
Asymptotic redundancy and prolixity

Yuval Dagan, Yuval Filmus, and Shay Moran

April 6, 2017

Abstract

Gallager (1978) considered the worst-case redundancy of Huffman codes as the maximum
probability tends to zero, showing that the limiting value is 1 − log2 e + log2 log2 e ≈ 0.08607.
We ask similar questions for restricted classes of codes, such as ones corresponding to binary
search trees.

1 Introduction

Given a random variable X with finite support, how many bits are needed to transmit a sample
of X, on average? Shannon’s source coding theorem shows that the amortized number of bits
when encoding many copies equals the entropy H(X). When encoding a single copy of X, the
optimal number of bits is attained by a minimum redundancy code, such as the one calculated
by Huffman’s algorithm. In the worst case, when X is a random variable concentrated with high
probability on a single element, the redundancy of a Huffman code (the difference between the
expected codeword length and the entropy) is close to 1, and conversely, Shannon–Fano coding
shows that the redundancy is always at most 1. Put together, these observations state that the
worst-case redundancy of Huffman codes is 1.

Huffman codes have a redundancy close to 1 only in the degenerate cases described above, and
it is natural to rule out these uninteresting cases by focusing on distributions in which all elements
have probability at most δ. Gallager [5] calculated the worst-case redundancy of Huffman codes as
δ → 0, which we call the asymptotic redundancy : it is 1− log2 e+ log2 log2 e ≈ 0.08607. The exact
worst-case redundancy as a function of δ has been determined by Manstetten [9], following earlier
work of Johnsen [8] and Capocelli et al. [1].

Huffman codes, and prefix codes in general, can be described equivalently by binary decision
trees. These trees describe an algorithm that finds an element x in the support of X using Yes/No
questions. In this setting it is natural to restrict the set of allowed questions. For example, if the
support is x1 ≺ . . . ≺ xn and the set of allowed questions is “x ≺ xi?”, then the resulting tree is a
binary search tree.

Gilbert and Moore [6] showed that the worst-case redundancy of binary search trees is 2, and
Nakatsu [10] showed that the worst-case prolixity (the difference between the expected number of
questions in an optimal binary search tree and the expected number of questions in an optimal
unconstrained binary decision tree) is 1. However, in both cases these extremes are only achieved by
degenerate distributions. This suggests asking what are the asymptotic redundancy and prolixity
of binary search trees.

We consider the asymptotic redundancy and prolixity of three sets of questions: comparison
queries (“x ≺ xi?”), comparison and equality queries (“x ≺ xi?” and “x = xi?”), and interval
queries (“xi � x � xj?”). Our results are described in Table 1, which also describes relevant known
results.

1

Questions
Redundancy Prolixity

Absolute Asymptotic Absolute Asymptotic

All 1 [4] 0.08607 [5] 0 0

Comparisons 2 [6] 1.08607 [10]+[5] 1 [10] 1 [10]

Comparisons
and equalities

1 [3]
≥ 0.50111
≤ 0.58607

Thm 4.6
Thm 3.7

≤ 1 [3] 1/2
Thm 4.6 (LB)
Thm 3.7 (UB)

Intervals 1 [3] ≤ 1/2 Thm 3.1 ≤ 1 [3] ≤ 1/2 Thm 3.1

Table 1: The absolute and asymptotic redundancy and prolixity of several sets of questions.

In the table, 0.08607 stands for 1 − log2 e + log2 log2 e, 0.58607 and 1.08607 are obtained by
adding 1/2 and 1, respectively, and 0.50111 stands for 3 − log2 3 − log2 e + log2 log2 e. All upper
and lower bounds except for the trivial ones and the ones from [3] are proved in this paper, though
not all of them appear as a theorem.

All of our upper bounds are based on variants of the Gilbert–Moore algorithm [6], and all of
our lower bounds follow by analyzing zero-padded uniform distributions.

2 Preliminaries

Notation We use [n] for {1, . . . , n} and Xn for the set {x1, . . . , xn} ordered according to x1 ≺
· · · ≺ xn. All our logarithms are base 2, and accordingly, we measure entropy in base 2. If π is
a probability distribution over Xn, we will denote by πi the probability of xi, and by πmax the
maximum probability of an element under π.

