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Abstract

In this note we argue that semantic cutting planes refutations are stronger than syntactic
ones. In particular, we give a formula for which any refutation in syntactic cutting planes
requires exponential length, while there is a polynomial length refutation in semantic cutting
planes. This means that syntactic cutting planes does not p-simulate (nor simulate) semantic
cutting planes.

We also give a pair of incompatible cutting planes lines which require exponential length
to be refuted in syntactic cutting planes.

1 Introduction

Cutting planes is the second most popular proof system after resolution. It has been introduced
as a technique of solving (linear) integer programs (see [Gom58, Chv73]). The idea is to compute
the optimum of the program as if it were a linear program. If the optimum is achieved at a
fractional point, it is possible to deduce an inequality which can be “rounded” in order to remove
that point from the set of feasible solutions.

Another way to describe the rounding rule is as follows: if the inequality
∑

i aixi ≤ A is valid
and all ai are integers divisible by c, then any integer solution would also satisfy

∑
i
ai
c xi ≤ b

A
c c.

The latter inequality is not necessarily satisfied by fractional solutions.

Cutting planes was later proposed as a proof system in [CCT87], indeed it is possible to view the
previous optimization process as a sequence of inferences: a new inequality is either a positive
combination or a rounding of previously derived inequalities. Cutting planes can prove the false
inequality “0 ≤ −1” from any unsatisfiable integer program with a finite sequence of deductions.

Studying the length of such proofs is a way of studying the running time of integer programming
solvers based on the rounding rule. Unfortunately this seems to be difficult, and all known lower
bounds are either for relatively artificial formulas or for proofs of restricted forms (e.g. when
the numeric coefficients are small [BPR97] or the proof is tree-like [IPU94]). Indeed the only
lower bound known for unrestricted cutting planes refutations is due to Pudlák [Pud97], and it
based on efficient interpolation techniques. This strongly limits the type of formulas for which
lower bounds are provable. For further information about cutting planes refutations and the
notion of rank (also called Chvátal rank) we refer the reader to [Juk12, Chapter 19].

It is interesting that the lower bound for tree-like cutting planes mentioned before holds for
any kind of deduction rule, no matter how strong. Indeed we may consider the stronger proof
system semantic cutting planes for which the deduction rule is the following: from any two
linear inequalities with integer coefficients aTx ≤ α and bTx ≤ β it is possible to deduce any
dTx ≤ δ which is a consequence over {0, 1} assignments. This system it is clearly as strong
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as syntactic cutting planes, and the main contribution of this paper is to exhibit a formula for
which semantic cutting planes has a short refutation while syntactic cutting planes has none.

Theorem (Main Theorem). There is an unsatisfiable CNF in n variables which requires syn-

tactic cutting planes refutations of length 2Ω((n/ logn)1/3), but has a polynomial size semantic
cutting planes refutation using only one application of semantic inference.

1.1 Proof strategy

The plan is to consider a formula of the form Clique(C, x) ∧ Color(x, χ). Clique(C, x) claims
that the graph encoded by variables in x contains a clique of k vertices, and Color(x, χ) claims
that the graph has a vertex coloring using k − 1 colors. Clearly Clique(C, x) ∧ Color(x, χ) is
unsatisfiable. We claim that for suitable values of k, any refutation in syntactic cutting planes
must be long (this will follow almost directly from [Pud97]), while there is a short refutation in
semantic cutting planes.

The separating formula is going to be defined in several steps. We need to find the right balance
of hardness (for syntactic cutting planes) and easiness (for semantic cutting planes). A key step
is to write the formula as a set of linear equations over {0, 1}. Now we list the many steps of the
construction, most of which are rather simple. The most important steps are the construction
of formulas F and T . In the end, the CNF which separates syntactic and semantic cutting
planes is formula U .

