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Top-k voting is a common form of preference elicitation due to its conceptual simplicity both on the voters’
side and on the decision maker’s side. In a typical setting, given a set of candidates, the voters are required
to submit only the k-length prefixes of their intrinsic rankings of the candidates. The decision maker then
tries to correctly predict the winning candidate with respect to the complete preference profile according to
a prescribed voting rule. This raises a tradeoff between the communication cost (given the specified value of
k), and the ability to correctly predict the winner.

We focus on arbitrary positional scoring rules in which the voters’ scores for the candidates is given by a
vector that assigns the ranks real values. We study the performance of top-k elicitation under three prob-
abilistic models of preference distribution: a neutral distribution (impartial culture); a biased distribution,
such as the Mallows distribution; and a worst-case (but fully known) distribution.

For an impartial culture, we provide a technique for analyzing the performance of top-k voting. For the
case of arbitrary positional scoring rules, we provide a succinct set of criteria that is sufficient for obtaining
both lower and upper bounds on the minimal k necessary to determine the true winner with high probability.
Our lower bounds pertain to any implementation of a top-k voting scheme, whereas for our upper bound,
we provide a concrete top-k elicitation algorithm. We further demonstrate the use of this technique on
Copeland’s voting rule.

For the case of biased distributions, we show that for any non-constant scoring rule, the winner can be
predicted with high probability without ever looking at the votes. For worst-case distributions, we show that
for exponentially decaying scoring rules, k = O(logm) is sufficient for all distributions.

1. INTRODUCTION
The ongoing spread of large-scale, multi-user platforms has raised significant compu-
tational problems. One obvious example that frequently shows up in the context of
recommendation and group decision-making, is the need to efficiently aggregate user
preferences. To elaborate on this point, consider a scenario with n individual agents
(which we call voters) having preferences over a set C of candidates (or alternatives),
in which a “consensus” (winning) candidate should be selected according to some prede-
termined rule. The need for efficiency sometimes dictates that we, the decision-makers,
be judicious in the manner in which we elicit the preferences of the users. It is often
the case that such settings raise various algorithmic questions that pertain to the ex-
traction and aggregation of the votes, and to computing the correct winner.

We focus on the issue of efficient preference elicitation. In a system with a vast
collection of candidates to choose from, obtaining an agent’s complete ranking of the
candidates is often ill-advised, and even infeasible, due to the resulting communica-
tion and cognitive overhead. Therefore, the task of devising protocols for obtaining the
voters’ preferences, while keeping the amount of communicated information down to a
minimum, is imperative.

To contrast general communication complexity results, which state that in the worst-
case, many voting rules require a lot of information from the voters, empirical studies
have shown that in practice, some elections are amenable to efficient voting protocols
(e.g., [Kalech et al. 2011]). One recent way of bridging this gap between the theoretical
bounds and the empirical findings is to take a belief-based approach, by assuming that
the preferences are distributed according to some specified prior. Given such proba-
bilistic beliefs, the common goal is to design protocols for efficiently eliciting parts of
the voters’ preferences, and then deciding on the winner with a reasonable degree of
confidence.
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A relatively straightforward method of elicitation is the top-k voting method: given
a set C of m candidates, each of the n voters submits a ranking of their k most favored
candidates (i.e., the k-length prefix of their intrinsic ranking of the candidates C). The
decision maker then employs a prescribed voting rule in order to select a candidate
based solely on the partially reported preference. The immediate question that this
setting raises is: what is a sufficient bound on k, that would guarantee that the correct
candidate is selected? (had he had the complete preference profile).

In this paper, we present a technique for studying the performance of this elicitation
method based on a probabilistic analysis of the distribution of the scores. We primarily
focus on a particular class of voting rules known as positional scoring rules. Given a
non-increasing vector α ∈ Rm and a ranking of the candidates πi, corresponding to
voter i’s preferences, candidate c ∈ C receives a score of α(j) if c is ranked j’th in πi.
The winning candidate is the candidate with the maximal total score.

In the top-k voting scheme, each voter i reports only the k-length prefix of her intrin-
sic ranking π−1i (1), . . . , π−1i (k). The decision maker, in turn, selects a candidate based
solely on this partial view of the preference profiles.

Contributions. We begin by studying the performance of top-k voting under the neu-
tral, impartial culture distribution, in which the preferences are drawn uniformly at
random (Section 3). Our study is aimed at finding, for a given positional scoring rule,
a closed-form criterion for the range of k for which it is possible to predict the winning
candidate with high probability given only the k-length prefixes of the rankings. Our
results are stated in terms of a measure we call the partition variability ratio, which
is monotonically increasing in k. When this ratio is small, we show that no algorithm
can predict the winning candidate with high probability. When the ratio crosses a cer-
tain threshold, we give a concrete algorithm (Algorithm FairCutoff) that predicts the
winning candidate with high probability.

We demonstrate the use of our criterion on several scoring rules. In particular, we
show that for the Borda scoring rule, no top-k can determine the correct winner w.h.p.
unless k = Ω(m). This gives a logm-factor improvement over the Ω(m/ logm) bound
given in [Oren et al. 2013].

In Section 4, we further illustrate our general approach by providing a similar anal-
ysis for Copeland’s voting rule (though the details differ significantly from the proof of
Theorem 3.1). This results in a lower bound of Ω(m/

√
logm) (Theorem 4.1).

In Section 5, we proceed to analyze the limiting behavior of top-k voting under posi-
tional scoring rules and a class of biased distributions over preferences, in which there
is a candidate that dominates all other candidates.

In Section 6, we take a worst-case approach by considering the case of arbitrary
preference distributions. We obtain a lower bound of k = Ω(m) for the harmonic po-
sitional scoring rule, where the score associated with rank i is 1/i, by constructing
an appropriate distribution over preferences. This contrasts our logarithmic bound for
the case of an impartial culture. We also show that under any preference distribution,
an exponentially decaying score vector requires only k = O(logm) for correct winner
determination, for sufficiently large m and n.

In Section 7, we empirically demonstrate the efficacy of our top-k elicitation method,
and illustrate the bounds obtained by our criteria.

Previous work. There has been a growing body of literature in computational social
choice that studies worst-case objectives pertaining to partial preference elicitation.
These studies typically focus on heuristics for determining potential winners (the so-
called possible winners) and the necessary winners; i.e., candidates who would win
irrespective of any complete extension of the preferences (see e.g., [Konczak 2005; Xia
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and Conitzer 2008]). These complexity issues have been studied in the context of top-k
voting in [Baumeister et al. 2012].

A number of studies have shown that in the worst-case sense, many of the common
voting rules may require the voters to communicate a significant amount of informa-
tion about their preferences in order to predict the correct winner with absolute cer-
tainty; either in the communication complexity sense, or with respect to concrete elic-
itation protocols (e.g., [Conitzer and Sandholm 2005; Xia and Conitzer 2008; Conitzer
and Sandholm 2002]). This implies that top-k voting is ineffective for arbitrary prefer-
ence profiles.

On the other hand, the practical efficacy of methods for these objectives, including
top-k voting, has been empirically demonstrated by Kalech et al. [Kalech et al. 2011].
This prompts the adoption of a probabilistic approach in which the votes are assumed
to be drawn according to a probabilistic model. An important example of such a model
is the Mallows φ-distribution [Mallows 1957; Marden 1995], which we study in this
paper, focusing mainly on the special case in which the preferences are assumed to be
drawn uniformly at random from the complete set of rankings (the so-called impartial
culture assumption).

This approach was adopted in [Lu and Boutilier 2011a,b], in which the authors take
a regret-minimization towards optimizing the score of the selected candidate.

Oren et al. [Oren et al. 2013] provided a probabilistic analysis of the top-k elicitation
scheme for predicting the correct Borda winner w.h.p., and showed a lower bound of
Ω(m/ logm) on k under the impartial culture assumption (improved in this paper). We
generalize their probabilistic argument to handle arbitrary scoring rules.

In a recent study, Caragiannis et al. [Caragiannis et al. 2013] studied the ability of
scoring rules to reconstruct the underlying “true” ranking, based only on noisy rank-
ings. Some of our results on biased distributions make similar generalizations of distri-
butions such as the Mallows distribution, and employ similar techniques. They show
that in the limiting case (where n goes to infinity), broad classes of scoring rules can
correctly determine the underlying ranking.k

2. PRELIMINARIES
Let C = {c1, . . . , cm} be the set of (potential) candidates from which a winner is to
be selected. Let N = {1, . . . , n} be the set of voters, and let voter i’s preference πi be
a permutation of C, πi : C → [m], such that for 1 ≤ j < j′ ≤ m, π−1i (j) is preferred
over π−1i (j′) by voter i ∈ N . Let L denote the set of all preferences over C, and let
P = {πi}i∈N ∈ Ln be the preference profile. It is commonly assumed that n � m, and
that the preferences are drawn according to some probabilistic model. Some of these
models are described below.

A voting rule v : Ln × 2C → C selects a winner from C given a preference profile and
a set of available candidates (in the literature, this is sometimes referred to as a social
welfare function). Score-based rules are a broad class of voting rules, in which given
the preference profile P , there is a function sc : Ln → R that assigns a score to each
of the candidates. The election winner under such a rule is the candidate having the
maximal score.

Top-k elicitation. For a given (integral) value k between 1 and m, the decision maker
will ask the voters to report only the k-length prefixes of their preference rankings,
(π−1i (1), . . . , π−1i (k)), for every i ∈ N , and has to make a decision based only on these
prefixes. The goal of the decision maker is to recover the true winner given only the
k-length prefixes.
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Given the distribution of the preferences and a prescribed voting rule, we are in-
terested in determining the range of k for which the decision maker can predict the
winner with high probability, that is with probability tending to 1 as m grows.