Decision trees A (binary) decision tree describes a strategy for revealing a secret element x ∈ Xn

by using Yes/No question; we will use the term algorithm interchangeably. It is described by a
binary tree in which each internal node is labeled by a subset of Xn called a question and has
exactly two children, the corresponding edges are labeled Yes and No, and each leaf is labeled by
an element of Xn. A decision tree is valid for a distribution π if each element in the support of π
appears as the label of exactly one leaf, elements outside the support do not appear at all, and if
we “execute” the decision tree on any element x in the support of π, we reach a leaf labeled x. If
all questions in a decision tree belong to a set Q ⊆ 2Xn , then we call it a decision tree using Q.

Given a decision tree T valid for some distribution π and an element xi in the support of π, we
denote by T (xi) the depth of xi (number of questions until xi is revealed), and by T (π) the cost of
T , which is the average depth of an element, given by

∑
xi∈supp(π) πiT (xi). The optimal cost of a

distribution π with respect to a set of questions Q, denoted c(Q, π), is the minimum cost of a valid
decision tree for π using Q.

The optimal cost of an unrestricted decision tree for π is denoted by Opt(π) = c(2Xn , µ). Such
a decision tree is also known as a minimum redundancy code, and can be found using Huffman’s
celebrated algorithm [7]. We call a decision tree for π with optimal cost an optimal decision tree
for π. It is well-known that H(π) ≤ Opt(π) < H(π) + 1.

A distribution π is dyadic if the probability of each element in the support of π is of the form
2−m. We can associate with each decision tree T a corresponding dyadic distribution µ given by
µi = 2−T (xi). If T is an optimal decision tree for π and µ is constructed in this way, then we call µ

2

a Huffman distribution for π.1

Common sets of questions For each n, we will consider the following sets of questions on Xn:

• Q(n)
all is the set of unrestricted queries, that is, 2Xn .

• Q(n)
≺ is the set of all comparison queries “x ≺ xi?” for i ∈ [n].

• Q(n)
≺,= is the set of all comparison queries “x ≺ xi?” together with all equality queries “x = xi?”

for all i ∈ [n].

• Q(n)
� is the set of all interval queries “xi � x � xj?” for all i ≤ j ∈ [n].

We denote by Qall the sequence (Q(n)
all)∞n=1, and define Q≺,Q≺,=,Q� similarly.

Redundancy and prolixity Let Q be a sequence (Q(n))∞n=1 of sets of questions, where Q(n) ⊆
2Xn . The absolute redundancy of Q, denoted rH(Q), is the infimum r such that for all n and for
all distributions π on Xn, we have c(Q(n), π) ≤ H(π) + r. The absolute prolixity of Q, denoted
rOpt(Q), is defined in the same way, with H(π) replaced by Opt(π).

For a parameter ε > 0, we define rHε (Q) as the infimum r such that for all n ≥ 1/ε and for all
distributions π on Xn in which πmax ≤ ε, we have c(Q(n), π) ≤ H(π)+r. Trivially, rH(Q) = rH1 (Q).
The asymptotic redundancy of Q, denoted rH0 (Q), is defined as limε→0 r

H
ε (Q). The asymptotic

prolixity rOpt
0 (Q) is defined in the same way, with H(π) replaced by Opt(π).

3 Algorithms

The algorithms in this paper are all based on the Gilbert–Moore method [6] (also known as
Shannon–Fano–Elias encoding). This encoding scheme, which corresponds to an algorithm using
only comparison queries (i.e. the set Q≺), proceeds as follows.

Let π be a distribution over Xn. We associate with each element xi ∈ Xn a point pi ∈
[0, 1]. The algorithm performs a binary search over [0, 1], maintaining an interval that contains
the “live” elements (those consistent with the answers to the preceding questions). The initial
interval is [0, 1], and its length decreases by half in each iteration. At each step, the algorithm
asks a comparison query which separates the elements in the left half of the interval from those in
its right half. The algorithm stops whenever the interval contains only a single element. Setting
pi = π1 + · · ·+ πi−1 + πi/2 guarantees that element xi will be identified whenever the interval is of
length at most πi/2; this takes at most dlog(2/πi)e questions, for a total average of

n∑
i=1

πi

⌈
log

2

πi

⌉
<

n∑
i=1

πi

(
log

2

πi
+ 1

)
= H(π) + 2. (1)

This proves that rH(Q≺) ≤ 2.
The upper bound in (1) can be improved to Opt(π) + 1 (this implies the preceding bound since

Opt(π) < H(π)+1), as was noticed by Nakatsu [10]. Let τ be a Huffman distribution for π. Setting

1Gallager [5] showed that not all minimum redundancy codes can be constructed using Huffman’s algorithm. We
ignore this distinction here.

