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Abstract. We study the MaxRes rule in the context of certifying un-
satisfiability. We show that it can be exponentially more powerful than
tree-like resolution, and when augmented with weakening (the system
MaxResW), p-simulates tree-like resolution. In devising a lower bound
technique specific to MaxRes (and not merely inheriting lower bounds
from Res), we define a new semialgebraic proof system called the Sub-
CubeSums proof system. This system, which p-simulates MaxResW, is
a special case of the Sherali–Adams proof system. In expressivity, it is
the integral restriction of conical juntas studied in the contexts of com-
munication complexity and extension complexity. We show that it is not
simulated by Res. Using a proof technique qualitatively different from
the lower bounds that MaxResW inherits from Res, we show that Tseitin
contradictions on expander graphs are hard to refute in SubCubeSums.
We also establish a lower bound technique via lifting: for formulas requir-
ing large degree in SubCubeSums, their XOR-ification requires large size
in SubCubeSums.

1 Introduction

The most well-studied propositional proof system is Resolution (Res), [3,19]. It
is a refutational line-based system that operates on clauses, successively inferring
newer clauses until the empty clause is derived, indicating that the initial set
of clauses is unsatisfiable. It has just one satisfiability-preserving rule: if clauses
A ∨ x and B ∨ ¬x have been inferred, then the clause A ∨ B can be inferred.
Sometimes it is convenient, though not necessary in terms of efficiency, to also
allow a weakening rule: from clause A, a clause A ∨ x can be inferred. While
there are several lower bounds known for this system, it is still very useful in
practice and underlies many current SAT solvers.

While deciding satisfiability of a propositional formula is NP-complete, the
MaxSAT question is an optimization question, and deciding whether its value is
as given (i.e. deciding, given a formula and a number k, whether the maximum
number of clauses simultaneously satisfiable is exactly k) is potentially harder
since it is hard for both NP and coNP. A proof system for MaxSAT was proposed
in [5,12]. This system, denoted MaxSAT Resolution or more briefly MaxRes,
operates on multi-sets of clauses. At each step, two clauses from the multi-set are
resolved and removed. The resolvent, as well as certain “disjoint” weakenings of



the two clauses, are added to the multiset. The invariant maintained is that for
each assignment ρ, the number of clauses in the multi-set falsified by ρ remains
unchanged. The process stops when the multi-set has a satisfiable instance along
with k copies of the empty clause; k is exactly the minimum number of clauses
of the initial multi-set that must be falsified by every assignment.

Since MaxRes maintains multi-sets of clauses and replaces used clauses, this
suggests a “read-once”-like constraint. However, this is not the case; read-once
resolution is not even complete [11], whereas MaxRes is a complete system for
certifying the MaxSAT value (and in particular, for certifying unsatisfiability).
One could use the MaxRes system to certify unsatisfiability, by stopping the
derivation as soon as one empty clause is produced. Such a proof of unsatisfiability,
by the very definition of the system, can be p-simulated by Resolution. (The
MaxRes proof is itself a proof with resolution and weakening, and weakening can
be eliminated at no cost.) Thus, lower bounds for Resolution automatically apply
to MaxRes and to MaxResW (the augmenting of MaxRes with an appropriate
weakening rule) as well. However, since MaxRes needs to maintain a stronger
invariant than merely satisfiability, it seems reasonable that for certifying unsatis-
fiability, MaxRes is weaker than Resolution. (This would explain why, in practice,
MaxSAT solvers do not seem to use MaxRes – possibly with the exception of
[17], but they instead directly call SAT solvers, which use standard resolution.)
Proving this would require a lower bound technique specific to MaxRes.

Associating with each clause the subcube (conjunction of literals) of assign-
ments that falsify it, each MaxRes step manipulates and rearrange multi-sets of
subcubes. This naturally leads us to the formulation of a static semi-algebraic
proof system that we call the SubCubeSums proof system. This system, by its
very definition, p-simulates MaxResW and is a special case of the Sherali–Adams
proof system. Given this position in the ecosystem of simple proof systems,
understanding its capabilities and limitations seems an interesting question.

Our contributions and techniques

1. We observe that for certifying unsatisfiability, the proof system MaxResW p-
simulates the tree-like fragment of Res, TreeRes (Lemma 3). This simulation
seems to make essential use of the weakening rule. On the other hand, we
show that even MaxRes without weakening is not simulated by TreeRes
(Theorem 10). We exhibit a formula, which is a variant of the pebbling
contradiction [2] on a pyramid graph, with short refutations in MaxRes
(Lemma 4), and show that it requires exponential size in TreeRes (Lemma 9).

2. We initiate a formal study of the newly-defined semialgebraic proof system
SubCubeSums, which is a natural restriction of the Sherali–Adams proof
system. We show that this system is not simulated by Res (Theorem 11).

3. We show that the Tseitin contradiction on an odd-charged expander graph
is hard for SubCubeSums (Theorem 13) and hence also hard for MaxResW.
While hardness for MaxResW already follows from the known fact that these
formulas are hard for Res, our lower-bound technique is qualitatively different;



it crucially uses the fact that a stricter invariant is maintained in MaxResW
and SubCubeSums refutations.

4. Abstracting the ideas from the lower bound for Tseitin contradictions, we
devise a lower-bound technique for SubCubeSums based on lifting (Theo-
rem 14). Namely, we show that if every SubCubeSums refutation of a formula
F must have at least one wide clause, then every SubCubeSums refutation
of the formula F ◦ ⊕ must have many cubes. We illustrate how the Tseitin
contradiction lower bound can be recovered in this way.

