requirements of Theorem 8.1.
Suppose that q ∈ (0, 1) and (for the first statement) χmax < ∞, where χmax = sup{x :
Pr[X ≤ x] > 0}. Then

lim
n→∞

nE[ϕn(q)] =
χmax

E[X]
,

lim
n→∞

nE[ϕ1(q)] =
χmin

E[X]
.
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If χmax =∞ then as n→∞ we have nE[ϕn(q)]→∞ and

nE[ϕn(q)] ∼ E
x∼Xn

max

[
x

E[X≤x]
].

These conjectures are supported by our experiments for the uniform and exponential
distributions, appearing in Figure 1 (uniform distribution) and Figure 2 (exponential dis-
tribution). While these experiments were performed using the normalized iid model, their
results match those of the natural iid model.

Theorem 4.1 gives a strong estimate for E[ϕn(Q)] and E[ϕ1(Q)]. In terms of the natural
iid model, Conjecture 8.1 predicts a strong estimate for the quantities E[ϕn(q

∑n
i=1 xi)] and

E[ϕ1(q
∑n

i=1 xi)]. Since
∑n

i=1 xi is strongly concentrated around nE[X], and E[ϕi(Q)] is
concentrated around some limiting value Φi (for i = 1, n) for Q ≈ qnE[X], we expect
E[ϕi(q

∑n
i=1 xi)] ≈ Φi. In order to show this, it suffices to prove that for S ≈ nE[X] and

Q ≈ qnE[X], we have E[ϕi(Q)|
∑n

i=1 xi = S] ≈ Φi. Unfortunately, at the moment we cannot
prove this estimate.

8.2. Other Shapley values

Theorem 4.1 and Conjecture 8.1 describe the behavior of the Shapley values correspond-
ing to the minimal and maximal agents. It is natural to ask how the Shapley values in
between behave. Based on the proof of Theorem 4.1, we can formulate a conjecture for the
behavior of the non-extreme Shapley values. Since the formulation is cleaner in the nor-
malized iid model, we present it in that model. For p ∈ (0, 1), let ϕpn(q) be the Shapley
value corresponding to the pnth order statistics, let Xn

pn be the distribution of the pnth order
statistics (in both cases rounding pn arbitrarily to an integer), and let Xp≶x be the random
variable which is a mixture of X≤x (with probability p) and X≥x (with probability 1− p).

Conjecture 8.3. Let X be a random variable satisfying the requirements of Theorem 8.1.
For all p ∈ (0, 1) there exist ψ < 1 and K > 0 such that for all q ∈ [Kn−3/4, 1−Kn1/3],

E[ϕpn(q)] =
1

n
E

x∼Xn
pn

[
x

E[Xp≶x]
]± o

(
1

n

)
.

This conjecture determines the limiting value of nE[ϕpn(q)]:

Corollary 8.4. Suppose that p, q ∈ (0, 1). Then

lim
n→∞

nE[ϕpn(q)] =
x

E[X]
, where Pr[X ≤ x] = p.

Proof. As n→∞, the distribution of Xn
pn tends to the constant x. At that point, we have

E[Xp≶x] = pE[X≤x] + (1− p)E[X≥x]

= Pr[X ≤ x]E[X≤x] + Pr[X ≥ x]E[X≥x]

= E[X].
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Figure 3: All Shapley values for X = U(0, 1) and X = Exp(1) (both in the normalized iid model) and the
setting n = 100 at the quota q = 1/2, normalized by n. Results of 106 experiments. The experimental results
are compared to the predictions of Corollary 8.4: ϕpn(q) = 2p for X = U(0, 1) and ϕpn(q) = − log(1− p) for
X = Exp(1).

As an illustration, we apply Corollary 8.4 to the uniform distribution U(a, b) and to the
exponential distribution Exp(1). When X = U(a, b), we have E[X] = a+b

2
and Pr[X ≤ x] =

x−a
b−a , and so Pr[X ≤ x] = p for x = (1 − p)a + pb. Therefore Corollary 8.4 implies that

nE[ϕpn(q)] → 2(1−p)a+2pb
a+b

for all q ∈ (0, 1). In particular, when X = U(0, 1) the corollary
implies that nE[ϕpn(q)]→ 2p for all q ∈ (0, 1).