3

pi = τ1 + · · ·+ τi−1 + τi/2 guarantees that it takes dlog(2/τi)e = log(2/τi) questions to identify xi,
for a total average of

n∑
i=1

πi

(
log

2

τi

)
= Opt(π) + 1.

This proves that rOpt(Q≺) ≤ 1.
Enabling also equality queries (i.e. the set Q≺,=), and introducing randomness, we can reduce

the cost further. We describe the idea informally here, and implement it formally during the
rest of the section. Each element xi is assigned an interval Ti ⊆ [0, 1] which is disjoint from the
other intervals and placed between Ti−1 and Ti+1, and a point pi which is the midpoint of Ti.
While Gilbert–Moore maintains an interval in its binary search, the new algorithm maintains an
interval-with-holes I. The algorithm behaves similarly to Gilbert–Moore, with the following change:
whenever I contains an interval Ti of size |I|/2 in its entirety, the algorithm asks whether x = xi
(recall that x is the secret element). If the question is answered positively then the algorithm
stops, and otherwise Ti is removed from I, creating a hole. Placing the intervals T1, . . . , Tn along
[0, 1] randomly allows getting non-trivial bounds on the expected number of questions required to
identify each element.

3.1 Upper bound for interval queries

In this subsection we flesh out the ideas just described in the case of interval queries Q�, which is
easier than the case of comparison and equality queries Q≺,=. We will prove the following theorem.

Theorem 3.1. rOpt(Q�) ≤ 1/2.

Let π be a distribution over Xn, and let τ be a Huffman distribution for π. We will show that
the following randomized algorithm using Q� has expected cost at most Opt(π) + 1/2, implying
Theorem 3.1.

Algorithm CP. Associate with each element xi an interval of length τi on the unit circumference
circle, whose points we identify with [0, 1): choose a uniformly random starting point, and place
the intervals T1, . . . , Tn consecutively. Denote the midpoint of Ti by pi.

The algorithm maintains an interval-with-holes—an interval in [0, 1) from which some of the
intervals Ti have potentially been removed—which contains the midpoints pi corresponding to the
live elements, which are those consistent with the answers to previous questions. We denote the
interval-with-holes after the `’th question by I`, and maintain the invariant that the length of I`
(excluding the holes) is exactly 2−`.

Initialize I0 = [0, 1), and execute the following steps for ` = 1, 2, . . . until I` contains a single
element:

1. If I`−1 completely contains some interval Ti of size 2−` then ask whether x = xi (if there exist
two such elements, choose one arbitrarily; both questions are equivalent). If so, terminate.
Otherwise, remove Ti from I`−1 to obtain I`, and continue to the next iteration.

2. If I`−1 contains no interval of size 2−` in its entirety, partition I`−1 into two intervals-with-
holes of length 2−` (this could cut one of the intervals Ti into two halves), and ask which
one contains the midpoint corresponding to x. Set I` accordingly, and continue to the next
iteration. /

4

Each question in the algorithm can be implemented using an interval query, since in Step 1 it
is an equality query (which is also an interval query), and in Step 2 it is patently an interval query.

The analysis of the algorithm relies on crucial properties of I`:

Lemma 3.2. For all ` ≥ 0, the interval I` satisfies the following two properties:

1. The two endpoints of I` are of the form a/2` for some integer a.

2. The length of each hole is 2−r for r ≤ `.

Proof. The proof is by induction. Both properties clearly hold for I0. Supposing that they hold for
I`−1, we will prove that they also hold for I`, depending on which of the two steps in the algorithm
was executed.

In Step 1, we form I` by removing an interval of length 2−` from I`−1. This shows that the
second property is maintained. If the hole doesn’t touch the endpoints, the first property is clearly
maintained. If the hole touches the left endpoint a/2`−1 (the other case is similar) then the new
left endpoint is

a

2`−1
+ 2−` +

∑
j

2−rj ,

where the 2−rj are the lengths of all holes which are skipped (if any). Since rj ≤ `− 1 for all j by
the induction hypothesis, the new left endpoint is of the form a′/2`.