The relations among these proof systems is summarized in the figure below.

TreeRes

MaxRes

MaxResW

Res SubCubeSums

Sherali–Adams

– A B denotes that A simulates B
and B does not simulate A.

– A B denotes that A simulates B.
– A B denotes that A does not simu-

late B.

Related work

One reason why studying MaxRes is interesting is that it displays unexpected
power after some preprocessing. As described in [10] (see also [15]), the PHP
formulas that are hard for Resolution can be encoded into MaxHornSAT, and
then polynomially many MaxRes steps suffice to expose the contradiction. The
underlying proof system, DRMaxSAT, has been studied further in [4], where
it is shown to p-simulate general Resolution. While DRMaxSAT gains power
from the encoding, the basic steps are MaxRes steps. Thus, to understand how
DRMaxSAT operates, a better understanding of MaxRes could be quite useful.

A very recent paper in [13] studies a proof system where MaxRes is augmented
with an extension rule. The extension rule generalises a weighted version of
MaxRes; as defined, it eliminates the non-negativity constraint inherent in
MaxResW and SubCubeSums. This system too gains power over MaxRes, while
the basic steps remain MaxRes steps and a more generalised weakening.

In the setting of communication complexity and of extension complexity of
polytopes, non-negative rank is an important and useful measure. As discussed
in [9], the query-complexity analogue is conical juntas; these are non-negative
combinations of subcubes. Our SubCubeSums refutations are a restriction of
conical juntas to non-negative integral combinations. Not surprisingly, our lower
bound for Tseitin contradictions is similar to the conical junta degree lower bound
established in [8].



Organisation of the paper

We define the proof systems MaxRes, MaxResW, SubCubeSums in Section 2. In
Section 3 we relate them to TreeRes. In Section 4, we focus on the SubCubeSums
proof system, showing the separation from Res (Section 4.1), the lower bound
for SubCubeSums (Section 4.2), and the lifting technique (Section 4.3). Some
examples / illustrative details appear in an Appendix.

2 Defining the Proof Systems

For set X of variables, let 〈X〉 denote the set of all total assignments to variables
in X. For a (multi-) set of F clauses, violF : 〈X〉 → {0} ∪ N is the function
mapping α to the number of clauses in F (counted with multiplicity) falsified by
α. A (sub)cube is the set of assignments falsifying a clause, or equivalently, the
set of assignments satisfying a conjunction of literals.

The proof system Res has the resolution rule inferring C ∨D from C ∨ x and
D ∨ x, and optionally the weakening rule inferring C ∨ x from C if x 6∈ C. A
refutation of a CNF formula F is a sequence of clauses C1, . . . , Ct where each Ci
is either in F or is obtained from some j, k < i using resolution or weakening„ and
where Ct is the empty clause. The underlying graph of such a refutation has the
clauses as nodes, and directed edge from C to D if C is used in the step deriving
D. The proof system TreeRes is the fragment of Res where only refutations in
which the underlying graph is a tree are permitted. A proof system P simulates
(p-simulates) another proof system P ′ if proofs in P can be transformed into
proofs in P ′ with polynomial blow-up (in time polynomial in the size of the
proof). See, for instance, [1], for more details.

The MaxRes and MaxResW proof systems

The MaxRes proof system operates on sets of clauses, and uses the MaxSAT
resolution rule [5], defined as follows:

x ∨ a1 ∨ . . . ∨ as (x ∨A)
x ∨ b1 ∨ . . . ∨ bt (x ∨B)
a1 ∨ . . . ∨ as ∨ b1 ∨ . . . ∨ bt (the “standard resolvent”)

(weakenings of x ∨A)
x ∨A ∨ b1
x ∨A ∨ b1 ∨ b2
...
x ∨A ∨ b1 ∨ . . . ∨ bt−1 ∨ bt

(weakenings of x ∨B)
x ∨B ∨ a1
x ∨B ∨ a1 ∨ a2
...
x ∨B ∨ a1 ∨ . . . ∨ as−1 ∨ at

The weakening rule for MaxSAT resolution replaces a clause A by the two clauses
A ∨ x and A ∨ x. While applying either of these rules, the antecedents are
removed from the multi-set and the non-tautologous consequents are added. If F ′



is obtained from F by applying these rules, then violF and violF ′ are the same
function.

In the proof system MaxRes, a refutation of F is a sequence F = F0, F1, . . . , Fs
where each Fi is a multi-set of clauses, each Fi is obtained from Fi−1 by an
application of the MaxSAT resolution rule, and Fs contains the empty clause �.
In the proof system MaxResW, Fi may also be obtained from Fi by using the
weakening rule. The size of the proof is the number of steps, s. In [5,12], MaxRes
is shown to be complete for MaxSAT, hence also for unsatisfiability.

The SubCubeSums proof system

The SubCubeSums proof system is a static proof system. For an unsatisfiable
CNF formula F , a SubCubeSums proof is a multi-set G of sub-cubes (or terms,
or conjunctions of literals) satisfying violF ≡ 1 + violG.