Formula type Description Reference

O CNF original hard formula for CP See [Pud97]
F CNF extension variables Section 3
S integer inequalities the cutting planes encoding of F Section 3
T integer equations adds {0, 1} slack variables to S Section 3.1
U CNF CNF encoding of T Section 3.2
Z integer equation equivalent to T Section 5

2 Preliminaries

Given a set of linear inequalities of the form

n∑
i=1

aixi ≤ b (1)

where the coefficients ai are integers, we want to know whether the polytope generated by the
inequalities contains any solution in {0, 1}n. Standards tools from linear programming only tell
us whether the system has a solution in Rn or not. Deciding the presence of a boolean solution
is NP-complete, so unless P = NP there is no efficient way of doing that.

2.1 Cutting planes proof systems

The cutting planes proof systems are inference systems for integer programming. If the system
of linear inequalities is incompatible in {0, 1}n then it is possible to deduce the contradictory
inequality 0 ≤ −1.
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Consider a set of m inequalities on n variables x1 . . . xn of the form

n∑
i=1

ar,ixi ≤ br,

where ar,i ∈ Z and 1 ≤ r ≤ m. A cutting planes inference is a sequence of proof lines (i.e. linear
inequalities)

L1, L2, . . . , Ll

such that each Li is either one of the initial m inequalities, one of the axioms xi ≤ 1, xi ≥ 0,
or it is obtained from previous inequalities by applying one inference rule. The nature of the
inference rules is the main topic of this paper.

In the semantic cutting planes proof system, we can use any inference of the form

Lj1 Lj2
Lj3

where j3 > max{j1, j2} (2)

such that Lj3 is true on every point in {0, 1}n in which Lj1 and Lj2 are true. Notice that this
rule is very powerful, and there is no efficient way to witness the soundness of the inference,
unless NP = coNP. To see that consider the NP-complete problem subset sum: given a linear
equation

∑
i aixi = A, decide whether there is a solution of the equation in which xi ∈ {0, 1} for

all i. Assuming that the equation has no such solution, in semantic cutting planes it is possible
to have the inference: ∑

i aixi ≤ A
∑

i−aixi ≤ −A
0 ≤ −1

, (3)

so either NP =coNP or there is no short witness for this inference. This means that semantic
cutting planes is not a proof system in the sense of Cook and Reckhow [CR79], because there
is no polynomial time algorithm which verifies the proof.

In syntactic cutting planes proofs, the inference rules have a particular structure that allows
checking their correctness in polynomial time. More precisely, we allow the following inference
rules:

(Sum)

∑
i aixi ≤ A

∑
i bixi ≤ B∑

i(αai + βbi)xi ≤ αA+ βB
for α, β ∈ N, (4)

(Division)

∑
i aixi ≤ A∑

i
ai
c xi ≤ b

A
c c

when c divides all ai. (5)

The inference rule described in (5) only holds for integer values of xi, so it may cut away
unwanted fractional solutions.

The length of a cutting planes proof is the number of lines (i.e. inference steps) in it. It is
important to stress that the coefficients appearing in the refutation may carry a lot of infor-
mation, so the size of their bit representation must be taken into account. Fortunately, it has
been proven by [BC96] that any syntactic cutting planes refutation can be transformed into
another one in which the coefficients are at most exponential in the number of variables. Thus
each coefficient can be represented with a linear number of bits. For semantic cutting planes,
we can use a more general argument: every threshold function over {0, 1}n can be represented
as a linear inequality with coefficients of bit length O(n log n) [MTT61].
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2.2 Syntactic simulation of semantic inferences

It turns out that the rules of syntactic cutting planes are sufficient to prove unsatisfiability for
an arbitrary unsatisfiable system of equations. In particular, syntactic cutting planes simulates
semantic cutting planes, and this follows immediately from [CCH89] and [ES99].