Scoring rules. A positional scoring rule is characterized by a score vector α ∈ Rm≥0 of
non-increasing scores: α(j) ≥ α(j+1) for 1 ≤ j ≤ m−1. The score given by a voter i ∈ N
for a candidate c ∈ C, ranked j’th in πi, is α(j) = α(πi(c)). We denote the average score
of a candidate c ∈ C, by scα(c) = 1

n

∑
i∈N α(πi(c)). When the score vector is known

from context, we omit the subscript α, for notational convenience. The winner of the
election is the candidate with the highest average score: arg maxc∈C sc(c).

Examples of positional scoring rules include (1) the Borda scoring rule, for which the
score vector is αB = (m − 1,m − 2, . . . , 0), (2) the plurality (majority) scoring rule, in
which corresponding score vector is αP = (1, 0, 0, . . . , 0), (3) the k-approval rule, which
is characterized by the score a vector with a prefix of k 1’s followed by zeros; this allows
each voter to specify which set of k candidates he “approves”.

We also study the (non-positional) Copeland rule, which can be defined as follows.
We say that ci beats cj in a pairwise election if the number of votes in P , in which ci
precedes cj is larger than the number of votes in P which cj precedes ci. The score of a
candidate c, sc(c), is the number of candidates that she beats. As with all scoring rules,
the candidate with maximal score wins the election. The Copeland scoring rule is said
to be a Condorcet compatible voting rule: the winning candidates receives the majority
of the votes in a pairwise election with any other candidate.

Probabilistic models of preferences. We consider various models of distributions over
preferences. Many of these models are characterized by an underlying “canonical” pref-
erence, the probabilities of the different preferences decaying monotonically with their
dissimilarity to the canonical preference, as measured by some distance function.

A common such distance metric for permutations is the Kendall tau distance, defined
by dKT (π1, π2) = |{c, c′ : π−1

1 (c) < π−1
1 (c′) and π−1

2 (c) > π−1
2 (c′)}|. The popular Mallows

distribution is specified by a fraction φ ∈ [0, 1], in addition to the reference ranking,
and the probability of a preference decreases exponentially with its distance to the
reference ranking: Pr[π] = φdKT (π,π̂)/Zm, where Zm is a normalizing factor.

In this paper, whenever we state that the preferences are distributed according to a
Mallows distribution D(π̂, φ), we mean that each of the preferences is drawn i.i.d. from
D(π̂, φ).

A heavily used special case of the Mallows distribution is the case φ = 1, in which
the preferences are sampled uniformly at random from L by each of the voters. This
is also known as the impartial culture assumption (or succinctly, IC). We focus on this
distribution in Section 3.

3. TOP-K VOTING FOR POSITIONAL SCORING RULES AND A NEUTRAL PRIOR
We begin with the model in which the preferences are assumed to be drawn from the
uniform distribution over rankings L. Our main goal is to provide a direct method
for “mechanically” obtaining either upper or lower bounds on the minimum value of k
necessary for determining the correct winning candidate, with higher probabilities.

Given the top-k part of the votes, our goal is to choose a candidate who will win
with probability close to 1, if there is such a candidate. The “optimal” algorithm will
compute (or estimate, if computational efficiency is required) the probability that each
candidate wins, and choose the candidate with the maximal chance to win. However,
such an algorithm doesn’t seems to readily lend itself to systematic analysis. Instead,
we consider the following simple approach. For each candidate c, the top-k score that
corresponds to voter i’s vote, is the original score given in vector α, if the candidate is

EC’14, June 8–12, 2014, Stanford University, Palo Alto, CA, USA, Vol. X, No. X, Article X, Publication date: February 2014.



X:5

Algorithm FairCutoff: The top-k algorithm for positional scoring rules.
Input: Top-k votes: (πk1 , . . . , π

k
n), where πki denotes the top-k ranking of voter i over

a set of k candidates. A score vector α.
1 foreach c ∈ C do

2 Set scTi (c) =

{
α(πi(c)) if πi(c) ≤ k,

1
m−k

∑m
j=k+1 α(j) otherwise.

3 return arg maxc∈C
∑n
i=1 sc

T
i (c).

in i’s top-k ranking. Otherwise, we assign it a score that corresponds to the expected
score of c, had it been positioned uniformly at random in one of the bottom m − k
positions. The algorithm then selects the candidate with the maximal total score. The
full details are given in Algorithm FairCutoff.1 For the purpose of analysis, we define
the complementary “bottom” score, given by: scB(c) = 1

n

∑
i∈N sc

B
i (c) where

scBi (c) =

{
0 if πi(c) ≤ k,
α(πi(c))− 1

m−k
∑m
j=k+1 α(j) otherwise.

We note that sc(c) = scT (c) + scB(c).
We now present the main theorem of this section.

THEOREM 3.1. Define

VT =
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

− 1

m2

(
m∑
i=1

α(i)

)2

,

VB =
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

Furthermore, define the k-partition variability ratio to be rk = VT /VB .
Lower bound. If rk = o(logm) then no algorithm for predicting the overall winner

given the top-k votes succeeds with probability 1− om(1), when taking the limit n→∞.
(That is, for each m we analyze the success probability for large enough n.)

Upper bound. If rk = ω(log4/3m) then cmax, i.e., the candidate with the maximum
score based on Algorithm FairCutoff, is the overall winner with probability 1 − om(1),
for large enough n.

VT measures the uncertainty coming from the top-k part of the votes (corresponding
to scT ), while VB measures the uncertainty coming from the bottom part of the votes
(corresponding to scB). When VT /VB is small, the bottom uncertainty dominates the
top-k information, and so the winner cannot be determined given only the top-k part.
When VT /VB is large, the top-k part dominates the “noise” coming from the bottom
part of the votes.

Lemma A.1, which can be found in the appendix, shows that as k increases, the
top uncertainty VT grows while the bottom uncertainty VB shrinks, and so the ra-
tio VT /VB is increasing in k. The theorem gives a threshold phenomenon: as long as
VT /VB � logm, the winner cannot be predicted, while for VT /VB � log4/3m, Algo-
rithm FairCutoff predicts the winner with high probability.

1We show that in practice, using our simulation results (Section 7), that the performance of the FairCutoff
algorithm is quite comparable to the optimal algorithm.
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3.1. Application to common scoring rules
Before proceeding with the proof of Theorem 3.1, we demonstrate its implications to
the efficacy of the top-k voting method, when applied to different scoring rules.

We begin with the Borda scoring rule. The following bound strengthens the bound
given in [Oren et al. 2013]:

THEOREM 3.2. Suppose that the underlying election is held using the Borda voting
rule. Then the top-k elicitation method requires k = Ω(m), in order to determine the
correct Borda winner, with probability 1− om(1), as as n→∞.

PROOF. We use the criterion given by Theorem 3.1. Calculating VT and VB , we ob-
tain

VT =
1

m

k∑
i=1

(m− i)2 +
1

m(m− k)

(
m∑

i=k+1

(m− i)

)2

− 1

m2

(
m∑
i=1

(m− i)

)2

=
k(k2 + 3m(m− k)− 1)

12m
,

VB =
1

m

m∑
i=k+1

(m− i)2 − 1

m(m− k)

(
m∑

i=k+1

(m− i)

)2

=
(m− k + 1)(m− k)(m− k + 1)

12m
.

Assuming k ≤ m/2, we have VT = Θ(km) and VB = Θ(m2), so that VT /VB = Θ(k/m) =
o(logm). Therefore, no top-k algorithm succeeds with probability at least 1− om(1).

Our next case study is the harmonic scoring rule, that was first proposed by Boutilier
et al. [Boutilier et al. 2012].

Definition 3.1 (The harmonic scoring rule). The harmonic scoring rule is defined
by the m-dimensional vector αh, such that for i ∈ [m], αh(i) = 1/i.

As we now show, the harmonic tends to be quite amenable to efficient elicitation via
our top-k elicitation method.

THEOREM 3.3. Consider the harmonic scoring rule. If k = ω(log4/3m) then
FairCutoff selects the correct winner with probability 1 − om(1), for large enough n.
On the other hand, if k = o(logm), no top-k algorithm can select the correct winner with
probability 1− om(1).

PROOF. We first calculate the two specified terms given in Theorem 3.1, assuming
k = o(m):

VT =
1

m

k∑
i=1

1

i2
+

1

m(m− k)

( m∑
i=k+1

1

i

)2
− 1

m2

( m∑
i=1

1

m

)2
=
π2/6−Θ( 1

k )

m
+

Θ(log2(mk ))

m(m− k)
− Θ(log2m)

m2
= Θ(

1

m
),

where the first equality follows from the elementary identities
∑t
i=1

1
i = log t ± Θ(1)

and
∑t
i=1

1
i2 = π2

6 −Θ( 1
t ). For the second equality we only used the fact that k = o(m).

We similarly derive the second term:
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VB =
1

m

m∑
i=k+1

1

i2
− 1

m(m− k)

(
m∑

i=k+1

1

i

)2

=
Θ( 1

k )−Θ( 1
m )

m
−

Θ(log2(mk ))

m(m− k)
= Θ(

1

mk
).

Therefore when k = o(m), we obtain rk = VT /VB = Θ(k). The bounds follow by an
application of Theorem 3.1.

Our final case study is geometric scoring rules.

Definition 3.2 (Geometric scoring rules). The geometric scoring rule with parame-
ter ρ is given by the m-dimensional vector αρ(i) = ρi.

THEOREM 3.4. Consider the geometric scoring rule with parameter ρ (not depending
on m). If k = ω(log logm) then FairCutoff selects the correct winner with probability
1− om(1), for large enough n. On the other hand, if k = o(log logm), no top-k algorithm
can select the correct winner with probability 1− om(1).