We can view SubCubeSums as a subsystem of the semialgebraic Sherali–
Adams proof system as follows. Let F be a CNF formula with m clauses in
variables x1, . . . , xn. Each clause Ci, i ∈ [m], is translated into a polynomial
equation fi = 0; a Boolean assignment satisfies clause Ci iff it satisfies equation
fi = 0. Boolean values are forced through the axioms x2j − xj = 0 for j ∈ [n]. A
Sherali–Adams proof is a sequence of polynomials gi, i ∈ [m]; qj , j ∈ [n]; and a
polynomial p0 of the form

p0 =
∑

A,B⊆[n]

αA,B
∏
j∈A

xj
∏
j∈B

(1− xj) =
∑

A,B⊆[n]

αA,BXA(1−X)B

where each αA,B ≥ 0, such that∑
i∈[m]

gifi

+

∑
j∈[n]

qj(x
2
j − xj)

+ p0 + 1 = 0

The degree or rank of the proof is the maximum degree of gifi, qj(x2j − xj), p0.
The polynomials fi corresponding to the clauses, as well as the terms in p0,

are conjunctions of literals, thus special kinds of d-juntas (Boolean functions
depending on at most d variables). So p0 is a non-negative linear combination of
non-negative juntas, that is, in the nomenclature of [9], a conical junta.

The Sherali–Adams system is sound and complete, and verifiable in random-
ized polynomial time; see for instance [7].

Consider the following restriction of Sherali–Adams:

1. Each gi = −1.
2. Each αA,B ∈ Z≥0, (non-negative integers), and αA,B > 0 =⇒ A ∩B = ∅.

This implies each qj must be 0, since the rest of the expression is multilinear.
Hence, for some non-negative integral αA,B ,

∑
A,B⊆[n]:A∩B=∅

αA,B
∏
j∈A

xj
∏
j∈B

(1− xj) + 1 =

∑
i∈[m]

fi





This is exactly the SubCubeSums proof system: the terms in p0 are subcubes, and
the right-hand-side is violF . For each disjoint pair A,B, the SubCubeSums proof
has αA,B copies of the corresponding sub-cube. The degree of a SubCubeSums
proof is the maximum number of literals appearing in a conjunction. The size of
a SubCubeSums proof is the number of subcubes, that is,

∑
A,B αA,B. The

constraint gi = 1 means that for bounded CNF formulas, the degree of a
SubCubeSums proof is essentially the degree of p0, i.e. the degree of the juntas.

The following proposition shows why this restriction remains complete.

Proposition 1. SubCubeSums p-simulates MaxResW.

Proof. If an unsatisfiable CNF formula F with m clauses and n ≥ 3 variables
has a MaxResW refutation with s steps, then this derivation produces {�} ∪G
where the number of clauses in G is at most m + (n − 2)s − 1. (A weakening
step increases the number of clauses by 1. A MaxRes step increases it by at most
n− 2.) The subcubes falsifying the clauses in G give a SubCubeSums proof. ut

In fact, SubCubeSums is also implicationally complete in the following sense.
We say that f ≥ g if for every Boolean x, f(x) ≥ g(x).

Proposition 2. If f and g are polynomials with f ≥ g, then there are subcubes hj
and non-negative numbers cj such that on the Boolean hypercube, f−g =

∑
j cjhj .

Further, if f, g are integral on the Boolean hypercube, so are the cj.

Proof. A brute-force way to see this is to consider subcubes of degree n, i.e. a
single point/assignment. For each β ∈ {0, 1}n, define cβ = (f − g)(β) ∈ R≥0. ut

3 MaxRes, MaxResW, and TreeRes

Since TreeRes allows reuse only of input clauses, while MaxRes does not allow
any reuse of clauses but produces multiple clauses at each step, the relative power
of these fragments of Res is intriguing. In this section, we show that MaxRes with
the weakening rule, MaxResW, p-simulates TreeRes, is exponentially separated
from it, and even MaxRes (without weakening) is not simulated by TreeRes.

Lemma 3. For every unsatisfiable CNF F ,
size(F `MaxResW �) ≤ 2size(F `TreeRes �).

Proof. Let T be a tree-like derivation of � from F of size s. Without loss of
generality, we may assume that T is regular; no variable is used as pivot twice
on the same path.

Since a MaxSAT resolution step always adds the standard resolvent, each step
in a tree-like resolution proof can be performed in MaxResW as well, provided
the antecedents are available. However, a tree-like proof may use an axiom (a
clause in F ) multiple times, whereas after it is used once in MaxResW it is no
longer available. So we need to work with weaker antecedents.

For each axiom A ∈ F , consider the subtree TA of T defined by retaining only
the paths from leaves labeled A to the final empty clause. Start with A at the



final node and walk up the tree TA towards the leaves. If we reach a branching
node v with clause A′, and the pivot at v is x, weaken A′ to A′ ∨ x and A′ ∨ x.
Proceed along the edge contributing x with A′ ∨ x, and along the other edge
with A′ ∨ x. Since T is regular, no tautologies are created in this process.

After doing this for each axiom, we have as many clauses as leaves in T . Now
we simply perform all the steps in T .

Since each weakening step increases the number of clauses by one, and since
we finally produce at most s clauses for the leaves, the number of weakening
steps required is at most s. ut

(See the appendix for a simple illustration.)
We now show that even without weakening, MaxRes has short proofs of

formulas exponentially hard for TreeRes. The formulas that exhibit the separation
are composed formulas of the form F ◦ g, where F is a CNF formula, g : {0, 1}` →
{0, 1} is a Boolean function, there are b new variables x1, . . . , x` for each original
variable x of F , and there is a block of clauses C ◦ g, a CNF expansion of the
expression

∨
xb∈CJg(x1, . . . x`) = bK, for each original clause C ∈ F .