In Step 2, we form I` by splitting I`−1 at a midpoint (there could be two midpoints, on two sides
of a hole). This is the same as cutting out intervals of total length 2−` (possibly splitting one of
them into two parts), and an analysis as in Step 1 shows that both properties are maintained.

The performance of the algorithm is captured by the following lemma:

Lemma 3.3. For all xi ∈ Xn, Algorithm CP uses at most log 1
τi

+ 1/2 questions, in expectation,
to identify xi as the secret element.

Proving the lemma completes the proof of Theorem 3.1, since the expected number of queries
of Algorithm CP is at most

n∑
i=1

πi

(
log

1

τi
+

1

2

)
= Opt(π) +

1

2
.

Proof of Lemma 3.3. Consider an element xi ∈ Xn as the secret element, and let τi = 2−m. Since
Ti is placed at a random position in the unit circle, its midpoint pi is a random point on the unit
circle. We let pi = (b + θ)/21−m, where b is an integer and θ ∈ [0, 1) is distributed uniformly on
[0, 1). Denote by E the event that 1/4 ≤ θ ≤ 3/4, which happens with probability 1/2. Since
(1/4)/21−m = |Ti|/2, in that case Ti ⊆ [b/21−m, (b+ 1)/21−m].

If the algorithm reaches iteration ` = m + 1, then the interval Im+1 is an interval of length
2−m−1 containing the midpoint of Ti. Since half of Ti already has length 2−m−1, we see that Im+1

must contain only Ti. In other words, the algorithm always terminates after asking at most m+ 1
questions.

We now show that if the event E happens then the algorithm finds xi after asking at most m
questions. Indeed, suppose that xi has not been found after m− 1 questions. Since Im−1 contains
the midpoints of all live elements, it contains pi = (b+ θ)/21−m. On the other hand, the endpoints
of Im−1 are of the form a/21−m, and so Im−1 contains all of [b/21−m, (b + 1)/21−m] ⊇ Ti. Thus
Step 1 is executed at iteration ` = m, revealing xi.

We conclude that xi is found after at most (1/2)m + (1/2)(m + 1) = m + 1/2 = log 1
τi

+ 1/2
questions, in expectation.

5

We can slightly modify the algorithm in order to handle non-dyadic distributions τ . We change
the condition of Case 1 from containing all of an interval Ti of length 2−` to containing a part of
length at least 2−` of an interval Ti, including its midpoint pi. Also, instead of removing Ti from
I`−1 we remove a sub-interval of Ti of length 2−` that contains the midpoint pi.

A very similar analysis then shows that element xi is found after log 1
τi

+ 1 − α questions in

expectation, where α ∈ [1/2, 1) is the unique number in [1/2, 1) satisfying τi = α/21−m.

3.2 Upper bound for comparison and equality queries

The main idea in the previous subsection was to place the intervals at a uniformly random position,
and this implied that the expected number of queries required to find xi is log 1

τi
+ 1/2. As can

be verified by examining the proof of Lemma 3.3, it is sufficient that pi mod 2τi be distributed
uniformly in [0, 2τi). The following algorithm exploits this idea to reduce the set of questions from
Q� to Q≺,=.

Before stating the algorithm, we need a simple lemma from [3]:

Lemma 3.4. Let p1 ≥ . . . ≥ pn be a non-increasing list of numbers of the form pi = 2−ai (for
integer ai), and let a ≤ a1 be an integer. If

∑n
i=1 pi ≥ 2−a then for some m we have

∑m
i=1 pi = 2−a.

We can now state the algorithm. Let π be a distribution over Xn, and let τ be a Huffman
distribution for π with maximal probability τmax = 2−`.

Algorithm IP. Partition Xn into 2`−2 sets of measure 2−(`−2) (Lemma 3.4 shows that this is
always possible). Choose a random such set, and halve all of its probabilities. Let q1, . . . , qn be the
resulting sub-distribution; note that these probabilities sum to 1− 2−(`−1).

Associate with each element xi an interval of length qi on the unit interval [0, 1] by choosing a
random starting point in [0, 2−(`−1)) and placing the intervals T1, . . . , Tn consecutively.