When X = Exp(1), we have E[X] = 1 and Pr[X ≤ x] = 1− e−x, and so Pr[X ≤ x] = p
for x = − log(1− p). Therefore Corollary 8.4 implies that nE[ϕpn(q)]→ − log(1− p) for all
q ∈ (0, 1).

Corresponding experimental results shown in Figure 3 support Corollary 8.4 and so Con-
jecture 8.3.

In the remainder of this section, we briefly described how Conjecture 8.3 follows by
extending the ideas of Section 7.

A straightforward generalization of Lemma 7.1 shows that

E[ϕ
[x]
p(n−1)(Q)] =

1

n
E

x∼Xn
p(n−1)

[
n∑
i=1

Pr
y1,...,yn−1

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]]
, (9)

where y1, . . . , yn−1 are chosen as follows: a random subset of p(n − 1) of them are chosen
according to X≤x, and the rest are chosen according to X≥x. A generalization of Corollary 7.6
shows that if we choose some m1,m2 satisfying χmin < m1 < m2 < χmax, then for all
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x ∈ [m1,m2] we have

n∑
i=1

Pr
y1,...,yn−1∼Xp≶x

[
i−1∑
j=1

yj ∈ [Q− x,Q)

]
=

x

E[Xp≶x]
±O(ζn

1/4

+ ζQ−x). (10)

The expressions in (9) and (10) are very similar, the difference being that in (9) the number
of positions distributed according to X≤x is exactly p(n − 1), while in (10) it is strongly
concentrated around p(n − 1). It is therefore reasonable to conjecture that the analog of
Lemma 7.7 holds,

E[ϕ
[x]
p(n−1)(Q)] =

1

n
E

x∼Xn
p(n−1)

[
x

E[Xp≶x]
] + o

(
1

n

)
.

Given this, Conjecture 8.3 (in its version for the natural iid model) follows just as in the
proof of Theorem 4.1.

9. Proving Proposition 7.2

In this section, we complete the proof of Theorem 4.1 by proving Proposition 7.2.
The idea of the proof is to use the Mellin transform to write

m(Q) ,
∞∑
i=1

Pr
y1,...,yi−1∼Y

[
i−1∑
j=1

yj < Q

]
=

1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds,

where c > 0 is arbitrary. The integrand has a double pole at s = 0 with residue Q/EY +
E(Y 2)/2(EY )2, which gives rise to the main term in the proposition. The conditions on the
distribution Y imply that apart from the pole at s = 0, the integrand has no poles in some
halfspace <s ≥ −γ. Therefore we can move the line of integration to the left toward −γ,
and then read off the error term. The exponential dependence comes from the numerator
esQ.

In the rest of this section, we will assume that Y is a continuous distribution supported
on [0,∞) whose density function f is bounded by Ce−λt for some C, λ > 0. Whenever we
use the term “constant”, we mean a quantity depending only on the parameters C, λ, I.

We start by proving the formula for m(Q).

Lemma 9.1. For all c > 0,

m(Q) =
1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds.

Proof. It is well-known that

1

2πi

∫ c+i∞

c−i∞

esx

s
ds =

{
1 x > 0,

0 x < 0.
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Therefore, letting (yk)
∞
1 ∼ Y ,

m(Q) =
∞∑
k=1

Pr
y1,...,yk−1∼Y

[
k−1∑
j=1

yj < Q

]

=
∞∑
k=1

E[1Q−y1+···+yk−1>0]

=
∞∑
k=1

E
y1,...,yk−1∼Y

1

2πi

∫ c+i∞

c−i∞

es(Q−y1−···−yk−1)

s
ds

=
∞∑
k=1

1

2πi

∫ c+i∞

c−i∞

esQ

s
E[e−sy1−···−syk−1 ] ds

=
∞∑
k=1

1

2πi

∫ c+i∞

c−i∞

esQ

s
E[e−sY ]k−1 ds

=
1

2πi

∫ c+i∞

c−i∞

esQ

s(1− E[e−sY ])
ds.