PROOF. We calculate the specified terms given in Theorem 3.1, assuming k ≤ m−2:

VT =
1

m

k∑
i=1

ρ2i +
1

m(m− k)

(
m∑

i=k+1

ρi

)2

− 1

m2

(
m∑
i=1

ρi

)2

=
Θ(1)

m
+

Θ(ρ2k)

m(m− k)
− Θ(1)

m2
=

Θ(1)

m
,

VB =
1

m

m∑
i=k

ρ2i − 1

m(m− k)

(
m∑

i=k+1

ρi

)2

=
Θ(ρ2k)

m
− Θ(ρ2k)

m(m− k)
=

Θ(ρ2k)

m
.

Therefore VT /VB = Θ(ρ−2k). The bounds follow from an application of Theorem 3.1.

3.2. Proving Theorem 3.1
Before proceeding with the proof of the theorem, we define a few pieces of notation.
Given a set of pre-defined random variables, x1, . . . , xm, we let xmax, and x2max denote
highest and second highest xi values, respectively (note that they may be equal). Sim-
ilarly, we abuse our notation a bit, by letting cmax and c2max denote the candidates
with the highest and second highest scT (·) values, among the candidates in C. Similar
notations will be used for other sets of variables.

At a high-level, our approach is the following: For two distinct candidates c, c′ ∈ C,
let DT (c, c′) = scT (c) − scT (c′); i.e., the difference in their top-k scores (note that
DT (cmax, c2max) is always non-negative). We will first aim to characterize the limit-
ing behaviour of DB(cmax, c2max), for sufficiently large voter populations. Then, we
will provide a similar characterization on the analogously defined DB(cmax, c2max) =
scB(cmax) − scB(c2max). Our bounds will then follow as a result of bounding the
probability of the event in which DT (cmax, c2max) + DB(cmax, c2max) < 0. The
first step in the proof is estimating DT (cmax, c2max). The strategy (due to Yury
Makarychev [Makarychev 2012]) is to reduce this to a question regarding the differ-
ence between the two largest elements in a vector of i.i.d. normal random variables.
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We start by computing the mean, variance and covariance of the scores due to a
single voter, and the corresponding data for the aggregated scores.

LEMMA 3.1. Define

ET =
1

m

m∑
i=1

α(i),

VT =
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

− 1

m2

(
m∑
i=1

α(i)

)2

.

The mean, variance and covariance of the scores of a single voter i are E[scTi (c)] = ET ,
Var[scTi (c)] = VT and Cov(scTi (c), scTi (c′)) = −VT /(m− 1).

The mean, variance and covariance of the aggregated scores are E[scT (c)] = ET ,
Var[scT (c)] = VT /n and Cov(scT (c), scT (c′)) = −VT /(n(m− 1)).

Proving the above lemma can be done by using the standard definitions. We provide
the full details in the full version of the paper.

We can now use the central limit theorem to reduce the estimation of scT (cmax) −
scT (c2max) to a question about Gaussians.

LEMMA 3.2. Let r ∼ N (0, VT /(n(m − 1))), and let yj = scT (cj) + r. Then
1√

mVt/(n(m−1))
(y1 − ET , . . . , ym − ET ) converges in distribution (as n → ∞) to a stan-

dard multivariate normal distribution of dimension m (with zero mean and covariance
matrix Im).

PROOF. Let ri ∼ N (0, VT /(m−1)), and note that r has the same distribution as (r1+
· · ·+ rn)/n. Therefore we can define r = (r1 + · · ·+ rn)/n. We have E[yj ] = E[scT (cj)] =
ET , Var[yj ] = Var[scT (cj)] + Var[r] = VT /n + VT /(n(m − 1)) = mVT /(n(m − 1)) and
Cov(yj , yk) = Cov(scT (cj), sc

T (ck)) + Var(r) = 0. Since (y1, . . . , ym) is an average of n
i.i.d. well-behaved random variables (scTi (1) + ri, . . . , sc

T
i (m) + ri), the central limit

theorem applies and shows that (y1, . . . , ym) converges in distribution to m i.i.d. copies
of N (ET ,mVT /(n(m− 1))). This implies the lemma.

The trick here is that yj − yk = scT (cj)− scT (ck). The question we need to solve now
is the following: Suppose that x1, . . . , xm are i.i.d. standard random variables; what
is the typical value of xmax − x2max? In order to obtain a concentration bound on this
difference, we will seek to bound on both x2max − x22max and xmax + x2max, knowing that
the ratio of these two terms will give us our desired bound.

We let uc = Φ(xc), where Φ is the complementary cumulative distribution function of
a standard normal variable. The idea is to use the fact that uc = Φ(xc) ∼ U(0, 1), and
to analyze the typical values of umin = Φ(xmax) and u2min = Φ(x2max) as well as the
ratio u2min/umin. We are interested in the ratio since it is well known that

log Φ(x) ≈ −x
2

2
.

and in particular,

log
u2min

umin
≈ x2max − x22max

2
.

We start our analysis with u2min/umin.
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LEMMA 3.3. Let 1 ≤ `1 ≤ `2 ≤ ∞.

Pr[`1 ≤ u2min

umin
≤ `2] =

1

`1
− 1

`2
.

Proving the above lemma can be done by a straightforward integration. We defer the
proof to the full version of the paper.

Using this lemma, we can show that with high probability (with respect to m), both
xmax and x2max are Θ(

√
logm). We will need to use some estimates on tails of the

normal distribution, starting with the following well-known estimate (e.g., [Dümbgen
2010]):

e−x
2/2

x
√

2π

(
1− 1

x2

)
≤ Φ(x) ≤ e−x

2/2

x
√

2π
. (3.1)

LEMMA 3.4.

− d

dx
log Φ(x) = x+O

(
1

x

)
.

PROOF. Since Φ
′
(x) = −e−x2/2/

√
2π and (log Φ(x))′ = Φ

′
(x)/Φ(x), we deduce

from (3.1) that

x ≤ − d

dx
log Φ(x) ≤ x

1− 1/x2
= x(1 +O(1/x2)).

LEMMA 3.5. With probability 1 − om(1), both xmax = Θ(
√

logm) and x2max =
Θ(
√

logm).

PROOF. We start with a concentration estimate for umin:

Pr

[
1

m2
≤ umin ≤

1√
m

]
=

(
1− 1√

m

)m
−
(

1− 1

m2

)m
=(1− om(1))− om(1) = 1− om(1).

The estimate for xmax is immediate from (3.1). In order to handle x2max, we use
Lemma 3.3. Choosing `1 = 1 and `2 = m1/3, we see that u2min/umin ≤ m1/3 with
probability 1−1/m1/3 = 1−om(1). Therefore with probability 1−om(1), 1/m2 ≤ umin ≤
u2min ≤ m1/3umin ≤ 1/m1/6. The estimate for x2max is now immediate from (3.1).

Putting everything together, we can prove our estimate on xmax − x2max.

LEMMA 3.6. Let 1 ≤ `1 ≤ `2 ≤ ∞. With probability 1/`1 − 1/`2 − om(1),

Ω

(
log `1√
logm

)
≤ xmax − x2max ≤ O

(
log `2√
logm

)
.

PROOF. Lemma 3.3 and Lemma 3.5 show that with probability 1/`1 − 1/`2 − om(1),
the following estimates hold: xmax = Θ(

√
logm), x2max = Θ(

√
logm), and `1 ≤

u2min/umin ≤ `2. We can restate the latter fact as

log `1 ≤ log Φ(x2max)− log Φ(xmax) ≤ log `2.

The mean value theorem shows that

log Φ(x2max)− log Φ(xmax)

xmax − x2max
= − d

dx
log Φ(x∗)
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for some x2max ≤ x∗ ≤ xmax. Clearly x∗ = Θ(
√

logm), and so Lemma 3.4 shows that
−(d/dx) log Φ(x∗) = Θ(

√
logm). Therefore

xmax − x2max =
log Φ(x2max)− log Φ(xmax)

Θ(
√

logm)
.

The lemma easily follows.

Combining this with Lemma 3.2, we obtain a similar result on scTmax − scT2max.

LEMMA 3.7. Let 1 ≤ `1 ≤ `2 ≤ ∞. With probability 1/`1 − 1/`2 − om(1)− on(1),

Ω

(
log `1

√
VT

n logm

)
≤ scT (cmax)− scT (c2max) ≤ O

(
log `2

√
VT

n logm

)
.

PROOF. First, note that scT (cmax) − scT (c2max) = ymax − y2max = (ymax − ET ) −
(y2max−ET ). Since the mapping (x1, . . . , xm) 7→ xmax−x2max is continuous, Lemma 3.2
shows that scT (cmax)−scT (c2max)√

mVt/(n(m−1))
converges in distribution to the distribution of xmax −

x2max. That means that up to an error factor of on(1), we can translate the results
of Lemma 3.6 to results about scores by multiplying throughout by Θ(

√
Vt/n), which

gives the lemma.

As a corollary, we can show that scT (cmax)− scT (c2max) is “roughly”
√
VT /(n logm).

LEMMA 3.8. Let τ1(m) = om(1) and τ2(m) = ωm(1). For large enough n,m,

Ω(τ1(m)
√
VT /(n logm)) ≤ scT (cmax)− scT (c2max) ≤ O(τ2(m)

√
VT /(n logm))

with probability 1− om(1)− on(1).

PROOF. Choose `1 = exp τ1(m) and `2 = exp τ2(m) in Lemma 3.7 to obtain the stated
bound, which holds with probability 1/`1 − 1/`2 − om(1) − on(1). The lemma follows
since 1/`1 → 1 and 1/`2 → 0.

This lemma is good enough to prove a lower bound on k. In order to prove a good
upper bound, we need to estimate the difference scT (cmax) − scT (cp−max), for other
values of p; here c1−max = cmax, c2−max = c2max, and so on.