Theorem (Theorem 6.2 in [CCH89], rephrased). Let P ⊆ [0, 1]n, P 6= ∅ be a polytope in the
0/1-cube with at least one integer point which is defined by integer linear inequalities. Let cx ≤ δ
be an integer inequality of Chvátal rank at most d relative to P . Then there is a cutting planes
proof of cx ≤ δ from the inequalities defining P , of length at most (nd+1 − 1)/(n− 1).

Theorem (Theorem 4.6 in [ES99], rephrased). Let P ⊆ [0, 1]n, P 6= ∅ be a nonempty polytope
in the 0/1-cube, and let cx ≤ δ be an inequality which is valid for all integer points in P , with
c ∈ Zn. The Chvátal rank of cx ≤ δ with respect to P is at most ||c||1.

Corollary 1. Any semantic cutting planes inference rule (even with an unbounded number of
premises) can be simulated in syntactic cutting planes with a proof whose size depends only on
the number of variables and on the magnitude of the coefficients of the target inequality.

The simulation obtained using the Corollary 1 is general and thus very inefficient. The main
result of this paper shows that in general this simulation is not possible in polynomial size.

2.3 Using equations in cutting planes

In this paper, we consider an extension of (both syntactic and semantic) cutting planes which
both equations and inequalities. This will make some upper bounds easier to explain. In the
new systems, a proof line can also have the form aTx = b, where aT is an integer vector. The
coefficient of an equation in an application of the Sum rule is not restricted to be positive.

(Eq+Eq)

∑
i aixi = A

∑
i bixi = B∑

i(αai + βbi)xi = αA+ βB
for α, β ∈ Z; (6)

(Eq+In)

∑
i aixi = A

∑
i bixi ≤ B∑

i(αai + βbi)xi ≤ αA+ βB
for α ∈ Z and β ∈ N. (7)

The division rule can be extended to equations as well. Notice that either the constant term is
integral after the division, or the proof line is already contradictory.

(Div)

∑
i aixi = A∑

i
ai
c xi = bAc c

when c divides all ai and A; (8)

(Frac)

∑
i aixi = A

0 ≤ −1
when c divides all ai and c does not divide A. (9)

Regular cutting planes can p-simulate this extended version with equations. Each equation is
represented by two opposite inequalities. It is a simple exercise to show how to simulate the new
rules. As an example, consider the linear combination of two proof lines ax ≤ b with coefficient
A > 0 and cx = d with coefficient −C and C > 0: the result (Aa − Cc)x ≤ (Ab − Cd) is the
sum of ax ≤ b and −cx ≤ −d with positive coefficients A and C respectively. Such a sum is a
rule in standard cutting planes. To simulate Frac consider ax = A with c | a and c - A. From
ax ≤ A and −ax ≤ −A, the division rule gives a

cx ≤
⌊
A
c

⌋
and −a

cx ≤
⌊
−A
c

⌋
, respectively. Their

sum gives 0 ≤
⌊
−A
c

⌋
+
⌊
A
c

⌋
. Since c - A, the last inequality is 0 ≤ −1.
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3 The Clique vs Coloring formula

A graph G with a clique of size k cannot be colored using k − 1 colors. Thus a CNF that
claims that a graph simultaneously has a clique of size k and can be colored using k − 1 colors
is unsatisfiable. We encode a graph on n vertices using variables xu,v for each {u, v} ∈

(
[n]
2

)
,

and two mappings C : [k] → [n] and χ : [n] → [k − 1] to encode the clique and the coloring,
respectively. The mapping C is encoded with variables Ci,v for i ∈ [k] and v ∈ [n], and the
mapping χ is encoded with variables χv,c for v ∈ [n] and c ∈ [k − 1]. The basic formula F that
we consider is the conjunction of two CNFs Clique(C, x) and Coloring(x, χ). The formula F is
a variant of a simpler formula O that has been used in [Pud97]: in F we include some extension
variables to represent the conjunction of two clique variables or two coloring variables. Here we
define F directly, with its extension variables:

C(i,j),(u,v) = Ci,u ∧ Cj,v (10)

