Inexpressibility of Until

Yuval Filmus

October 26, 2009

We prove that the until operator \mathcal{U} cannot be expressed in terms of the operators $\neg, \lor, \land, \circ, \Box, \Diamond$.

A given formula φ contains a finite number of variables, the set of which we denote by $V = V(\varphi)$. The set of states $S = S(\varphi)$ can be identified with the Boolean algebra $\mathbb{B}[V]$. Any distribution μ on S lifts to a distribution on the set of infinite sequences S^∞.

For $\sigma \in S^\infty$, denote by $\sigma|_k$ the initial prefix of σ of size k. Given a distribution μ on S, define the canonical random sequence R by $R_i \sim \mu$ independently.

We say that an event E is determined given an event F if the probability $\Pr[E|F]$ is either zero or one. We say that a formula φ is finitely determined with index k if for any distribution μ on $S = S(\varphi)$ and any initial segment $s \in S^k$, the event $\varphi(\sigma)$ is determined given $\sigma|_k = s$.

Let us prove by induction that every formula φ with $\neg, \lor, \land, \circ, \Box, \Diamond$ is finitely determined. The base case $\varphi = x$ for a variable x is clearly finitely determined with index 1. If φ is finitely determined with index k, then it’s easy to see that so is $\neg \varphi$. If φ, ψ are finitely determined with indices k, ℓ, respectively, then it’s easy to see that $\varphi \lor \psi$ and $\varphi \land \psi$ are finitely determined with index $\max(k, \ell)$. Moreover, if φ is finitely determined with index k, then it’s easy to see that $\circ \varphi$ is finitely determined with index $k + 1$.

To complete the proof by induction, let $\psi = \Box \varphi$, where φ is finitely determined with index k (the case $\psi = \Diamond \varphi$ is completely analogous). We consider two cases: either there exists a prefix s with $\mu(s) > 0$ such that $\Pr[R|R|_k = s] = 0$, or $\Pr[R] = 1$. In the first case, divide the random sequence $R \in S^\infty$ into random sequences $R[i]$ of length k. Notice that $\Pr[\psi(R)] \leq \prod_i \Pr[R[i] \neq s] = 0$. In the second case, the event $\psi(R)$ is the intersection of countably many events of probability 1, and so $\Pr[\psi(R)] = 1$. In both cases, ψ is finitely determined with index 0.

Conversely, $\varphi = p \mathcal{U} q$ is not finitely determined. Indeed, suppose that p, q are independent, with probabilities α, β, respectively. The probability of φ given a prefix in which p always holds is

$$\sum_{t \geq 0} (\alpha(1-\beta))^t \beta = \frac{\beta}{1 - \alpha(1-\beta)}.$$

If $\alpha = \beta = 1/2$, this probability is $2/3$, and so φ is not finitely determined.