The following elementary bounds will prove useful.

Lemma 9.2. For each integer k ≥ 0,

E[Y k] ≤ C

λ

k!

λk
.

For each x < y,

Pr[x ≤ Y ≤ y] ≤ C

λ
(e−λx − e−λy).

Proof. When f(u) = λe−λu, Y is an exponential random variable with moments E[Y k] =
k!/λk, and so in general

E[Y k] ≤ C

λ

∫ ∞
0

λe−λuuk du =
C

λ

k!

λk
.

The second bound follows by calculating C
∫ y
x
e−λu du.

We proceed to show that in some halfspace <s ≥ −γ, the integrand has no poles other
than the double pole at s = 0. In fact, we will show more: in this halfspace, excepting a
fixed neighborhood of zero, |1− E[e−sY ]| = Ω(1).

Lemma 9.3. For every I > 0 there are constants η,R > 0 such that

<E[e−sY ] ≤ 1− η

whenever <s ≥ −R and |=s| ≥ I.
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Proof. Let s = −α + iβ, where α ≤ R (a constant to be determined) and |β| ≥ I. We have

<E[e−sY ] =

∫ ∞
0

f(u)eαu cos(βu) du

=

∫ ∞
0

f(u)(cos(βu)(eαu − 1) + cos(βu)) du

≤
∫ ∞

0

f(u)(eαu − 1) du+

∫ ∞
0

f(u) cos(βu) du

=

∫ ∞
0

f(u)eαu du−
∫ ∞

0

f(u)(1− cos(βu)) du.

Denote the two terms by A,B, so that <E[e−sY ] = A − B. We will show that B ≥ 2η for
some η > 0, and that for R ≤ λ/2,

A ≤ 1 +
2CR

λ2
.

Taking R > 0 small enough, we can ensure that A−B ≤ 1− η.
We start with the bound on A. If α ≤ 0 then

A =

∫ ∞
0

f(u)eαu du ≤
∫ ∞

0

f(u) du = 1.

If 0 < α ≤ R for some R ≤ λ/2 then

A = E[eαY ] = 1 +
∞∑
k=1

αk

k!
E[Y k]

≤ 1 +
C

λ

∞∑
k=1

(α
λ

)k
≤ 1 +

C

λ

∞∑
k=1

(
R

λ

)k
= 1 +

C

λ
· R
λ
· 2,

using Lemma 9.2, proving the bound on A.
The bound on B is slightly more complicated. For small ε > 0, we have 1− cos(βu) < ε

only if βu ∈ 2πZ + [−K
√
ε,K
√
ε], where K is some universal constant. Therefore

B =

∫ ∞
0

f(u)(1− cos(βu)) du ≥ εPr[βY /∈ 2πZ + [−K
√
ε,K
√
ε]].
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Suppose without loss of generality that β > 0. For ε < 1/K2,

Pr[βY ∈ 2πZ + [−K
√
ε,K
√
ε]]

= Pr[Y ≤ K
√
ε/β] +

∞∑
t=1

Pr[|Y − (2π/β)t| ≤ K
√
ε/β]

≤ C

λ
(1− e−(Kλ/β)

√
ε) +

C

λ
(e(Kλ/β)

√
ε − e−(Kλ/β)

√
ε)
∞∑
t=1

e−(2πλ/β)t

=
C

λ
(1− e−(Kλ/β)

√
ε) +

C

λ
(e(Kλ/β)

√
ε − e−(Kλ/β)

√
ε)

e−(2πλ/β)

1− e−(2πλ/β)
,

using Lemma 9.2. The bound is monotone decreasing in β, and so since β ≥ I, we can bound
the probability by O(

√
ε), where the hidden constant depends on C, λ, I. This shows that

B ≥ ε(1 − O(
√
ε)). In particular, we can choose a small ε > 0 such that B ≥ ε/2, proving

the bound on B.