We denote by PebHint(G) the standard pebbling formula with additional
hints u ∨ v for each pair of siblings (u, v)—that is, two incomparable vertices
with a common predecessor—, and we prove the separation for the composed
formula PebHint(G) ◦OR. More formally, if G is a DAG with a single sink z, we
define PebHint(G) ◦OR as follows. For each vertex v ∈ G there are variables v1
and v2. The clauses are

– For each source v, the clause v1 ∨ v2.
– For each internal vertex w with predecessors u, v, the expression ((u1 ∨ u2)∧
(v1 ∨ v2))→ (w1 ∨ w2), expanded into 4 clauses.

– The clauses z1 and z2 for the sink z.
– For each pair of siblings (u, v), the clause u1 ∨ u2 ∨ v1 ∨ v2.

Note that the first three types of clauses are also present in standard composed
pebbling formulas, while the last type are the hints.

We prove a MaxRes upper bound for the particular case of pyramid graphs.
Let Ph be a pyramid graph of height h and n = Θ(h2) vertices.

Lemma 4. The PebHint(Ph) ◦OR formulas have Θ(n) size MaxRes refutations.

Proof. We derive the clause s1 ∨ s2 for each vertex s ∈ Pn in layered order, and
left-to-right within one layer. If s is a source, then s1 ∨ s2 is readily available as
an axiom. Otherwise assume that for a vertex s with predecessors u and v and
siblings r and t – in this order – we have clauses u1 ∨u2 ∨ s1 ∨ s2 and v1 ∨ v2, and
let us see how to derive s1∨ s2. We also make sure that the clause v1∨ v2∨ t1∨ t2
becomes available to be used in the next step.

In the following derivation we skip ∨ symbols, and we colour-code clauses so
that green clauses are available by induction, axioms are blue, and red clauses,
on the right side in steps with multiple consequents, are additional clauses that



are obtained by the MaxRes rule but not with the usual resolution rule.

u1v1s1s2 u1u2s1s2
u2v1s1s2

u2v1s1s2
v1s1s2

u1u2v1s1s2 u1v2s1s2
u2v1v2s1s2 u2v2s1s2

v1v2s1s2 v1v2
v1s1s2

s1s2

v1v2s1 v1v2s1s2 s1s2t1t2
v1v2s1t1t2

v1v2t1t2

The case where some of the siblings are missing is similar: if r is missing then
we use the axiom u1 ∨ u2 instead of the clause u1 ∨ u2 ∨ s1 ∨ s2 that would
be available by induction, and if t is missing then we skip the steps that use
s1 ∨ s2 ∨ t1 ∨ t2 and lead to deriving v1 ∨ v2 ∨ t1 ∨ t2.

Finally, once we derive the clause z1∨z2 for the sink, we resolve it with axiom
clauses z1 and z2 to obtain a contradiction.

A constant number of steps suffice for each vertex, for a total of Θ(n). ut

We can prove a tree-like lower bound along the lines of [1], with some extra
care to respect the hints. For that we use the pebble game, a game where the
single player starts with a DAG and a set of pebbles, the allowed moves are
to place a pebble on a vertex if all its predecessors have pebbles or to remove
a pebble at any time, and the goal is to place a pebble on the sink using the
minimum number of pebbles. Denote by bpeb(P → w) the cost of placing a
pebble on a vertex w assuming there are free pebbles on a set of vertices P ⊆ V
– in other words, the number of pebbles used outside of P when the starting
position has pebbles in P . For a DAG G with a single sink z, bpeb(G) denotes
bpeb(∅ → z). For U ⊆ V and v ∈ V , the subgraph of v modulo U is the set of
vertices u such that there exists a path from u to v avoiding U .

Lemma 5 ([6]). bpeb(Ph) = h+ 1.

Lemma 6 ([1]). For all P, v, w, we have
bpeb(P → v) ≤ max(bpeb(P → w),bpeb(P ∪ {w} → v) + 1).

The canonical search problem of a formula F is the relation Search(F ) where
inputs are variable assignments α ∈ {0, 1}n and the valid outputs for α are
the clauses C ∈ F that α falsifies. Given a relation f , we denote by DT1(f)
the 1-query complexity of f [14], that is the minimum over all decision trees
computing f of the maximum of 1-answers that the decision tree receives.

Lemma 7. For all G we have DT1(Search(PebHint(G))) ≥ bpeb(G)− 1.

Proof. We give an adversarial strategy. Let Ri be the set of variables that are
assigned to 1 at round i. We initially set w0 = z, and maintain the invariant that

1. there is a distinguished variable wi and a path πi from wi to the sink z such
that a queried variable v is 0 iff v ∈ πi; and



2. after each query the number of 1 answers so far is at least bpeb(G) −
bpeb(Ri → wi).