χ(u,v),c = χu,c ∧ χv,c. (11)

Formula F : Clique(C, x) is composed of the following propositions, easily written in clausal
form: ∨

v∈[n]

Ci,v for every i ∈ [k]; (12)

¬Ci,u ∨ ¬Ci,v for all i ∈ [k] and for all u 6= v ∈ [n]; (13)

¬Ci,v ∨ ¬Cj,v for all i 6= j ∈ [k] and for all v ∈ [n]; (14)

¬Ci,u ∨ ¬Cj,v ∨ C(i,j),(u,v) for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (15)

Ci,u ∨ ¬C(i,j),(u,v) for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (16)

Cj,v ∨ ¬C(i,j),(u,v) for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (17)

¬C(i,j),(u,v) ∨ xu,v for all i 6= j ∈ [k] and for all u 6= v ∈ [n]. (18)

Clauses (12)(13)(14) claim that the relation encoded by the C variables is an injective function,
i.e. identify a set of k distinct vertices. Clauses (15)(16)(17) represent equation (10) in clausal
form. Finally, clauses (18) claim that the chosen vertices form a clique.

Coloring(x, χ) is composed of the following clauses:∨
c∈[k−1]

χv,c for every v ∈ [n]; (19)

¬χv,c ∨ ¬χv,d for all v ∈ [n] and for all c 6= d ∈ [k − 1]; (20)

¬χu,c ∨ ¬χv,c ∨ χ(u,v),c for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (21)

χu,c ∨ ¬χ(u,v),c for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (22)

χv,c ∨ ¬χ(u,v),c for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (23)

¬χ(u,v),c ∨ ¬xu,v for all u 6= v ∈ [n] and for all c ∈ [k − 1]. (24)

Clauses (19)(20) claim that the relation encoded in χ is a function from the set of vertices to the
set of colors. Clauses (21)(22)(23) represent equation (11) in clausal form. Finally, clauses (24)
claim that the coloring is legal (i.e. do not color two adjacent vertices with the same color).

5



Formula S : We now encode (12)–(24) in the form of integer inequalities. Observe that the
linear inequalities which encode the clauses in (12)–(13) and in (19)–(20) can be written as
linear equations (25) and (31), respectively. Such equations can be efficiently inferred from the
original inequalities (see Claim 10 in the appendix), so for our purposes we can just write them
in this compact form.

The integer program corresponding to Clique(C, x) is:∑
v∈[n]

Ci,v = 1 for every i ∈ [k]; (25)

Ci,v + Cj,v ≤ 1 for all i 6= j ∈ [k] and for all v ∈ [n]; (26)

Ci,u + Cj,v − C(i,j),(u,v) ≤ 1 for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (27)

C(i,j),(u,v) − Ci,u ≤ 0 for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (28)

C(i,j),(u,v) − Cj,v ≤ 0 for all i 6= j ∈ [k] and for all u 6= v ∈ [n]; (29)

C(i,j),(u,v) ≤ xu,v for all i 6= j ∈ [k] and for all u 6= v ∈ [n]. (30)

The integer program corresponding to Coloring(x, χ) is:∑
c∈[k−1]

χv,c = 1 for every v ∈ [n]; (31)

χu,c + χv,c − χ(u,v),c ≤ 1 for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (32)

χ(u,v),c − χu,c ≤ 0 for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (33)

χ(u,v),c − χv,c ≤ 0 for all u 6= v ∈ [n] and for all c ∈ [k − 1]; (34)

χ(u,v),c ≤ 1− xu,v for all u 6= v ∈ [n] and for all c ∈ [k − 1]. (35)

We refer to the entire integer program as S .

