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Puzzle: Given as many AND and OR gates as you’d like, but only two NOT gates,
build a circuit inverting three inputs. The rest of this note solves this puzzles, poses a
generalization, and proves the uniqueness of the optimal solutions.

We begin on the positive side. We show how to invert 2" — 1 inputs x; using only
n NOT gates. Note that those functions creatable using only AND and OR gates
are exactly the monotone functions — that is functions f such that x < y implies
f(z) < f(y). Hence we can compute HAM,, ;, the highest bit of the hamming weight
of the inputs, without using NOT gates. We use one NOT gate to invert HAM,, ;. If
mg and my are monotone then we can now compute the function

mo HAMn_l =0
m =
T lmy HAM, ;=1

using the formula
mo1 = (_| HAMn,1 /\mo) V (HAMn,1 /\m1> .

In particular, we can compute HAM,, 5 without using NOT gates. Continuing this way,
we can compute all of the bits of HAM and their inverses using only n inverters. Finally
we show how to compute —xy. Let wy be true when at least k of x4, ..., Ton_o are true.
The functions wy are monotone and so we can compute the function which is equal to
wy when HAM = k. Yet this function is exactly —z!

The solution to out original puzzle is therefore as follows (z; are inputs, y; outputs,
t! auxiliaries, t9 their inversions):

ti = (1‘0 AN 331) V (IL‘O A\ 1'2) V (l‘l A IQ)

1] = -t
1 1
th= (b Aao Aay Aao) V(DA (2o V a1 V 2p))
ty = —tg
0 0

Yo= (L AtJATI Amg) V(Y Aty A (21 V) V() AL)
Y= (A Az Azg) V(IS ALSA (20 V 32)) V(1) A L)
Yo = (ALY AT ATV (B Atg A (T V) V() AL)
Next to the negative side. Suppose that using m NOT gates we can invert n inputs.
Consider the n + 1 input vectors 2° to 2™ defined thus (here a runs from 0 to n):

; 1 a<z
T, = .
0 a>1



For example, if n = 3 then 2 = 000, 2! = 100, 22 = 110 and 2® = 111. For input z
denote by N(z) the m inputs to NOT gates, and by O(z) the n outputs of the circuit.
Since N(z) can get only 2™ values, if n+1 > 2™ there are i < j with N(z') = N(27) =y
for some vector y. However, given that N(z) = y the outputs O(z) are monotone
functions of the inputs. In particular, 1 = O(z%); < O(z’); = 0, a contradiction. Thus
n<2m—1.

Finally, suppose that n = 2™ — 1. We will show that, in a sense, the solution we
presented is the only one. In any solution, O(z) must be monotone given N(x) =y for
any constant y we choose. In particular, in any chain in the cube [0, 1]" every vertex
must have a different N(z). We claim that this forces N(x) to depend only on HAM(z).

To prove our claim, we use induction to prove the following property: if the cube
[0, 1]™ is colored with n + 1 colors in such a way that in each chain all colors are
different, then the coloring depends only on the Hamming weight. This property is
trivial for n = 1. Suppose next it holds for n — 1, and consider a coloring of [0, 1]™ with
n + 1 colors. Since 0" < x for any x, c(x) # ¢(0") for z # 0™. Consider all vectors x
satisfying z; = 0 for some co-ordinate 7. These form a copy C; of [0, 1]"~! colored with
n — 1 colors, and by induction this coloring must depend only on the Hamming weight.
We claim that these n colorings are all compatible. Indeed, consider a maximal chain
through 0, passing at ¢; + 0, for some i # j (here ¢; is the vector whose only non-zero
co-ordinate is ¢). Replacing d; by d;, we see that the colorings of C; and C; must be
compatible, completing the proof of the property.

We have shown that N(z) depends only on HAM(x). Since N(x), is monotone,
we conclude that N(x)y must equal HAM(x),,_1. Given N(x)y = hg, N(x); must be
monotone, and so N (z); must equal HAM(x),,,—2. Continuing this way we see that N(z)
is simply the reverse of HAM(z). In this sense the solution we presented is unique.