Assume that a variable v is queried. If v is not in the subgraph of wi modulo
Ri then we answer 0 if v ∈ πi and 1 otherwise. Otherwise we consider p0 =
bpeb(Ri → v) and p1 = bpeb(Ri ∪ {v} → wi). By Lemma 6, bpeb(Ri → wi) ≤
max(p0, p1 + 1). If p0 ≥ p1 then we answer 0, set wi+1 = v, and extend πi with
a path from wi+1 to wi that does not contain any 1 variables (which exists by
definition of subgraph modulo Ri). This preserves item 1 of the invariant, and
since p0 ≥ bpeb(Ri → wi), item 2 is also preserved. Otherwise we answer 1 and
since p1 ≥ bpeb(Ri → wi)− 1 the invariant is also preserved.

This strategy does not falsify any hint clause, because all 0 variables lie on a
path, or the sink axiom, because the sink is assigned 0 if at all. Therefore the
decision tree ends at a vertex wt that is set to 0 and all its predecessors are set to
1, hence bpeb(Rt → wt) = 1. By item 2 of the invariant the number of 1 answers
is at least bpeb(G)− 1. ut

To complete the lower bound we use the Pudlák–Impagliazzo Prover–Delayer
game [18] where Prover points to a variable, Delayer may answer 0, 1, or ∗, in
which case Delayer obtains a point in exchange for letting Prover choose the
answer, and the game ends when a clause is falsified.

Lemma 8 ([18]). If Delayer can win p points, then all TreeRes proofs require
size at least 2p.

Lemma 9. F ◦OR requires size exp(Ω(DT1(Search(F )))) in tree-like resolution.

Proof. We use a strategy for the 1-query game of Search(F ) to ensure that
Delayer gets DT1(F ) points in the Prover–Delayer game. If Prover queries a
variable xi then

– If x is already queried we answer accordingly.
– Otherwise we query x. If the answer is 0 we answer 0, otherwise we answer ∗.

Our strategy ensures that if both x1 and x2 are assigned then x1 ∨ x2 = x.
Therefore the game only finishes at a leaf of the decision tree, at which point
Delayer earns as many points as 1s are present in the path leading to the leaf.
The lemma follows by Lemma 8. ut

The formulas PebHint(Pn) ◦ OR are easy to refute in MaxRes (Lemma 4),
but from Lemmas 5,7, and 9, they are exponentially hard for TreeRes. Hence,

Theorem 10. TreeRes does not simulate MaxResW and MaxRes.

4 The SubCubeSums Proof System

4.1 Res does not simulate SubCubeSums

We now show that Res does not simulate SubCubeSums.



Theorem 11. There are formulas that have SubCubeSums proofs of size O(n)
but require resolution length exp(Ω(n)).

The separation is achieved using subset cardinality formulas [20,22,16]. These are
defined as follows: we have a bipartite graph G(U∪V,E), with |U | = |V | = n. The
degree of G is 4, except for two vertices that have degree 5. There is one variable
for each edge. For each left vertex u ∈ U we have a constraint

∑
e3u xe ≥ dd(u)/2e,

while for each right vertex v ∈ V we have a constraint
∑
e3v xe ≤ bd(v)/2c, both

expressed as a CNF. In other words, for each vertex u ∈ U we have the clauses∨
i∈I xi for I ∈

(
E(u)

bd(u)/2c+1

)
, while for each vertex v ∈ V we have the clauses∨

i∈I xi for I ∈
(

E(v)
bd(v)/2c+1

)
.

The lower bound requires G to be an expander, and is proven in [16, Theo-
rem 6]. The upper bound is the following lemma.

Lemma 12. Subset cardinality formulas have SubCubeSums proofs of size O(n).

Proof. Our plan is to reconstruct each constraint independently, so that for each
vertex we obtain the original constraints

∑
e3u xe ≥ dd(u)/2e and

∑
e3v xe ≥

dd(v)/2e, and then add all of these constraints together.
Formally, if Fu is the set of polynomials that encode the constraint corre-

sponding to vertex u, we want to write

∑
f∈Fu

f −

(
dd(u)/2e −

∑
e3u

xe

)
=
∑
j

cu,jhj (1)

and ∑
f∈Fv

f −

(
dd(v)/2e −

∑
e3v

xe

)
=
∑
j

cv,jhj (2)

with cu,j , cv,j ≥ 0 and
∑
j cu,j = O(1), so that∑

f∈F

f =
∑
u∈U

∑
f∈Fu

f +
∑
v∈V

∑
f∈Fv

f

=
∑
u∈U

dd(u)/2e −∑
e3u

xe +
∑
j

cu,jhj

+
∑
v∈V

dd(v)/2e −∑
e3v

xe +
∑
j

cv,jhj


=
∑
u∈U
dd(u)/2e+

∑
v∈V
dd(v)/2e −

∑
e∈E

(xe + xe) +
∑
j

cjhj

=

(
1 +

∑
u∈U

2

)
+

(
1 +

∑
u∈U

2

)
−
∑
e∈E

1 +
∑
j

cjhj

= (2n+ 1) + (2n+ 1)− (4n+ 1) +
∑
j

cjhj = 1 +
∑
j

cjhj

where cj =
∑
v∈U∪V cv,j ≥ 0. Hence we can write

∑
f∈F f − 1 =

∑
j cjhj with∑

j cj = O(n).