LEMMA 3.9. Suppose p = o(
√
m/ logm) satisfies also p = ωm(1). Then scT (cmax) −

scT (cp−max) = Θ(log p
√
VT /(n logm)) with probability 1− om(1)− on(1).

The analysis is similar (albeit more involved), and is deferred to the full version of
the paper.

Now, we take a similar approach by estimating scB(cmax)− scB(c2max) (the direction
of the bound will depend on the type of bound on k). If cmax, c2max were two arbitrary
candidates then we could use the central limit theorem to directly estimate scB(cmax)−
scB(c2max). The expectation would be 0 because of symmetry, and the variance is given
by the following lemma.

LEMMA 3.10. Let c ∈ C be an arbitrary candidate. The mean of scBi (c) is 0, and its
variance is

VB =
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

The variance of scB(c)− scB(c′) is 2 m
m−1VB/n.
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Proving the lemma, can be done by a straightforward calculation, using the defini-
tion of the different terms, and is given in the full version of the paper.

Notice however that, cmax and c2max are not arbitrary candidates. We will show that
the effect of this issue on the difference in the scores is quite negligible. The idea is to
eliminate the dependence on the choosing rule by dividing the voters into four groups,
according to whether cmax came up in the bottom or top, and whether c2max came up in
the bottom or top:

P1 = {σ ∈ P : σ(cmax), σ(c2max) ≤ k}, P2 = {σ ∈ P : σ(cmax) > k, σ(c2max) ≤ k},
P3 = {σ ∈ P : σ(cmax) ≤ k, σ(c2max) > k}, P4 = {σ ∈ P : σ(cmax), σ(c2max) > k}.

The voters in each of these groups behave as if cmax, c2max were arbitrary candidates,
under the condition that some of them are at the top k and some not. The number
of voters in these groups ni = |Pi| are strongly concentrated around their means
ν1, ν2, ν3, ν4 due to a Chernoff bound. Given n1, n2, n3, n4, we can use the central limit
theorem to approximate the distribution of scB(cmax)− scB(c2max).

We start by analyzing the distribution of scB(cmax)− scB(c2max) given the deviation
parameters εi = ni − νi. We present here the (easily verifiable) values of ν1, ν2, ν3, ν4:

ν1 =
k(k − 1)

m(m− 1)
n, ν2 = ν3 =

k(m− k)

m(m− 1)
n ν4 =

(m− k)(m− k − 1)

m(m− 1)
n.

First, we establish the mean and variance of scB(cmax)− scB(c2max).

LEMMA 3.11. Suppose εi = ni − νi are given. Then

E[scB(cmax)− scB(c2max)] = 0,

Var[scB(cmax)− scB(c2max)] =
2 m
m−1VB

n
±Oα

(
max(ε2, ε3, ε4)

n2

)
.

Here Oα(·) means that the constant depends on the weights α(1), . . . , α(m).

PROOF. We start with the mean. If i ∈ P1∪P3 then scBi (cmax) = 0. If i ∈ P2∪P4 then
as in the proof of Lemma 3.10, E[scBi (cmax)] = 0. We conclude that E[scB(cmax)] = 0,
and similarly E[scB(c2max)] = 0.

As for the variance, let v1, v2, v3, v4 be the variance arising from a single voter in
P1, P2, P3, P4, respectively. Note that v1 = 0 and v2 = v3. Thus

Var[scB(cmax)− scB(c2max)] =
n2 + n3
n2

v3 +
n4
n2
v4.

We know that when ε2 = ε3 = ε4 = 0, the above must equal 2 m
m−1VB/n. Therefore

Var[scB(cmax)− scB(c2max)] =
2 m
m−1VB

n
±Oα

(
max(ε2, ε3, ε4)

n2

)
.

This allows us to conclude that scB(cmax) − scB(c2max) is close in distribution to a
normal random variable.

LEMMA 3.12. Suppose k 6= 1,m. The random variable scB(cmax) − scB(c2max) con-
verges in distribution to a Gaussian N (0, 2 m

m−1VB/n).

PROOF. Given ε1, ε2, ε3, ε4, the random variable scB(cmax) − scB(c2max) is the aver-
age of n1 constant random variables and n2 + n3 + n4 non-constant random variables
with one of three given bounded distributions. Since k 6= m, n2 + n3 + n4 = Ω(n)
with probability 1 − on(1), and in that case the Berry–Esseen theorem shows that
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scB(cmax) − scB(c2max) is on(1)-close in distribution to a Gaussian N (0, V ), where V =
Var[scB(cmax)−scB(c2max)]; the expectation vanished due to Lemma 3.11. Now ε2, ε3, ε4
are all o(n) with probability 1−on(1), and so the lemma shows that V = 2 m

m−1VB/n(1+

on(1)) in that case. Therefore with probability 1−on(1), scB(cmax)−scB(c2max) is on(1)-
close in distribution to N (0, 2 m

m−1VB/n). The lemma follows.

Nothing in the proof of Lemma 3.12 used any special properties of cmax, c2max; rather,
they were arbitrary candidates. Therefore the lemma holds for any two candidates.

Combining Lemma 3.8 with Lemma 3.12, we can prove our main theorem.
We are now ready to prove Theorem 3.1.

PROOF. Lower bound. Let τ2(m) =
√
VB logm/VT → ∞. Lemma 3.8 shows

that scT (cmax) − scT (c2max) = O(τ2(m)
√
VT /(n logm)) = O(

√
VB/n) with probability

1 − om(1) − on(1), and Lemma 3.12 shows that scB(cmax) − scB(c2max) converges in
distribution to N (0, 2 m

m−1VB/n). Therefore:

— With constant probability, scB(cmax) − scB(c2max) < −(scT (cmax) − scT (c2max)), and
so sc(cmax) < sc(c2max) (according to the properties of the Gaussian distribution, the
difference can be a constant multiple of standard deviations away from its mean). In
particular, with constant probability cmax is not the overall winner.

— With constant probability, scB(cmax)− scB(c2max) ≥ 0, and so sc(cmax) ≥ sc(c2max). In
particular, with constant probability c2max is not the overall winner.

— Let c be any other candidate. The proof of Lemma 3.12 used no special properties of
cmax or c2max, and so it applies to scB(cmax)− scB(c) as well. Therefore with constant
probability, scB(cmax)−scB(c) ≥ 0, and so sc(cmax) ≥ sc(c). In particular, with constant
probability c is not the overall winner.

We conclude that each candidate fails to be the overall winner with some constant
probability.

Upper bound. Let p = elog
1/3m. Define τ(m) =

√
VB log4/3m/VT = om(1) and

τ2(m) =
√
τ(m) = om(1). We have the following:

— Lemma 3.8 shows that with probability 1 − om(1) − on(1) and all q ≥ 2,
scT (cmax) − scT (cq−max) ≥ scT (cmax) − scT (c2max) = Ω(τ2(m)

√
VT /(n logm)) =

Ω(τ(m)−1/2τ(m)
√
VT /(n logm)) = Ω(τ(m)−1/2

√
(VB/n) log p) = ω(

√
(VB/n) log p).

— Hence Lemma 3.12, together with the tail bound (3.1), shows that sc(cmax) >
sc(cq−max) for all 2 ≤ q ≤ p with probability 1− om(1) for large enough n.

— Lemma 3.9 shows that scT (cmax) − scT (cp−max) = Θ(log p
√
VT /(n logm)) =

ω(
√

(VB/n) logm) with probability 1− om(1)− on(1).
— Hence Lemma 3.12, together with the tail bound (3.1), shows that sc(cmax) >
sc(cq−max) for all q ≥ p with probability 1− om(1) for large enough n.

We conclude that with probability 1 − om(1) and large enough n, cmax has the largest
overall score.

4. COPELAND’S VOTING RULE
Having considered positional scoring rules, we now further demonstrate the applica-
bility of our of approach by considering the (non-positional) Copeland scoring rule. We
give a lower bound on k that corresponds to any top-k algorithm:

THEOREM 4.1. For k ≤ m/
√

logm, no algorithm can predict the winner under
Copeland with probability better than 1− Ω(1).
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We only outline of the proof here; the full version can be found in the full version of
the paper (Appendix B). Relating to the definition of the scoring rule, for an individual
vote i ∈ N and two distinct candidates c, c′ ∈ C, we set sci(c, c′) = 1 if πi(c) < πi(c

′),
and sci(c, c′) = −1 if πi(c) > πi(c

′). Note that a candidate c beats a candidate c′ exactly
when sc(c, c′) > 0. As done for positional scoring rules, we can rewrite sci(c, c′) as the
sum of two pairwise scores scTi (c, c′) and scBi (c, c′). The score scTi (c, c′) behaves like
sci(c, c

′) if at least one of the candidates is positioned in the top-k ranking of voter i
(thus allowing us to deduce the relation of c and c′), and is zero otherwise. The score
scBi (c, c′) is defined so that sci(c, c′) = scTi (c, c′) + scBi (c, c′).

The idea of the analysis is to show that for small enough k, each candidate c has a
constant probability of losing. The top and bottom scores are both roughly normally dis-
tributed (with correlations). In contrast to the case of positional scoring rules, dealing
with correlations is simpler in our case: for every three distinct candidates c, c′, c′′ ∈ C,
it can be shown that scTi (c, c′) and scTi (c, c′′) are positively correlated. Treating the
score of a candidate as the sum of the entries of the vector (scTi (c, c′))c′ 6=c, we use this
fact to decompose this (random) vector into two, more tractable, vectors. This allows
us to bound the advantage of c over most other candidates c′ in the top score.