The constant I arises from the following lemma (we later choose I = S/
√

2).

Lemma 9.4. There exist constants S, δ > 0 such that for all |s| ≤ S,

|E[e−sY ]− 1| ≥ δ|s|.

Proof. For any τ ≥ 0, using f(u) ≤ C we get

E[Y ] ≥ τ Pr[Y ≥ τ ] = τ(1− Pr[Y ≤ τ ]) ≥ τ(1− Cτ).

In particular, choosing τ = 1/(2C), we deduce E[Y ] ≥ 1/(4C).
Consider now any complex s. We have

E[e−sY ] = 1− E[Y ]s+
∞∑
k=2

(−1)k
E[Y k]

k!
sk.

Using Lemma 9.2, we deduce that for |s| ≤ λ/2,

|E[e−sY ]− 1| ≥ E[Y ]|s| −
∞∑
k=2

(
|s|
λ

)k
≥ |s|

4C
− 2|s|2

λ2

= |s|
(

1

4C
− 2|s|

λ2

)
.

If we choose S = min(λ/2, λ2/(16C)) then we deduce that |E[e−sY ]− 1| ≥ |s|/(8C).

Combining the two lemmas, we obtain the following information on E[e−sY ].

Lemma 9.5. There are constants ε, γ, I > 0 such that E[e−sY ] 6= 1 whenever <s ≥ −γ and
s 6= 0, and furthermore

|E[e−sY ]− 1| ≥ εmin(|s|, 1)

whenever |<s| ≤ γ.
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Proof. Let S, δ be the constants in Lemma 9.4, let I = S/
√

2, and let R, η be the constants
in Lemma 9.3. Define γ = min(R, I). Suppose that <s ≥ −γ and s 6= 0. If |=s| ≥ I then
<E[e−sY ] ≤ 1− η, and in particular E[e−sY ] 6= 1. If |=s| ≤ I then |s| ≤

√
γ2 + I2 ≤ S, and

so |E[e−sY ]− 1| ≥ δ|s|, again showing that E[e−sY ] 6= 1. This proves the first claim.
For the second claim, suppose that |<s| ≤ γ. If |=s| ≥ I then |E[e−sY ]−1| ≥ |<E[e−sY ]−

1| ≥ η. If |=s| ≤ I then as before |s| ≤ S and so |E[e−sY ]− 1| ≥ δ|s|. Taking ε = min(η, δ)
proves the second claim.

Next, we move the line of integration to the left in order to separate the main term
Q/EY + E(Y 2)/2(EY )2 from the error term.

Lemma 9.6. For all Q > 0 and all 0 < β < γ, where γ > 0 is the constant from Lemma 9.5,

m(Q) =
Q

EY
+

E(Y 2)

(EY )2
+

1

2πi

∫ −β+i∞

−β−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds.

Proof. Our starting point is the formula of Lemma 9.1, for c = β. Lemma 9.5 shows that
the only pole of the integrand in the strip |s| ≤ β is at s = 0. Standard arguments (using
the bound |E[e−sY ]− 1| ≥ ε given by Lemma 9.5) show that

m(Q) =
1

2πi

∫ −β+i∞

−β−i∞

esQ

s(1− E[e−sY ])
ds+ Res

[
esQ

s(1− E[e−sY ])
, s = 0

]
=

1

2πi

∫ −β+i∞

−β−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds+ Res

[
esQ

s(1− E[e−sY ])
, s = 0

]
;

the two integrals differ by the quantity∫ −β+i∞

−β−i∞

esQ

s
ds = 0.

In order to compute the residue, write

esQ

s(1− E[e−sY ])
=

1 + sQ+O(s2)

s2(EY − 1
2
E(Y 2)s+O(s2))

=
(1 + sQ+O(s2))

(
1 + E(Y 2)

2EY s+O(s2)
)

s2 EY
.

Calculating the coefficient of s−1 in this expression completes the proof.