It remains to show how to derive equations (1) and (2). The easiest way is
to appeal to the implicational completeness of SubCubeSums, Proposition 2.
We continue deriving equation (1), assuming for simplicity a vertex of degree d
and incident edges [d]. Let xI =

∏
i∈I xi, and let

{
xI : I ∈

(
[d]

d−k+1

)}
represent

a constraint
∑
i∈[d] xi ≥ k. Let f =

∑
I∈( [d]

d−k+1)
xI and g = k −

∑
i∈[d] xi. For

each point x ∈ {0, 1}d we have that either x satisfies the constraint, in which
case f(x) ≥ 0 ≥ g(x), or it falsifies it, in which case we have on the one hand
g(x) = s > 0, and on the other hand f(x) =

(
d−k+s
d−k+1

)
= (d−k+s)·····s

(d−k+1)·····1 ≥ s.
We proved that f ≥ g, therefore by Proposition 2 we can write f − g as a

sum of subcubes of size at most 2d = O(1).
Equation (2) can be derived analogously, completing the proof.
(See the appendix for an explicit derivation.) ut

4.2 A lower bound for SubCubeSums

Fix any graph G with n nodes and m edges, and let I be the node-edge incidence
matrix. Assign a variable xe for each edge e. Let b be a vector in {0, 1}n with∑
i bi ≡ 1 mod 2. The Tseitin contradiction asserts that the system IX = b has a

solution over F2. The CNF formulation has, for each vertex u in G, with degree
du, a set Su of 2du−1 clauses expressing that the parity of the set of variables
{xe | e is incident on u} equals bu.

These formulas are exponentially hard for Res [21], and hence are also hard
for MaxResW. We now show that they are also hard for SubCubeSums. By
Theorem 11, this lower bound cannot be inferred from hardness for Res.

We will use some standard facts: For connected graph G, over F2, if
∑
i bi ≡

1 mod 2, then the equations IX = b have no solution, and if
∑
i bi ≡ 0 mod 2,

then IX = b has exactly 2m−n+1 solutions. Furthermore, for any assignment a,
and any vertex u, a falsifies at most one clause in Su.

A graph is a c-expander if for all V ′ ⊆ V with |V ′| ≤ |V |/2, |δ(V ′)| ≥ c|V ′|,
where δ(V ′) = {(u, v) ∈ E | u ∈ V ′, v ∈ V \ V ′}.
Theorem 13. Tseitin contradictions on odd-charged expanders require exponen-
tial size SubCubeSums refutations.

Proof. Fix a graph G that is a d-regular c-expander on n vertices, where n is
odd; m = dn/2. Let b be the all-1s vector. The Tseitin contradiction F has n2d−1
clauses. By the facts mentioned above, for all a ∈ {0, 1}m, violF (a) is odd. So
violF partitions {0, 1}m into X1, X3, . . . , XN−1, where Xi = viol−1F (i).

Let C be a SubCubeSums refutation of F , that is, violC = violF − 1 = g, say.
For a cube C, define Ni(C) = |C ∩Xi|. Then for all C ∈ C, N1(C) = 0, and so
C is partitioned by Xi, i ≥ 3. Let C′ be those cubes of C that have a non-empty
part in X3. We will show that C′ is large. In fact, we will show that for a suitable
S, the set C′′ ⊆ C′ of cubes with |C ∩X5| ≤ S|C ∩X3| is large.

Defining the probability distribution µ on C′ as

µ(C) =
|C ∩X3|∑

D∈C′ |D ∩X3|
=

N3(C)∑
D∈C′ N3(D)

,



|C| ≥ |C′| =
∑
C∈C′

1 = E
C∼µ

[
1

µ(C)

]
≥ E
C∼µ

[
1

µ(C)

∣∣∣∣ |C ∩X5|
|C ∩X3|

≤ S
]

︸ ︷︷ ︸
A

·Pr
µ

[
|C ∩X5|
|C ∩X3|

≤ S
]

︸ ︷︷ ︸
B

(3)
We want to choose a good value for S so that A is very large and B is sufficiently
large, Θ(1). To see what will be a good value for S, we estimate the expected
value of |C∩X5|

|C∩X3| and then use Markov’s inequality. For this, we should understand
the sets X3, X5 better. These set sizes are known precisely: for each odd i,
|Xi| =

(
n
i

)
2m−n+1. (An assignment lies in i cubes of f , each cube corresponds

to a distinct vertex because the 2d−1 cubes corresponding to a single vertex are
disjoint, once the i vertices are fixed and b flipped in those coordinates to get b′,
there are 2m−n+1 0-1 solutions to Ix = b′.)

Now let us consider C ∩ X3 and C ∩ X5 for a C ∈ C′ (that is, we know
C ∩X3 6= ∅ and C ∩X1 = ∅). We rewrite the system IX = b as I ′X ′+ ICXC = b,
where XC are the variables fixed in cube C (to aC , say). So I ′X ′ = b+ ICXC .
An assignment a is in C ∩Xr iff it is of the form a′aC , and a′ falsifies exactly r
equations in I ′X ′ = b′ where b′ = b+ICaC . This is a system for the subgraph GC
where the edges in XC have been deleted. This subgraph may not be connected, so
we cannot use our size expressions directly. Consider the vertex sets V1, V2, . . . of
the components of GC . The system I ′X ′ = b′ can be broken up into independent
systems; I ′(i)X ′(i) = b′(i) for the ith connected component. Say a component is
odd if

∑
j∈Vi

b′(i)j ≡ 1 mod 2, even otherwise. Let |Vi| = ni and |Ei| = mi. Any
a′ falsifies an odd/even number of equations in an odd/even component.