3.1 Adding {0, 1} slack variables

We need to modify the formula in order to make it easy for semantic cutting planes but still hard
for the syntactic system. We plan to reduce to a subset sum problem, so it seems a good idea to
turn as many inequalities as possible into integer equations with variables in {0, 1}. The plan
is to add explicit slack variables to the integer inequalities. Since we are in cutting planes, we
need these slack variables to be in {0, 1}, otherwise the proof system cannot manipulate them
correctly. The reason we use extension variables in the formulation of Clique and Coloring is
that we need to enforce all resulting inequalities to have slack {0, 1} when they are satisfied.
Indeed it is the case for inequalities (26)–(30) and (32)–(35) that the slack is always either 0 or
1 in any satisfying assignment.

Formula T : To define the new integer program T , consider an arbitrary indexing I of the
inequalities in (26)–(30) or (32)–(35). For each inequality

li ≡ aT z ≤ b, i ∈ I, (36)

we add a new variable σi and we substitute li with an equation

aT z + σi = b. (37)
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Now we have three objects: formula F is the original CNF, formula S is the corresponding set
of inequalities, and formula T is the set of equations after the addition of slack variables. We
now argue that the slack variables do not make T easier than S for syntactic cutting planes.

Proposition 2. Let P = P0 ∪ {ax ≤ b} be an integer program where P ` aTx ≥ b − 1 with a
syntactic proof of length L. Consider the alternative integer program

P ′ = P0 ∪ {aTx+ σ = b},

where σ does not appear in P0. In syntactic cutting planes, the lengths of the shortest refutations
of P ′ and P differ at most by a additive term O(L).

Proof. Consider a refutation of P ` 0 ≤ −1. We want to get a refutation P ′ ` 0 ≤ −1 of similar
length. The only missing axiom in P \ P ′ is aTx ≤ b, which can be derived from aTx + σ = b
and −σ ≤ 0 which are axioms in F ′.

In the opposite direction we start with a refutation P ′ ` 0 ≤ −1 and we consider a substitution
σ 7→ b− aTx applied to its lines. After this substitution we get a refutation of P .

Axioms not mentioning σ stay the same. The substitution in the remaining axioms is

aTx+ σ = b 7→ 0 = 0;

−σ ≤ 0 7→ aTx ≤ b;
σ ≤ 1 7→ b− 1 ≤ aTx;

and each of these formulas can be inferred in at most L steps by hypothesis. After the substi-
tution the sum of two lines and the product by a scalar remain correct inferences step. For the
division step, consider α ∈ N and a proof line αrx+ αsσ ≤ t.

αrx+ αsσ ≤ t 7→ αrx+ αs(b− aTx) ≤ t ≡ α(r − saT )x ≤ t− αsb. (38)

For the consequents of the inference, we get

rx+ sσ ≤
⌊
t

α

⌋
7→ rx+ s(b− aTx) ≤

⌊
t

α

⌋
≡ (r − saT )x ≤

⌊
t

α

⌋
− sb. (39)

Since b is integer,
⌊
t−αsb
α

⌋
=
⌊
t
α

⌋
−sb, and so substitution after rounding is the same as rounding

after substitution.

Using Proposition 2 we remove the slack variables of T one by one, to get in the end a refutation
of S .

Corollary 3. Consider a syntactic cutting plane refutation of T of length LT . There is a
syntactic cutting plane refutation of F of length LF ≤ LT + nO(1).

Proof. Take a refutation of T . Observe that T uses equations (25) and (31) as axioms, which are
not cutting planes encodings of axioms from F . Nevertheless, using Claim 10 we can prove (25)
and (31) in polynomial length from the cutting planes encodings of (12), (13), (19), and (20).

To eliminate the O(|F |) slack variables from the proof we use Proposition 2. For each substi-
tution σ 7→ b − ax we can deduce b − 1 ≤ ax from F in length O(1), as the structure of the
formula F shows. Indeed, the needed inequalities for all but (27) and (32) follow directly from
the boolean axioms, and the former follow from (28) and (33), respectively.