Similarly, the bottom scores are positively correlated, due to a “bias” correspond-
ing to the average position of c in voters in which it appears outside the top-k. With
constant probability, this bias is negative, and so the total score is roughly binomially
distributed with a negative bias. This shows that c could lose with constant probability.

We suspect that the true lower bound for k is, in fact, Ω(m).

5. MALLOWS DISTRIBUTION
Theorem 3.1 shows that top-k allows for efficient elicitation under the harmonic and
geometric positional scoring rules, even under the most neutral preferences distribu-
tion. For the Borda and Copeland scoring rules, we’ve shown that it is not the case
(this is confirmed empirically in our simulation results, presented in Section 7). This
motivates the following question: are there any classes of preference distributions for
which top-k performs well under these supposedly inefficient scoring rules? The pur-
pose of our following discussion is to provide such general distributions, and to argue
that in the limiting case where n→∞, only a constant k is sufficient.

The following piece of notation would be useful: given a distribution D over L and a
candidate c ∈ C, we let qt(c) = Prπ∼D[π(c) ≤ t]; i.e., the probability that ci is positioned
in the first t positions.

Consider the following class of distributions:

Definition 5.1. Let D be a distribution over the set of preferences L. Then D is said
to be positionally-biased (PoB) if there exists a distinguished candidate c ∈ C such that
qt(c) > qt(c

′) for all candidates c′ 6= c and 1 ≤ t < m. Furthermore, we call the said
candidate c the favored candidate.

THEOREM 5.1. Let D be a positionally-biased distribution over L, and let c be its
favored candidate. Suppose that the election is defined by a non-constant positional
scoring rule. Then candidate c wins with probability 1−on(1), and so the overall winner
under distribution D can be predicted without looking at the votes at all.

Sketch of Proof First, by a majorization argument, it follows that the expected
score of c is strictly higher than that of all other candidates. The statement of the
theorem follows by a straightforward application of the Chernoff bound.

We now argue that the Mallows distribution is PoB, and that furthermore, natural
generalizations of it are also PoB. To do so, we will need the following simple properties:
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Definition 5.2 (Swap increasing distance). A distance function d : L × L → Z≥0 is
swap-increasing if for any two π1, π2 ∈ L and any two c, c′ ∈ C such that π1(c) <
π1(c′) and π2(c) < π2(c′) we have d(π1, π

′
2) > d(π1, π2), where π′2 is obtained from π2 by

switching c and c′. 2

Definition 5.3 (Monotone distributions). Let D be a distribution over L,
parametrized by some fixed reference ranking π̂ and a swap-increasing distance
function d(·, ·). Then D is said to be monotone if Prπ∼D[π] is decreasing with d(π, π̂).

LEMMA 5.1. A monotone distribution is positionally-biased, with c = π̂(1) being the
favored candidate.

Sketch of Proof Let c′ 6= c. If σ−1(c) < σ−1(c′) and σ′ is obtained from σ by switch-
ing c and c′, then Pr[σ] > Pr[σ′]. This implies that qt(c) > qt(c

′) for all 1 ≤ t < m.

The following is a well-known folk theorem (e.g., [Caragiannis et al. 2013]):

LEMMA 5.2. The Kendall tau distance function is swap-increasing.

As a corollary, we deduce that Mallows distributions with dispersion parameter φ < 1
are positionally-biased, and so Theorem 5.1 applies to them.

Theorem 5.1 shows that if the preference distribution is positionally-biased then
there is no need to elicit votes at all, for large enough n. However, that may be an
unrealistic assumption. It could be, for example, that the preferences are known to
be distributed according to a Mallows distribution, but the reference profile π̂ is not
known in advance. It is not hard to show that even in this case, for large enough n,
k = 1 is sufficient to recover π̂(1) and so predict the winner with high probability.

We note that Caragiannis et al. made a very similar set of arguments in the context
of predicting the underlying ranking using scoring rules in [Caragiannis et al. 2013].

We now generalize all the foregoing for the case of Copeland, and more gener-
ally Condorcet-compatible rules. Recall that a voting rule is said to be Condorcet-
compatible if the candidate who beats all other candidates in pairwise elections, always
wins the elections. First, we define a corresponding class of distributions:

Definition 5.4. A distribution D over the set of preferences L is pairwise-biased
(PwB) if there exists a distinguished candidate c ∈ C (the favored candidate) such that
for every other candidate c′ ∈ C \ {c}, Prπ∼D[π(c) < π(c′)] > 1/2; i.e., c is more likely to
precede c′ than the other way around.

THEOREM 5.2. Suppose that the voter preferences are drawn from a pairwise-
biased distribution D, with a favored candidate c ∈ C. Then candidate c is the Con-
dorcet winner with probability 1 − on(1), and so the overall winner under distribution
D can be predicted without looking at the votes at all for any Condorcet-compatible rule.

PROOF. For ci 6= c, let ci > 1/2 be the probability that c precedes ci. Chernoff ’s
bound shows that c beats ci in a pairwise election with probability 1− on(1). As this is
true for all ci 6= c, we deduce that c is a Condorcet winner with probability 1−on(1).

Note that the Copeland voting rule is indeed Condorcet compatible, and so this result
contrasts strongly with the setting of an impartial culture.

2Our definition is a weakening of a similar definition in [Caragiannis et al. 2013] (every distance function
satisfying their definition also satisfies ours).
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6. WORST-CASE DISTRIBUTIONS
Having shown a contrast between the neutral distribution (IC), and the far less de-
manding (in terms of the bounds on k) Mallows distribution and its generalization, it
would be interesting to consider the following worst-approach: suppose that an adver-
sary chooses a distribution D, and makes its full details public. In an analogy to the
previous input models, we are interested in studying the limitations (or sometimes,
capabilities), for this worst-case, fully-known distribution D.

We focus on two of the scoring rules that were shown to be the least demanding,
under the impartial culture assumption. For the harmonic scoring rule, we construct
a worst case distribution, giving a worst-case lower bound of Ω(m). Note that this
distribution admits this lower bound despite of its exhibiting a significant amount of
noise. Then, we prove the robustness of the geometric positional scoring rule, proving
an upper bound of k = O(logm) for any distribution, for sufficiently high n.

We start by arguing that the harmonic rule is difficult under this model.

THEOREM 6.1. There is a distribution DH (more properly, a family of distributions
depending on m) such that predicting the winner (with respect to the harmonic weights)
with probability 1− om(1) requires k = Ω(m).

We defer the construction that admits the lower bound to Appendix C.
Next, we show that the geometric rule is not difficult under this model.

THEOREM 6.2. Fix ρ, and consider the geometric scoring rule with a constant decay
factor of ρ. There is a distribution Dρ such that predicting the winner with probability
1 − om(1) requires k = Ω(logm). Conversely, there is a constant β > 0 such that if
k ≥ β logm then top-k suffices to predict the winner with probability 1− om(1) for every
distribution; we stress that the distribution is known to the algorithm.

We now give the outline of the proof, whereas the full version can be found in the
full version of the paper (Appendix C). The idea is to use a generalization of Algo-
rithm FairCutoff. Fix a scoring rule α (in this case, a geometric rule), a distribution D
and an integer k. The algorithm will compute for each voter i and candidate cj a “top”
score scTi (cj) based only on the top-k part of voter i’s vote:

scTi (cj) =

{
α(t) if π−1i (t) = cj for some t ≤ k,
E[α(πi(cj))|π−1i (1), . . . , π−1i (k)] otherwise.

Here the expectation is taken according to D. The “bottom” score scBi (cj) complements
the top score so that scTi (cj) + scBi (cj) = sci(cj):

scBi (cj) =

{
α(t)− E[α(πi(cj))|π−1i (1), . . . , π−1i (k)] if π−1i (t) = cj for some t > k,

0 otherwise.

Note that E[scBi (cj)] = 0, and so E[scTi (cj)] = E[sci(cj)]. As in Section 3, we define
scT (cj), sc

B(cj), sc(cj) to be averages of scTi (cj), sc
B
i (cj), sci(cj) over all voters i.

The difficult part of the proof of Theorem 6.2 is showing that k ≥ C logm suffices
to predict the winner with high probability. The idea is to use the algorithm just de-
scribed. The only real competition is among the set of candidates S obtaining the max-
imal expected score. For there to be a competition, S needs to have more than one
candidate. Since the average score over all players is Θ(1/m), any candidate in S has
expected score at least Ω(1/m). We show that this implies a lower bound of Ω(1/m3

√
n)

on the variance of scT (c1) − scT (c2) for any two c1, c2 ∈ S. Since scT (c1) − scT (c2) is
roughly normal, this implies anticoncentration of the random variable scT (c1)−scT (c2).
In other words, there is some gap between the top scores of any two candidates in S.
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We show that with probability 1 − om(1), this gap is at least Ω(1/m4.5
√
n). On the

other hand, E[scB(c1)−scB(c2)] = 0, and the corresponding random variable is roughly
normal with variance O(1/m5); the bound on the variance follows from the fact that
|scB(c1)| = O(1/m2.5) since k is large enough. Therefore the contribution of the bottom
scores is not enough to overturn the winner as judged from the top scores.

7. EMPIRICAL RESULTS
We ran several simulations to verify the results proved in the previous sections. Our
first set of simulations is designed to verify Theorem 3.1. For various values of n (num-
ber of voters), m (number of candidates) and k (the top-k parameter), and several scor-
ing rules, we compared three algorithms: (1) the algorithm from [Oren et al. 2013], that
assigns 0 points to the bottom m − k candidates in a given vote (labeled as Naive), (2)
Algorithm FairCutoff, and (3) the optimal algorithm, which calculates the probability
that each candidate wins (given the top-k portion of the votes), and chooses the candi-
date with the maximal winning probability (computing the probabilities was done by
sampling).