For a′ ∈ C∩X3, it must falsify three equations overall, so GC must have either
one or three odd components. If it has only one odd component, then there is
another assignment in C falsifying just one equation (from this odd component),
so C ∩X1 6= ∅, a contradiction. Hence GC has exactly three odd components,
with vertex sets V1, V2, V3, and overall k ≥ 3 components. An a ∈ C ∩X3 falsifies
exactly one equation in I(1), I(2), I(3). We thus arrive at the expression

|C ∩X3| =

(
3∏
i=1

ni2
mi−ni+1

)∏
i≥4

2mi−ni+1

 = n1n2n32
m−w(C)−n+k.

An a′ ∈ C ∩X5 must falsify five equations overall. One each must be from
V1, V2, V3. The remaining 2 must be from the same component. Hence

|C ∩X5| =
((

n1
3

)
n2n3 + n1

(
n2
3

)
n3 + n1n2

(
n3
3

))
2m−w(C)−n+k

+ n1n2n3

k∑
i=4

(
ni
2

)
2m−w(C)−n+k

≥ n1n2n32m−w(C)−n+k

(
1

3

k∑
i=1

(
ni − 1

2

))



Hence we have, for C ∈ C′,

|C ∩X5|
|C ∩X3|

≥ 1

3

k∑
i=1

(
ni − 1

2

)
This alone does not tell us enough unless we can say something about the ni’s.
But we can deduce more by using the definition of µ, and the following fact:
Since g = violF − 1, an assignment in X3 belongs to exactly two cubes in C, and
by definition these cubes are in C′. Similarly, an assignment in X5 belongs to
exactly four cubes in C, not all of which may be in C′. Hence∑

C∈C′
|C ∩X3| = 2|X3| = 2

(
n

3

)
2m−n+1

∑
C∈C′

|C ∩X5| ≤ 4|X5| = 4

(
n

5

)
2m−n+1

µ(C) =
|C ∩X3|
2|X3|

Now we can estimate the average:

E
µ

[
|C ∩X5|
|C ∩X3|

]
=
∑
C∈C′

µ(C)
|C ∩X5|
|C ∩X3|

=
∑
C∈C′

|C ∩X5|
2|X3|

≤ 4|X5|
2|X3|

≤ n2
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Choosing S = n2/9, and using Markov’s inequality, we get

B = Pr
µ

[
|C ∩X5|
|C ∩X3|

≤ S =
n2

9

]
≥ 1/10

Now we show that conditioned on |C∩X5|
|C∩X3| ≤ S, the average value of 1

µ(C) is large.

1

µ(C)
=

2|X3|
|C ∩X3|

=
2
(
n
3

)
2m−n+1

n1n2n32m−w(C)−n+k =
2
(
n
3

)
2w(C)+1−k

n1n2n3
≥ 2w(C)+1−n

3

So we must show that w(C) must be large. Each literal in C removes one
edge from G while constructing GC . Counting the sizes of the cuts that isolate
components of GC , we count each deleted edge twice. So

2w(C) =

k∑
i=1

|δ(Vi, V \ Vi)| =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

By the c-expansion property of G, Q1 ≥ cni.
If ni > n/2, it still cannot be too large because of the promise. Recall

S =
n2

9
≥ |C ∩X5|
|C ∩X3|

≥ 1

3

k∑
i=1

(
ni − 1

2

)



If any ni is very large, say larger than 5n/6, then the contribution from that
component alone, 1

3

(
ni−1

2

)
, will exceed our chosen S = n2

9 . So each ni ≤ 5n/6.
Thus even when ni > n/2, we can conclude that ni/5 ≤ n/6 ≤ n− ni < n/2. By
expansion of V \ Vi, we have Q2 ≥ c(n− ni) ≥ cni/5.

2w(C) =
∑

i:ni≤n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q1

+
∑

i:ni>n/2

|δ(Vi, V \ Vi)|︸ ︷︷ ︸
Q2

≥
∑

i:ni≤n/2

cni +
∑

i:ni>n/2

cni
5
≥ cn/5

Choose c-expanders where c ensures w(C) + 1 − n = Ω(n). (Any constant
c > 10.) Going back to our calculation of A from Equation 3),

A = E
C∼µ

[
1

µ(C)

∣∣∣∣ |C ∩X5|
|C ∩X3|

≤ S
]
≥ E
C∼µ

[
2w(C)+1−n

3

∣∣∣∣ |C ∩X5|
|C ∩X3|

≤ S
]
≥ 1

3
2cn/10+1−n = 2Ω(n)

for suitable c > 10. Thus |C| ≥ |C′| ≥ A×B ≥ 2Ω(n) × (1/10) . ut

4.3 Lifting degree lower bounds to size

We describe a general technique to lift lower bounds on conical junta degree to
size lower bounds for SubCubeSums.

Theorem 14. Let d be the minimum degree of a SubCubeSums refutation of an
unsatisfiable CNF formula F . Then every SubCubeSums refutation of F ◦ ⊕ has
size exp(Ω(d)).

Before proving this theorem, we establish two lemmas. For a function h :
{0, 1}n → R, define the function h ◦ ⊕ : {0, 1}2n → R as (h ◦ ⊕)(α1, α2) =
h(α1 ⊕ α2), where α1, α2 ∈ {0, 1}n and the ⊕ in α1 ⊕ α2 is taken bitwise.

Lemma 15. violF (α1 ⊕ α2) = violF◦⊕(α1, α2).

