
Generating all Negations

Yuval Filmus

December 22, 2009

Puzzle: Given as many AND and OR gates as you’d like, but only two NOT gates,
build a circuit inverting three inputs. The rest of this note solves this puzzles, poses a
generalization, and proves the uniqueness of the optimal solutions.

We begin on the positive side. We show how to invert 2n − 1 inputs xi using only
n NOT gates. Note that those functions creatable using only AND and OR gates
are exactly the monotone functions — that is functions f such that x ≤ y implies
f(x) ≤ f(y). Hence we can compute HAMn−1, the highest bit of the hamming weight
of the inputs, without using NOT gates. We use one NOT gate to invert HAMn−1. If
m0 and m1 are monotone then we can now compute the function

m01 =

{
m0 HAMn−1 = 0

m1 HAMn−1 = 1

using the formula

m01 = (¬HAMn−1 ∧m0) ∨ (HAMn−1 ∧m1) .

In particular, we can compute HAMn−2 without using NOT gates. Continuing this way,
we can compute all of the bits of HAM and their inverses using only n inverters. Finally
we show how to compute ¬x0. Let wk be true when at least k of x1, . . . , x2n−2 are true.
The functions wk are monotone and so we can compute the function which is equal to
wk when HAM = k. Yet this function is exactly ¬x0!

The solution to out original puzzle is therefore as follows (xi are inputs, yi outputs,
t1i auxiliaries, t0i their inversions):

t11 = (x0 ∧ x1) ∨ (x0 ∧ x2) ∨ (x1 ∧ x2)

t01 = ¬t11
t10 = (t11 ∧ x0 ∧ x1 ∧ x2) ∨ (t01 ∧ (x0 ∨ x1 ∨ x2))

t00 = ¬t10
y0 = (t11 ∧ t00 ∧ x1 ∧ x2) ∨ (t01 ∧ t10 ∧ (x1 ∨ x2)) ∨ (t01 ∧ t00)
y1 = (t11 ∧ t00 ∧ x0 ∧ x2) ∨ (t01 ∧ t10 ∧ (x0 ∨ x2)) ∨ (t01 ∧ t00)
y2 = (t11 ∧ t00 ∧ x0 ∧ x1) ∨ (t01 ∧ t10 ∧ (x0 ∨ x1)) ∨ (t01 ∧ t00)

Next to the negative side. Suppose that using m NOT gates we can invert n inputs.
Consider the n+ 1 input vectors x0 to xn defined thus (here α runs from 0 to n):

xiα =

{
1 α < i

0 α ≥ i
.
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For example, if n = 3 then x0 = 000, x1 = 100, x2 = 110 and x3 = 111. For input x
denote by N(x) the m inputs to NOT gates, and by O(x) the n outputs of the circuit.
Since N(x) can get only 2m values, if n+1 > 2m there are i < j with N(xi) = N(xj) = y
for some vector y. However, given that N(x) = y the outputs O(x) are monotone
functions of the inputs. In particular, 1 = O(xi)i < O(xj)i = 0, a contradiction. Thus
n ≤ 2m − 1.

Finally, suppose that n = 2m − 1. We will show that, in a sense, the solution we
presented is the only one. In any solution, O(x) must be monotone given N(x) = y for
any constant y we choose. In particular, in any chain in the cube [0, 1]n every vertex
must have a different N(x). We claim that this forces N(x) to depend only on HAM(x).

To prove our claim, we use induction to prove the following property: if the cube
[0, 1]n is colored with n + 1 colors in such a way that in each chain all colors are
different, then the coloring depends only on the Hamming weight. This property is
trivial for n = 1. Suppose next it holds for n− 1, and consider a coloring of [0, 1]n with
n + 1 colors. Since 0n ≤ x for any x, c(x) 6= c(0n) for x 6= 0n. Consider all vectors x
satisfying xi = 0 for some co-ordinate i. These form a copy Ci of [0, 1]n−1 colored with
n− 1 colors, and by induction this coloring must depend only on the Hamming weight.
We claim that these n colorings are all compatible. Indeed, consider a maximal chain
through δi passing at δi + δj for some i 6= j (here δi is the vector whose only non-zero
co-ordinate is i). Replacing δi by δj, we see that the colorings of Ci and Cj must be
compatible, completing the proof of the property.

We have shown that N(x) depends only on HAM(x). Since N(x)0 is monotone,
we conclude that N(x)0 must equal HAM(x)m−1. Given N(x)0 = h0, N(x)1 must be
monotone, and so N(x)1 must equal HAM(x)m−2. Continuing this way we see that N(x)
is simply the reverse of HAM(x). In this sense the solution we presented is unique.
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