In order to test the efficacy of top-k voting for the Copeland rule, we ran two different
algorithms, Algorithm FairPWCutoff and the naive algorithm, defined as follows. For
every pair of candidates c, c′ ∈ C and a top-k vote, if both appear in the top-k ranking,
then the higher ranked receives +1 points, whereas the lower ranked one receives
−1 points. Algorithm FairPWCutoff does the same if only one of them appears in the
top-k ranking (implying that the other candidate is ranked lower), whereas the naive
algorithm does not award any points in this case. When both candidates do not appear
in the top-k ranking, no points are awarded in both algorithms.

Figure 1 gives the success probabilities of these algorithms in the case of 20 candi-
dates and 2,000 voters for four different scoring rules: Borda, the harmonic rule, the
geometric scoring rule with parameter ρ = 1/2, and the Copeland method. Figure 2
gives the success probabilities of Algorithm FairCutoff and Algorithm FairPWCutoff
for 50 candidates and 104 voters.

The results in Figure 1 show that Algorithm FairCutoff outperforms the naive al-
gorithm, and in most cases matches the performance of the optimal algorithm. The
optimal algorithm is significantly better only for Copeland. The results in Figure 2
show very clearly that Borda and Copeland are the hardest rules and the geometric
scoring rule is the easiest. The success probability of Borda is closely related to the
partition variability ratio rk, as calculated in Theorem 3.2.

Our second set of simulations is designed to verify Theorem 5.1 and its extension
to the case where the reference ranking is unknown (using k = 1). For various values
of n and m, several scoring rules, and several values of the Mallows parameter φ,
we computed the probability that the winner matches the first ranked candidate in
the reference ranking, and the probability that the same candidate also appeared the
most times as the first choice of the voters (marked First in the figure). The results for
20 candidates and 2,000 voters appear in Figure 3. The results displayed in the figure
show that unless φ is very high (larger than roughly 0.8), the first ranked candidate
almost always wins, and is almost always identifiable by looking at the top votes. It also
shows that our scoring rules are more reliable at recovering the first ranked candidate,
compared to plurality (which corresponds to looking at the top votes).

8. CONCLUSIONS
We have studied a well-known method of preference elicitation. As we have shown, the
approaches needed for the different input models that were considered differ substan-
tially. For the neutral prior (impartial culture), we have presented a general technique
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Fig. 1: Success probabilities of various algorithms and various values of k in the case of 20
candidates and 2,000 voters

for analyzing the bounds on the amount of information needed for correct winner se-
lection, and demonstrated it on both positional scoring rules and the Copeland scoring
rule. We also analyzed biased distributions, showing that the it is possible to predict
the winner given only the biased distribution, and studied the limitations of the top-k
scheme in the context of arbitrary distributions.
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Fig. 2: Success probabilities of Algo-
rithm FairCutoff and Algorithm FairPW-
Cutoff for various values of k in the case of 50
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the case of 20 candidates and 104 voters
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Our study raises a number of natural questions. To begin with the neutral prior, can
we apply our technique to other scoring rules? Also, as mentioned in the paper, we
believe that our bound for Copeland’s voting rule can be improved.

As a different direction, it would be interesting to consider other elicitation schemes,
and see whether analogous approaches can be applied to them. In particular, various
iterative methods, as well as methods that rely on pairwise comparisons, have been
studied extensively both empirically and from the perspective of rank aggregation. It
would be interesting to obtain theoretically proven bounds for such schemes.
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A. MISSING PROOFS FROM SECTION 3
A.1. Lemma A.1

LEMMA A.1. Let VT (k), VB(k) be the quantities defined in Theorem 3.1. Then

VT (k) + VB(k) =
1

m

m∑
i=1

α(i)2 − 1

m2

(
m∑
i=1

α(i)

)2

,

and VT (0) = 0, VB(m − 1) = 0. If furthermore the scores α(1), . . . , α(m) are non-
increasing then VT (k) is non-decreasing and VB(k) is non-increasing.

PROOF. A straightforward calculation gives the formula for VT (k)+VB(k) and shows
that VT (0) = VB(m − 1) = 0. Suppose now that the scores are non-increasing. Since
VT (k) + VB(k) is independent of k, it is enough to show that VB(k) is non-increasing.
We have

m(VB(k − 1)− VB(k)) = α(k)2 − 1

m− k + 1

(
m∑
i=k

α(i)

)2

+
1

m− k

(
m∑

i=k+1

α(i)

)2

.

Let S(k) =
∑m
i=k+1 α(i). Then

m(VB(k − 1)− VB(k)) = α(k)2 − α(k)2 + S(k)2 + 2α(k)S(k)

m− k + 1
+
S(k)2

m− k

=
m− k

m− k + 1
α(k)2 +

S(k)

m− k + 1

[
S(k)

m− k
− 2α(k)

]
.

Since S(k) ≤ (m− k)α(k),

m(VB(k − 1)− VB(k)) ≤ m− k
m− k + 1

α(k)2 +
(m− k)α(k)

m− k + 1
[−α(k)] = 0.

A.2. Proving Lemma 3.1
LEMMA 3.1. Define

ET =
1

m

m∑
i=1

α(i),

VT =
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

− 1

m2

(
m∑
i=1

α(i)

)2

.

The mean, variance and covariance of the scores of a single voter i are E[scTi (c)] = ET ,
Var[scTi (c)] = VT and Cov(scTi (c), scTi (c′)) = −VT /(m− 1).

The mean, variance and covariance of the aggregated scores are E[scT (c)] = ET ,
Var[scT (c)] = VT /n and Cov(scT (c), scT (c′)) = −VT /(n(m− 1)).

PROOF. The average score is

E[scTi (c)] =
1

m

(
k∑
i=1

α(i) + (m− k)
1

m− k

m∑
i=k+1

α(i)

)

=
1

m

m∑
i=1

α(i).
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In order to compute the variance, we first compute the second moment:

E[scTi (c)2] =

1

m

 k∑
i=1

α(i)2 + (m− k)

(
1

m− k

m∑
i=k+1

α(i)

)2


=
1

m

k∑
i=1

α(i)2 +
1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

The formula for the variance now immediately follows.
As for the covariance, let σ = Cov(scTi (c), scTi (c′)) for any c 6= c′, and note that

Cov(scTi (c), scTi (c)) = VT . Since
∑
c∈C sc

T
i (c) is constant,

0 = Cov

(∑
c∈C

scTi (c),
∑
c′∈C

scTi (c′)

)
=
∑
c,c′∈C

Cov(scTi (c), scTi (c′))

= m(m− 1)σ +mVT .

Therefore σ = −VT /(m− 1).
Finally, we have E[scT (c)] = nE[scTi (c)/n] = ET and Var[scT (c)] = nVar[scTi (c)/n] =

n(VT /n
2) = VT /n, and similarly Cov(scT (c), scT (c′)) = −VT /(n(m− 1)).

A.3. Proving Lemma 3.3
LEMMA 3.3. Let 1 ≤ `1 ≤ `2 ≤ ∞.

Pr[`1 ≤ u2min

umin
≤ `2] =

1

`1
− 1

`2
.

PROOF. The cumulative distribution function of umin is easily calculated to be 1 −
(1 − u)m, and therefore its density is m(1 − u)m−1. Given umin, the other uc’s have
distribution U(umin, 1). Therefore the cumulative distribution function of u2min is 1 −
( 1−u
1−umin

)m−1. Therefore for 1 ≤ ` ≤ ∞,

Pr[u2min

umin
≥ `]

= Pr[u2min ≥ `umin]

=

∫ 1/`

0

Pr[u2min ≥ `u|umin = u]m(1− u)m−1 du

=

∫ 1/`

0

(
1− `u
1− u

)m−1
m(1− u)m−1 du

=

∫ 1/`

0

m(1− `u)m−1 du

= − (1− `u)m

`

∣∣∣∣1/`
0

=
1

`
.
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Therefore

Pr[`1 ≤ u2min

umin
≤ `2]

= Pr[u2min

umin
≥ `1]− Pr[u2min

umin
≥ `2]

=
1

`1
− 1

`2
.

A.4. Proving Lemma 3.9
We start by showing that when p = o(

√
m/ logm), the corresponding uniform random

statistics are smaller than 1/
√
m, and so xp−max = Θ(

√
logm).

LEMMA A.2. Suppose p = o(
√
m/ logm). With probability 1−om(1), up−min ≤ 1/

√
m

and xp−max = Θ(
√

logm).

PROOF. It is well-known (e.g. [Arnold et al. 2008, (2.2.2)]) that the density of up−min

is m!
(p−1)!(m−p)!u

p−1(1− u)m−p. Therefore

Pr[up−min ≥ 1/
√
m]

=

∫ 1

1/
√
m

m!

(p− 1)!(m− p)!
up−1(1− p)m−p du

≤
∫ 1

1/
√
m

m!

(p− 1)!(m− p)!
(1− p)m−p du

=

(
m

p− 1

)
(1− p)m−p+1

∣∣∣∣1
1/
√
m

=

(
m

p− 1

)
(1− 1/

√
m)m−p+1

≤mp−1(1− 1/
√
m)m−p+1.

Taking the logarithm,

log Pr[up−min ≥ 1/
√
m]

≤(p− 1) logm− m− p+ 1√
m

=(p− 1)(logm+ 1√
m

)−
√
m.

Where the inequality follows from the previous bound and the bound ln(1−x) ≤ −x, for
1 < x < 1. Since p = o(

√
m/ logm), the logarithm tends to −∞, and so the probability

is om(1). The corresponding result for xp−max follows from estimate (3.1) for the lower
bound, and Lemma 3.5 for the upper bound.

Next, we extend Lemma 3.3.

LEMMA A.3. Let 1 ≤ `1 ≤ `2 ≤ ∞.