Proof. Fix assignments α1, α2 and let α = α1 ⊕ α2. We claim that for each
clause C ∈ F falsified by α there is exactly one clause D ∈ F ◦ ⊕ that is falsified
by α1α2. Indeed, by the definition of composed formula the assignment α1α2

falsifies C ◦ ⊕, hence the assignment falsifies some clause D ∈ C ◦ ⊕. However,
the clauses in the CNF expansion of C ◦ ⊕ have disjoint subcubes, hence α1α2

falsifies at most one clause from the same block. Observing that if α does not
falsify C, then α1α2 does not falsify any clause in C ◦⊕ completes the proof. ut

Note that Lemma 15 may not be true for gadgets other than ⊕.

Corollary 16. violF◦⊕ − 1 = ((violF ) ◦ ⊕)− 1 = (violF − 1) ◦ ⊕.

Proof. ((violF − 1) ◦⊕)(α1, α2) = (violF − 1)(α1 ⊕α2) = (violF )(α1 ⊕α2)− 1 =
(violF◦⊕)(α1, α2)− 1. ut



Lemma 17. If f ◦ ⊕2 has a (integral) conical junta of size s, then f has a
(integral) conical junta of degree d = O(log s).

Proof. Let J be a conical junta of size s that computes f ◦ ⊕2. Let ρ be the
following random restriction: for each original variable x of f , pick i ∈ {0, 1}
and b ∈ {0, 1} uniformly and set xi = b. Consider a term C of J of degree at
least d > log4/3 s. The probability that C is not zeroed out by ρ is at most
(3/4)d < 1/s, hence by a union bound the probability that the junta J�ρ has
degree larger than d is at most s · (3/4)d < 1. Hence there is a restriction ρ such
that J�ρ is a junta of degree at most d, although not one that computes f . Since
for each original variable x, ρ sets exactly one of the variables x0, x1, flipping
the appropriate surviving variables—those where xi is set to 1—gives a junta of
degree at most d for f . ut

Now we can prove Theorem 14.

Proof. We prove the contrapositive: if F ◦ ⊕ has a SubCubeSums proof of size s,
then there is an integral conical junta for g = violF − 1 of degree O(log s).

Let H be the collection of cubes in the SubCubeSums proof for F ◦ ⊕. So
violF◦⊕ − 1 = violH . By Corollary 16, there is an integral conical junta for
(violF − 1) ◦ ⊕ of size s. By Lemma 17 there is an integral conical junta for
violF − 1 of degree O(log s). ut

Recovering the Tseitin lower bound: This theorem, along with the Ω(n) conical
junta degree lower bound of [8], yields an exponential lower bound for the
SubCubeSums and MaxResW refutation size for Tseitin contradictions.

A candidate for separating Res from SubCubeSums: We conjecture that the
SubCubeSums degree of the pebbling contradiction on the pyramid graph, or
on a minor modification of it (a stack of butterfly networks, say, at the base
of a pyramid), is nΩ(1). This, along with Theorem 14 would imply that F ◦ ⊕
is hard for SubCubeSums, thereby separating it from Res. However we have
not yet been able to prove the desired degree lower bound. We do know that
SubCubeSums degree is not exactly the same as Res width – for small examples,
a brute-force computation has shown SubCubeSums degree to be strictly larger
than Res width.

5 Discussion

We placed MaxRes(W) in a propositional proof complexity frame and compared
it to more standard proof systems, showing that MaxResW is between tree-like
resolution (strictly) and resolution. With the goal of also separating MaxRes and
resolution we devised a new lower bound technique, captured by SubCubeSums,
and proved lower bounds for MaxRes without relying on Res lower bounds.

Perhaps the most conspicuous open problem is whether our conjecture that
pebbling contradictions composed with XOR separate Res and SubCubeSums
holds. It also remains open to show that MaxRes simulates TreeRes – or even
MaxResW – or that they are incomparable instead.
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Appendix

An example for Lemma 3

Consider the tree-like resolution proof in Figure 1 Following the procedure in the

�

f f

e ∨ f

d d ∨ e ∨ f e

b ∨ d c ∨ e

a a ∨ b ∨ d b b b ∨ c ∨ e c

Fig. 1. A tree-like resolution proof

proof of the Lemma, the axiom b is weakened to b ∨ e and b ∨ ¬e, since e is the
pivot variable at the branching point where b is used in both sub-derivations.

Short proofs in SubCubeSums for subset cardinality formulas

In proving the upper bound in Lemma 12, we invoked implicational completeness
from Proposition 2. However, in our case the numbers are small enough that we
can show how to derive equation (1) explicitly, by solving the appropriate LP,
and without relying on Proposition 2. As a curiosity we display them next. We
have

x1,2,3 + x1,2,4 + x1,3,4 + x2,3,4 − (2− x1 − x2 − x3 − x4) =
2x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + 2x1x2x3x4

and

x1,2,3 + x1,2,4 + x1,2,5 + x1,3,4 + x1,3,5 + x1,4,5 + x2,3,4 + x2,3,5 + x2,4,5

+ x3,4,5 − (3− x1 − x2 − x3 − x4 − x5) =
2x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5

+ x1x2x3x4x5 + 2x1x2x3x4x5 + 2x1x2x3x4x5

+ 2x1x2x3x4x5 + 2x1x2x3x4x5 + 2x1x2x3x4x5 + 7x1x2x3x4x5
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