The result is a refutation of F of length LF = LT +O(|F |).
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3.2 The separating CNF

We want to separate syntactic and semantic cutting planes with a CNF formula, and so far we
have just designed an integer program T . Later we will show that this program has a short
semantic cutting planes refutation but requires a large syntactic one. Now we want to design a
CNF with the same characteristic, that we call formula U .

Formula U : The plan is to have a CNF which encodes exactly T as a CNF. U is made by

• clauses (12), (13);

• the trivial CNF encoding of the equations obtained adding slack variables to the inequal-
ities (26), (27), (28), (29), (30);

• clauses (19), (20);

• the trivial CNF encoding of the equations obtained adding slack variables to the inequal-
ities, (32), (33), (34), (35).

The “brute force encoding” of an equation of l variables is the CNF made as follow: for each
boolean assignment falsifying the equation there is a clause with l literals which is falsified by
that assignment. So the CNF has at most 2l clauses. The formula U has length O(|F |) since
the equations encoded as CNFs have a constant number of variables each. We observe that T
and U mutually deduce each other.

Proposition 4. Formula T and the cutting planes encoding of U mutually deduce each other
with a polynomial length syntactic cutting planes derivation.

Proof. Fix a clique index i; clause (12) is encoded as
∑

v Ci,v ≥ 1, and using Claim 10 we
know that clauses (13) deduce

∑
v Ci,v ≤ 1. Thus from clauses (12)–(13) of formula U it is

possible to deduce equation (25) of formula T , and vice versa. A similar relation holds between
clauses (19)–(20) and equation (31).

For the rest of the clauses, we observe that the remaining clauses of U are the CNF encod-
ings of the constant size equations of T . Each of them has at most four variable, including
slack variables. By definition, the inequalities in U and the corresponding equation in T are
semantically equivalent. Using Corollary 1 we can derive one from the other using a syntactic
derivation of constant size, but in order to have a self contained proof we show how to do such
deductions for this particular case. Another advantage of our proof over using Corollary 1 is
that the proofs we construct are shorter than the ones given by the corollary: for equations
involving ` variables, our proofs consist of O(2``) lines, while the corollary only gives proofs of
length O(``).

Consider any such equation E = 0 in T . For any assignment α for which E(α) 6= 0, formula U
has a clause which is only falsified by α. Denote its linear encoding as Cα ≥ 1.

Notice that the coefficients of E = 0 are in {−1, 0, 1}: without loss of generality, we can assume
that E = 0 is of the form

∑`
i=1 xi = K for some K ∈ Z and some variables x1 . . . x`. This

is because it is always possible to apply a variable substitution x ↔ 1 − x′ to any variable x
(where x′ is a new variable), preserving the soundness of syntactic cutting planes refutations.

We actually show that the inequality
∑`

i=1 xi ≥ K and the set of inequalities Cα ≥ 1 for

which
∑`

i=1 α(xi) < K mutually deduce each other. The dual relation, between inequality∑`
i=1 xi ≤ K and Cα ≥ 1 such that

∑`
i=1 α(xi) > K, is omitted since it has the same proof.
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From T to U : Let |α| = {i : α(xi) = 1}. We want to prove every inequality Cα ≥ 1 such that
|α| < K, using

∑l
i=1 xi ≥ K and standard variable axioms. Add to

∑`
i=1 xi ≥ K the inequality

−2xj ≥ −2 for every j such that α(xj) = 1. The result it
∑

i:α(xi)=0 xi−
∑

i:α(xi)=1 xi ≥ K−2|α|.
By adding the tautology 0 ≥ |α| − K + 11 we obtain

∑
i:α(xi)=0 xi −

∑
i:α(xi)=1 xi ≥ 1 − |α|,

which is exactly Cα ≥ 1.

This strategy uses O(`) lines to deduce each Cα. In total, deducing all Cα requires O(2``) lines.

From U to T : We want to deduce
∑`

i=1 xi ≥ K from the clauses Cα ≥ 1 for all α such that∑`
i=1 α(xi) < K.