Pr[`1 ≤ up−min

umin
≤ `2] =

(
1− 1

`2

)p−1
−
(

1− 1

`1

)p−1
.
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PROOF. It is well-known (e.g. [Arnold et al. 2008, (2.3.9)]) that the joint density
function of u = umin and v = up−min is n!

(p−2)!(n−j)! (v − u)p−2(1− v)n−p. Therefore

Pr[up−min ≥ `umin]

=

∫ 1

0

∫ v/`

0

n!

(p− 2)!(n− p)!
(v − u)j−2(1− v)n−p dudv

=−
∫ 1

0

n!

(p− 1)!(n− p)!
(v − u)p−1(1− v)n−p

∣∣∣∣v/`
0

dv

=

∫ 1

0

n!

(j − 1)!(n− p)!
vp−1(1− v)n−p

[
1−

(
1− 1

`

)p−1]
dv

=1−
(

1− 1

`

)p−1
.

Where the last equality follows from two of the definitions of the beta function; i.e.,∫ 1

0
xa(1− x)bdx = 1

(a+b+1)(a+ba )
. The lemma easily follows.

Next in turn is a generalization of Lemma 3.6 and Lemma 3.7.

LEMMA A.4. Let 1 ≤ `1 ≤ `2 ≤ ∞, and suppose that p = o(
√
m/ logm). With proba-

bility (1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1),

Ω

(
log `1√
logm

)
≤ xmax − xp−max ≤ O

(
log `2√
logm

)
,

and with probability (1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1)− on(1),

Ω

(
log `1

√
VT

n logm

)
≤ scT (cmax)− scT (cp−max) ≤ O

(
log `2

√
VT

n logm

)
.

PROOF. The proof is very similar to the proofs of Lemma 3.6 and Lemma 3.7.

Lemma 3.9 can therefore be thought of as a corollary of the above lemma, and fur-
thermore it is an analogue of Lemma 3.8:

LEMMA 3.9. Suppose p = o(
√
m/ logm) satisfies also p = ωm(1). Then scT (cmax) −

scT (cp−max) = Θ(log p
√
VT /(n logm)) with probability 1− om(1)− on(1).

PROOF. Choose `1 =
√
p− 1 and `2 = (p−1)2 to obtain the stated bound, which holds

with probability (1− 1/`2)p−1 − (1− 1/`1)p−1 − om(1)− on(1) = 1− om(1)− on(1).

A.5. Proving Lemma 3.10
LEMMA 3.10. Let c ∈ C be an arbitrary candidate. The mean of scBi (c) is 0, and its

variance is

VB =
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

The variance of scB(c)− scB(c′) is 2 m
m−1VB/n.
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PROOF. The expectation is given by

E[scBi (c)] =
1

m

m∑
i=k+1

α(i)− 1

m− k

m∑
j=k+1

α(j)


=

1

m

m∑
i=k+1

α(i)− m− k
m(m− k)

m∑
j=k+1

α(j) = 0.

Since E[scBi (c)] = 0,

VB = E[scBi (c)2]

=
1

m

m∑
i=k+1

α(i)− 1

m− k

m∑
j=k+1

α(j)

2

=
1

m

m∑
i=k+1

α(i)2

+
1

m

[
− 2

m− k
+

m− k
(m− k)2

]( m∑
i=k+1

α(i)

)2

=
1

m

m∑
i=k+1

α(i)2 − 1

m(m− k)

(
m∑

i=k+1

α(i)

)2

.

Next, as in the proof of Lemma 3.1, Cov(scBi (c), scBi (c′)) = − VB
m−1 . Since E[scBi (c)] = 0,

E[(scBi (c)− scBi (c′))2] = 2VB − 2 Cov(scBi (c), scBi (c′))

= 2
m

m− 1
VB .

Therefore Var[scBi (c)− scBi (c′)] = 2 m
m−1VB . Finally, Var[scB(c)− scB(c′)] = Var[scB(c)−

scB(c′)]/n = 2 m
m−1VB/n.

B. THE COPELAND RULE — PROVING THEOREM 4.1
Recall the statement of the theorem:

THEOREM 4.1. For k ≤ m/
√

logm, no algorithm can predict the winner under
Copeland with probability better than 1− Ω(1).

For completeness, we give the complete the definitions of the voter-specific, Copeland
score, as well as the top-k scores and bottom-(m − k) scores, scT (·, ·), scB(·, ·), that cor-
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respond to the definition of the Copeland scoring rule:

sci(c, c
′) =

{
+1 if πi(c) < πi(c

′),

−1 if πi(c′) < πi(c).

scTi (c, c′) =


+1 if πi(c) < πi(c

′) and πi(c) ≤ k,
−1 if πi(c′) < πi(c) and πi(c′) ≤ k,
0 if πi(c), πi(c′) > k.

scBi (c, c′) =


+1 if k < πi(c) < πi(c

′),

−1 if k < πi(c
′) < πi(c),

0 if πi(c) ≤ k or πi(c′) ≤ k.

By definition, we have sci(c, c′) = scTi (c, c′) + scBi (c, c′).
As done for positional scoring rules, we will consider the normalized sum sc(c, c′) =

1√
n

∑n
i=1 sci(c, c

′). Recall that for positional scoring rules, we were concerned with the
average score; this slightly different normalization is used to make the proof less cum-
bersome.

Fix a candidate c, and let p = k/m, q = 1 − p. In order to arrive at simpler terms,
from now on, whenever we write A v B, we mean that A differs from B by a mul-
tiplicative (and negligible) error of 1 ± om(1), assuming that p = om(1). We start by
approximating the distributions of the vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c, for two
distinct candidates c, c′ ∈ C.

LEMMA B.1. We have E[scT (c, c′)] = E[scB(c, c′)] = 0, and for c′ 6= c′′,

VT = Var[scT (c, c′)] ≈ 1− q2 v 2p, ηT = Cov(scT (c, c′), scT (c, c′′)) ≈ 1− q3

3
v p,

VB = Var[scB(c, c′)] ≈ q2 v 1, ηB = Cov(scB(c, c′), scB(c, c′′)) ≈ q3

3
v

1

3
.

PROOF. Clearly E[scT (c, c′)] = E[scB(c, c′)] = 0. Due to our choice of normalization,
scT , scB have the same variance and covariance as scTi , scBi . The top variances are

Var[scTi (c, c′)] = Pr[π−1i (c) ≤ k or π−1i (c′) ≤ k]

= 1− (m− k)(m− k − 1)

m(m− 1)
.
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The top covariances are

Cov(scTi (c, c′), scTi (c, c′′)) = Pr[π−1(c) < π−1(c′), π−1(c′′) and π−1(c) ≤ k]

+ Pr[π−1(c′), π−1(c′′) < π−1(c) and π−1(c′), π−1(c′′) ≤ k]

− Pr[π−1(c′) < π−1(c) < π−1(c′′) and π−1(c) ≤ k]

− Pr[π−1(c′′) < π−1(c) < π−1(c′) and π−1(c) ≤ k]

=
1

3

(
1− (m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

)
+

1

3

k(k − 1)(k − 2)

m(m− 1)(m− 2)
+

k(k − 1)(m− k)

m(m− 1)(m− 2)

− 2

6

k(k − 1)(k − 2)

m(m− 1)(m− 2)
− 2

2

k(k − 1)(m− k)

m(m− 1)(m− 2)

=
1

3

(
1− (m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

)
.

The bottom variances are

Var[scBi (c, c′)] = Pr[π−1i (c), π−1i (c′) > k]

=
(m− k)(m− k − 1)

m(m− 1)
.

Finally, the bottom covariances are

Cov(scBi (c, c′), scBi (c, c′′)) = Pr[k < π−1(c) < π−1(c′), π−1(c′′)] + Pr[k < π−1(c′), π−1(c′′) < π−1(c)]

− Pr[k < π−1(c′) < π−1(c) < π−1(c′′)]− Pr[k < π−1(c′′) < π−1(c) < π−1(c′)]

=
(m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)

(
1

3
+

1

3
− 2

6

)
=

1

3

(m− k)(m− k − 1)(m− k − 2)

m(m− 1)(m− 2)
.

The distributions of the vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c approach normal dis-
tributions with the given variance and covariance. Note that in contrast to the case
of positional scoring rules, the pairwise scores exhibit positive correlations. In order to
handle these correlations, we will decompose these vectors, and treat them as sums of
independent random variables. This will make the analysis simpler, as it allows us to
deal with these vectors as sums of two, easier to work with, random vectors.

Consider the following decomposition, which relates to the distribution of the vectors
scT (c, c′)c′ 6=c, sc

B(c, c′)c′ 6=c. For ` ∈ {T,B}, sample a single normal random variable z`
from N (0, η`). Then, sample m− 1 i.i.d. normal random variables from the distribution
N (0, V` − η`), and denote the resulting (m − 1)-dimensional vector by y`. Finally, let
x` denote the vector that results from adding z` to every entry in y`. For convenience,
we denote the entries corresponding to candidate c′ ( 6= c) in y` and x` by y`(c

′) and
x`(c

′). First, sample a single zero mean normal vector with individual variance V and
pairwise covariance η can be generated by first sampling a normal random variable
from N (0, η) normal variable to a vector of N (0, V − η) normal variables. The following
lemma shows that the above sum of two vectors essentially describes a decomposition
of the vectors scT (c, c′)c′ 6=c, sc

B(c, c′)c′ 6=c.
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LEMMA B.2. The random vectors scT (c, c′)c′ 6=c and scB(c, c′)c′ 6=c converge in distri-
bution to the distribution of the random vectors xT and xB (respectively).

PROOF. The lemma follows from the central limit theorem, once we notice that the
expectation and covariance matrices match in both cases.