In order to estimate the error term, we need to understand the behavior of E[e−sY ] as
|s| → ∞.

Lemma 9.7. Suppose α = −<s satisfies 0 < α ≤ λ/2. Then for some constant Kα

depending on α,

|E[e−sY ]| ≤ Kα√
|s|
.
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Note that this lemma is the only place in the proof in which we use the condition of
piecewise differentiability-monotonicity.

Proof. Let M = log(|s|/α)
4/λ

≥ 0. We will bound separately the two terms

L =

∫ M

0

e−suf(u) du, U =

∫ ∞
M

e−suf(u) du.

We start with L. Integration by parts gives∫ M

0

e−suf(u) du = −f(u)e−su

s

∣∣∣∣M
0

+

∫ M

0

f ′(u)
e−su

s
du.

Therefore

|L| ≤ C
1 + e(λ/2)M

|s|
+
e(λ/2)M

|s|

∫ M

0

|f ′(u)| du.

We can divide [0,M ] into N ≤ I many intervals of monotonicity, say I1 = (a1, b1), . . . , IN =
(an, bn), and bound ∫ M

0

|f ′(u)| du =
N∑
i=1

|f(bi)− f(ai)| ≤ NC.

We conclude that

|L| ≤ C
1 + (I + 1)e(λ/2)M

|s|
≤ 3CI e

(λ/2)M

|s|
≤ 3CI√

α|s|
.

We proceed to bound U :

|U | ≤ C

∫ ∞
M

e(α−λ)u du ≤ C

∫ ∞
M

e−(λ/2)u du

=
C

λ/2
e−(λ/2)M =

C
√
α

(λ/2)
√
|s|
.

Altogether, we deduce

|E[e−sY ]| ≤ |L|+ |U | ≤
(

3CI√
α

+
2C
√
α

λ

)
1√
|s|
.

Finally, we estimate the error term.

Lemma 9.8. Let β = min(γ, λ/2) > 0, where γ > 0 is the constant from Lemma 9.5. We
have ∣∣∣∣∫ −β+i∞

−β−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds

∣∣∣∣ = O(e−βQ).
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Proof. The triangle inequality shows that∣∣∣∣∫ −β+i∞

−β−i∞

esQ E[e−sY ]

s(1− E[e−sY ])
ds

∣∣∣∣ ≤ e−γQ
∫ −β+i∞

−β−i∞

∣∣∣∣ E[e−sY ]

s(1− E[e−sY ])

∣∣∣∣ ds.
Using Lemma 9.7 and Lemma 9.5, we can estimate the integrand:∣∣∣∣ E[e−sY ]

s(1− E[e−sY ])

∣∣∣∣ ≤ Kβ(εmin(1, β))−1 1

|s|3/2
.

This estimate shows that the integral converges:∫ ∞
−∞

1√
β2 + y2

3/2
dy ≤ 2

∫ ∞
0

√
2

3/2

(β + y)3/2
dy =

4
√

2
3/2

√
β

.

The lemma follows.

Proposition 7.2 (with γ := β) follows by combining Lemma 9.6 and Lemma 9.8.

10. Conclusions

In this paper we tackled the problem of estimating the smallest and largest Shapley values
ϕ1, ϕn in the case in which agent weights are drawn i.i.d. according to a continuous distribu-
tion decaying exponentially. We gave a simple formula for the limiting values nϕ1, nϕn for
all relevant quota values, and gave a more accurate formula for ϕ1, ϕn with an exponentially
decaying error term.

Our results leave open several natural questions, besides resolving Conjecture 8.1 and
Conjecture 8.3, and strengthening Proposition 7.2 (see page 15 for the latter). First, our
results do not cover values of the quota which are very close to 0 or to nE[X] (where X is the
distribution used to sample agent weights). Can we say anything about the behavior of the
Shapley values in this regime? Second, our results only concern the expected Shapley values.
Can we say anything about the actual distribution of the Shapley values, say by bounding
the variance? Third, our results concern Shapley values. Can we extend the analysis to
Banzhaf values?
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