By induction on 0 ≤ k ≤ K we will prove
∑`

i=1 xi ≥ k. For k = 0 the inequality follows from
variable axioms. For k = 1, consider the clause Cα ≥ 1 for α(xi) = 0: this is exactly the
inequality

∑`
i=1 xi ≥ 1.

Now prove
∑l

i=1 xi ≥ k + 1 as follows:

∑̀
i=1

xi ≥ k inductive hypothesis. (40)∑
i:α(xi)=0

xi −
∑

i:α(xi)=1

xi ≥ 1− k Cα for |α| = k. (41)

∑
i 6∈S

xi ≥ 1 for any S ⊆
(

[`]

k

)
. (42)

∑
i 6∈S

xi ≥ 1 + a for any S ⊆
(

[`]

k − a

)
. (43)

∑̀
i=1

xi ≥ k + 1 which is inequality (43) for a = k. (44)

Equation (40) is the inductive hypothesis, (41) are the rewriting of clauses Cα ≥ 1 for any
α with exactly k ones: such clauses are available since k < K. Summing (40) and (41) and
dividing by two we get equations (42), with S = {i : α(xi) = 1}. These inequalities say
that however you remove k variables from the sum, at least one of the remaining variables is
positive. Inequalities (43) say that however k − a variables are removed from the sum, at least
1 + a variables are set to 1, so they are a generalization of (42) for 0 < a ≤ k. They are
proved by induction on a: given any S of size k − a, sum the inequalities corresponding to all
its supersets of size k − (a− 1). The resulting inequality is∑

i 6∈S
(`− k + a− 1)xi ≥ (`− k + a)a,

which after division by ` − k + a − 1 gives (43) for the set S. Going all the way to a = k
gives (44). The length of the resulting proof is O(2``) lines.

1This tautology is an integer combination of the axioms x ≥ 0 and −x ≥ −1 for any variable x.
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4 A lower bound for syntactic cutting planes

We show that the integer program F requires exponential length refutations in syntactic cutting
planes. This in turn implies that U requires exponential length refutations as well.

One of the most useful tools in proof complexity is the interpolation theorem, which gives a way
to extract computation from a proof. In some cases, from a small proof it is possible extract a
computation which is too efficient to be possible, and indeed to prove a lower bound on proof
size.

Theorem 5 (Interpolation theorem [Pud97]). Let F = A(x, z) ∨ B(y, z) be an unsatisfiable
CNF such that variables z appear in A only positively. If F has a cutting planes refutation of
size S then there is a monotone real circuit C of size O(S) such that

C(v) =

{
0 when A(x, v) is unsatisfiable;

1 otherwise;
for each assignment v to z-variables. (45)

This theorem has been used to prove the first lower bound for syntactic cutting planes. Notice
that the original lower bound in [Pud97] studies a formula O which is very similar to F but
does not use extension variables. Now we go all the way to the CNF U in order to get the lower
bound there.

Corollary 6. Consider the CNF U , for graphs of n vertices and for k = Θ

((
n

logn

)2/3
)

. Any

syntactic cutting planes refutation of U has length at least 2Ω((n/ logn)1/3).

Proof. Let LU , LT , LF be the lengths of the shortest syntactic refutations of U , T and F ,
respectively. By Proposition 4 it holds that LT ≤ LU + nO(1), and by Corollary 3 it holds that
LF ≤ LT + nO(1).

To conclude the proof we need to lower bound LF . This follows from Theorem 5: any syntactic
cutting plane refutation of F of length LF implies the existence of an interpolant circuit C(x) of
size O(LF ) which separates graphs with cliques of size k from graphs with k−1 colorings, and is

also a monotone real circuit. For k = Θ

((
n

logn

)2/3
)

, such a circuit requires size 2Ω((n/ logn)1/3),

as shown in [Pud97].