As the vector xT is obtained by adding a uniform bias N (0, (VT − ηT ) v p) to i.i.d.
samples of the distribution N (0, ηT v p), we would expect that most of the vector is
O(
√
p), with high probability. This is stated formally in the following lemma.

LEMMA B.3. Let ε > 0 be given. For M = 2
√

log 2
ε the following holds, assuming

M ≥ 1. For large enough n, with probability 1 − ε at least a 1 − ε fraction of c′ satisfy
scT (c, c′) ≤M

√
VT .

PROOF. We show that this holds for the vector xT with probability 1 − ε/2, whence
the lemma follows from convergence in distribution (Lemma B.2). The bound on the
cdf of the normal distribution (Eq. (3.1)) shows that Pr[zT ≤ M

√
ηT /2] ≥ 1 − ε/2 and

Pr[yT (c′) ≤M
√

(VT − ηT )/2] ≥ 1− ε/2. Hence with probability 1− ε/2, a 1− ε/2 fraction
of c′ satisfy xT (c′) = zT + yT (c′) ≤M(

√
ηT /2 +

√
(VT − ηT )/2) ≤M

√
VT .

On the other hand, conditioned on zB , the number of candidates c′ such that xB(c′)+
M
√
VT > 0 is binomially distributed. In particular, if zB < −M

√
VT then it is extremely

likely that c′ loses. This argument (which has to be adjusted to handle the ε fraction of
“bad” candidates c′) is given in the following lemma.

LEMMA B.4. There is a global constant ε0 > 0 such that the following holds. Sup-
pose that a 1 − ε0 fraction of c′ satisfy scT (c, c′) ≤ M

√
VT , for some M > 0. Let

σ = M
√
VT /
√
ηB +

√
VB − ηB/

√
ηB v O(M

√
p + 1). For large enough n, candidate c

loses with probability approaching Φ(σ) v O(1).

PROOF. With probability Φ(σ) = Φ(−σ), we have zB < −σ · √ηB = −M
√
VT −√

VB − ηB . Therefore for a 1 − ε0 fraction of the candidates, scT (c, c′) + xB(c′) is a nor-
mal random variable with expectation at most −

√
VB − ηB . The number N of these

candidates satisfying scT (c, c′) + xB(c′) < 0 is thus stochastically bounded from below
by Bin((1 − ε0)m,Φ(1)). In particular, we have N ≥ (1 − ε0)Φ(0.9)m with probability
1 − on(1). This guarantees that c loses as long as (1 − ε0)Φ(0.9) > 1/2, which holds for
small enough ε0 > 0. The proof is complete by taking the normal approximation via
Lemma B.2.

We can now prove the main theorem.

PROOF (THEOREM 4.1). Choose ε = 1/m2 in Lemma B.3. Applying the union
bound, we obtain that with probability 1 − 1/m, for all candidates c it holds that
a 1 − 1/m2 fraction of other candidates c′ 6= c satisfies scT (c, c′) ≤ M

√
VT , where

M = O(
√

logm). Applying Lemma B.4, we see that each candidate loses with prob-
ability approaching Φ(σ), where σ = O(M

√
k/m+ 1) = O(1). The lemma follows since

σ = O(1) implies Φ(σ) = 1− Ω(1).

C. MISSING PROOFS FROM SECTION 6
THEOREM 6.1. There is a distribution DH (more properly, a family of distributions

depending on m) such that predicting the winner (with respect to the harmonic weights)
with probability 1− om(1) requires k = Ω(m).
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PROOF. The distribution DH is a 1/2 − 1/2 mixture of two distributions D1, D2. In
distributionD1, candidate c1, c2 are given the positionsm/(10 logm) andm/(10 logm)+
1 (at random), and the rest of the candidates are distributed randomly. In distribution
D2, candidates c1, c2 are given the positions m/2 and m (at random), and the rest of
the candidates are distributed randomly. It is easy to check that the expected score of
candidates c1, c2 is roughly 5 logm/m, while the expected score of all other candidates
is only roughly logm/m. Therefore one of c1, c2 must win.

If k < m/2 then the top-k votes only reveal information for D1-voters. Let
scTi (c1), scTi (c2) be the scores revealed in the top-k choices of voter i, and let
scBi (c1), scBi (c2) be the scores revealed in the rest of the profile. We have

E[(scTi (c1)− scTi (c2))2] =
1

2

(
10 logm

m
− 10 logm

m+ 10 logm

)2

= Θ

(
log4m

m4

)
,

E[(scBi (c1)− scBi (c2))2] =
1

2

(
2

m
− 1

m

)2

= Θ

(
1

m2

)
.

Let ∆T =
∑
i(sc

T
i (c1)−scTi (c2)) and ∆B =

∑
i(sc

B
i (c1)−scBi (c2)). Individually, the quan-

tities ∆T ,∆B have an approximately normal distribution. Furthermore, if we condition
on the number of D1-voters, then the quantities become independent. Since the num-
ber of D1-voters is strongly concentrated around its mean, ∆T ,∆B are asymptotically
independent. Since Var[∆B ] � Var[∆T ], this shows that the information in the top-k
part isn’t enough to predict the winner: with high probability |∆T | ≤ logm

√
Var[∆T ],

while there is constant probability (close to 1/2) that ∆B > logm
√

Var[∆T ], and con-
stant probability (close to 1/2) that ∆B < − logm

√
Var[∆T ].

THEOREM 6.2. Fix ρ, and consider the geometric scoring rule with a constant decay
factor of ρ. There is a distribution Dρ such that predicting the winner with probability
1 − om(1) requires k = Ω(logm). Conversely, there is a constant β > 0 such that if
k ≥ β logm then top-k suffices to predict the winner with probability 1− om(1) for every
distribution; we stress that the distribution is known to the algorithm.

PROOF. The first part is simple. The distribution Dρ puts candidates c1, c2 in places
logρ(1/

√
m), logρ(1/

√
m) + 1 (at random), and distributes the rest of the candidates

randomly. The expected score of candidates c1, c2 is Θ(1/
√
m) = ω(1/m), whereas the

expected score of the other candidates is Θ(1/m). Therefore with probability 1− om(1),
one of c1, c2 wins the elections. If k < logρ

√
m then the winner isn’t determined by the

top-k part of the votes, and so k ≥ logρ
√
m = Ω(logm) is required.

The second part is more involved. Suppose that we are given a distributionD, and let
S be the set of candidates which have the maximal expected score. A Chernoff bound
shows that with probability 1 − on(1), one of the candidates in S wins the elections.
If |S| = 1 then the winner can be determined without eliciting any votes, so we can
assume that |S| ≥ 2. Consider any two candidates c1, c2 ∈ S, and let their positions un-
der D be the (correlated) random variables t1, t2. Since the expected score of a random
candidate is Θ(1/m), we know that the expected score of c1, c2 is Ω(1/m). We would like
to lower bound E[(scTi (c1)− scTi (c2))2]. Up to constant factors, this quantity is equal to∑

i≤k

Pr[min(t1, t2) = i]ρ2i.
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Since E[sci(c1)] = E[ρt1 ] = Ω(1/m), we know that Pr[t1 ≤ logρ(1/m
2)] = Ω(1/m). Since

k ≥ β logm ≥ logρ(1/m
2) (for large enough β),∑

i≤k

Pr[min(t1, t2) = i]ρ2i ≥ 1

m2

∑
i≤logρ(1/m2)

Pr[min(t1, t2) = i]ρi

≥ 1

m2

∑
i≤logρ(1/m2)

Pr[t1 = i]ρi ≥ Ω

(
1

m3

)
.

The first inequality follows from ρi ≥ 1/m2 for all i ≤ logρ(1/m
2). The second inequality

follows from the fact that the distribution of min(t1, t2) majorizes the distribution of t1.
The third inequality follows from E[ρt1 ] = Ω(1/m) and the fact that the contribution of
terms i > logρ(1/m

2) to the expectation is at most 1/m2.
We conclude that E[(scTi (c1)− scTi (c2))2] = Ω(1/m3).
The distribution of scTi (c1) − scTi (c2) is asymptotically normal, and since c1, c2 ∈ S,

its expectation is 0. Therefore it is asymptotically N (0, σ2/n) for some σ2 = Ω(1/m3).
Since the density function of N (0, σ2/n) is at most 1/

√
2πσ2/n, Pr[|N (0, σ2/n)| ≤ δ] ≤

2δ/
√

2πσ2/n = O(δ/
√
σ2/n). Taking δ =

√
σ2/n/m3, we deduce that with probability

1 − O(1/m3), |scT (c1) − scT (c2)| ≥
√
σ2/n/m3 = Ω(1/m4.5

√
n). Since there are at most

m2 pairs of elements in S, by taking the union bound, we can conclude that scT (cmax)−
scT (cj) = Ω(1/m4.5

√
n) with probability 1− om(1) for all cj ∈ S other than cmax, where

cmax ∈ S is the candidate obtaining the highest top score scT among the candidates in
S.

On the other hand, for all pairs of distinct candidates c1, c2 ∈ S, we have |scBi (c1) −
scBi (c2)| ≤ ρβ logm = O(ρk) = O(1/m5) (for large enough β), implying an upper bound
of O(1/m10) on the variance of this difference. Using the central limit theorem again,
we get that |scBi (c1) − scBi (c2)| is asymptotically distributed according to N (0, τ2/n)
for some τ2 = O(1/m10). Applying (3.1), we see that with probability 1 − 1/m3,
|scB(c1)− scB(c2)| = O(logm

√
τ2/n) = O(logm/m5

√
n). After taking the union bound,

we get that this is true for all distinct c1, c2 ∈ S with probability 1 − om(1). Since
O(logm/m5

√
n) < Ω(1/m4.5

√
n) for large enough m, this shows that with probability

1− om(1), candidate cmax wins the elections.
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