5 Upper bound for semantic cutting planes

In this section we show that the formula U has a short proof in semantic cutting planes. We
already argued in Proposition 4 that formulas U and T have the same proof complexity in
syntactic and semantic cutting planes. So it is sufficient to show that T has a short refutation
in semantic cutting planes. We already observed in Section 2.1 that the semantic rule can refute
unsatisfiable instances of subset sum. The structure of T is that of a set of integer equations
with no common {0, 1} solutions. We show that it is possible to pack two or more integer
equations into a single equation which is satisfiable if and only if the former are.

Proposition 7. Consider a sequence of m integer equations
∑

i aj,ix = Aj for j ∈ [m]. If there
is no {0, 1} assignment which satisfies all equations then there is a polynomial size refutation
of these equations which uses the semantic inference rule exactly once.
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Proof. Given an equation
∑

i aj,ixi = Aj let M ≥ 2 be the smallest number satisfying M >
|Aj |+

∑
i |aj,i| for all j. From the given equations we can deduce the following equation, formula

Z :
m∑
j=1

(∑
i

aj,ixi −Aj

)
M j−1 = 0 (Z )

using only integer scalar multiplications and sums. Notice that the coefficients in these equation
have length polynomial in the length of the original ones. Such an equation is satisfiable if and
only if all the m initial equations are, as we show below. By assumption then this equation
is false for every boolean assignment, so we can deduce 0 ≤ −1 in a single step of semantic
refutation.

It remains to show that formula Z is satisfiable if and only if the original equations are. If
the original equations are satisfiable, then the same truth assignment satisfies formula Z . Now
suppose that some truth assignment satisfies formula Z , and let sj =

∑
i aj,ixi − Aj . By

construction, |sj | < M and
∑m

j=1 sjM
j−1 = 0. Since |sj | < M ,∣∣∣∣∣∣

m−1∑
j=1

sjM
j−1

∣∣∣∣∣∣ ≤ (M − 1)

m−1∑
j=1

M j−1 < Mm−1.

This shows that sm = 0, and similarly we can deduce that all other equations are satisfied.

By applying the previous proposition to T , and knowing that formulas T and U deduce each
other in semantic cutting planes, we get the following upper bound.

Corollary 8. Formula U has a polynomial size refutation in semantic cutting planes, using a
single application of the semantic rule.

As another corollary, we get that formula Z is contradictory but hard to refute in syntactic
cutting planes.

Corollary 9. There are two incompatible inequalities in n variables which require length 2Ω((n/ logn)1/3)

to be refuted in syntactic cutting planes.

6 Open problems

We leave several open problems. The most pressing one is to prove lower bounds for semantic
cutting planes. It is natural to ask whether semantic cutting planes has some form of interpola-
tion, even in the case of large coefficients. The second open problem that stands after this note
is whether it is possible for syntactic cutting planes to p-simulate (or at least simulate) semantic
cutting planes with small coefficients. Notice that subset sum with polynomial coefficients (in
the number of variables) can be solved with easily by dynamic programming.
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A Appendix

Claim 10 ([Rho09]). Let x1, . . . , xn be boolean variables. The inequality
∑n

i=1 xi ≤ 1 has
a polynomial length syntactic cutting planes proof from the inequalities xi + xj ≤ 1 for each
1 ≤ i < j ≤ n. The opposite direction also holds.

Proof. For the forward direction, we prove by induction on b− a that
∑b

i=a xi ≤ 1. The cases

b − a ≤ 2 follow directly from the axioms. For b − a > 2, consider the sum of
∑b−1

i=a xi ≤ 1,∑b
i=a+1 xi ≤ 1 and xa + xb ≤ 1, which is

∑b
i=a 2xi ≤ 3. A division step concludes the proof.

The opposite direction is easier: given
∑n

i=1 xi ≤ 1 and two indices a and b, we can sum −xi ≤ 0
for each i 6∈ {a, b} to get xa + xb ≤ 1.
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