Continue as in Algorithm CP, replacing the placement of the intervals T1, . . . , Tn with the one
described here. /

The analog of Lemma 3.3 is:

Lemma 3.5. For all xi ∈ Xn, Algorithm IP uses at most log 1
τi

+ 1/2 + 4τmax questions, in
expectation, to identify xi as the secret element.

Proof. Let pi = (b + θ)/21−m, as in the proof of Lemma 3.3. That proof only relied on the fact
that θ is distributed uniformly on [0, 1). Since m ≥ ` and the starting point of T1 was uniform
in [0, 2−(`−1)), this still holds, and so the proof of Lemma 3.3 implies that given q1, . . . , qn, the
expected number of questions to identify xi is at most

log
1

qi
+

1

2
.

On the other hand, qi = τi with probability 1− 2−(`−2) = 1− 4τmax, and qi = τi/2 with probability
4τmax. The lemma immediately follows.

We can relate τmax to πmax using the following simple result [2, Lemma 1]:

Claim 3.6 ([2, Lemma 1]). Let π be any distribution, and let τ be a corresponding Huffman
distribution. If the maximal probability in τ is 2−` then the maximal probability in π is at least
1/(2`+1 − 1).

6

This claim allows us to prove the main result of this subsection.

Theorem 3.7. Suppose that π is a distribution in which the maximum element has probability less
than 1/(2` − 1). Then there is an algorithm using Q≺,= with cost at most Opt(π) + 1/2 + 22−`.

Proof. Let τ be a Huffman distribution corresponding to π. Claim 3.6 shows that all probabilities
in τ are at most 2−`. Lemma 3.5 shows that Algorithm IP uses this many questions in expectation:

n∑
i=1

πi

(
log

1

τi
+

1

2
+ 22−`

)
= Opt(π) +

1

2
+ 22−`.

The upper bound rOpt
0 (Q≺,=) ≤ 1/2 follows as an immediate corollary. A classical result of

Gallager [5, Theorem 2] immediately implies that rH0 (Q≺,=) ≤ 3/2− log e+ log log e:

Theorem 3.8 ([5, Theorem 2]). If the distribution π on Xn has maximum probability πmax then
rOpt(Qall, π) ≤ πmax + 1− log e+ log log e.

4 Lower bounds

In this subsection we lower bound the values of rH0 and rOpt
0 on the sets Q≺ and Q≺,=. The results

on Q≺ can be regarded as folklore, and those on Q≺,= essentially appear in Spuler [11]. We include
the complete proofs here for definiteness.

To simplify notation, we will consider distributions in which some elements have zero probability.
In contrast to the definition in Section 2, we ask that any decision tree for such distributions be
correct on all elements. The same lower bounds can be achieved on full support distributions by
replacing all zero probability elements with small probability elements; details left to the reader.

The distributions we are interested in are padded uniform distributions:

• Un = (1/n, . . . , 1/n); for example, U2 = (1/2, 1/2).

• U0
n = (0, 1/n, . . . , 1/n); for example, U0

2 = (0, 1/2, 1/2).

• Pn = (1/n, 0, 1/n, . . . , 0, 1/n); for example, P2 = (1/2, 0, 1/2).

• P0
n = (0, 1/n, 0, 1/n, . . . , 0, 1/n); for example, P0

2 = (0, 1/2, 0, 1/2).

• P00
n = (0, 1/n, 0, 1/n, . . . , 0, 1/n, 0); for example, P00

2 = (0, 1/2, 0, 1/2, 0).

We calculate the cost of these distributions under Q≺ and under Q≺,=, and compare these to
the optimal costs. In all cases, we will show that the best strategy is to split the distributions as
equally as possible, at least for large enough n.

It will be useful to work with a scaled cost,

C(Q,Un) = n · c(Q,Un),

defined analogously for the other distributions.
The following observation will be crucial:

Lemma 4.1. Suppose n = α2k, where α ∈ [1/2, 1]. Then `n− 2` is maximized over the integers at
` = k.

7

Proof. Let ∆` = `n− 2`. Note that

∆`+1 −∆` = (`+ 1)n− `n− 2`+1 + 2` = n− 2`.

Thus ∆`+1 ≥ ∆` iff n ≥ 2`. In particular, since n ≥ 2k−1 we conclude that ∆k ≥ ∆k−1 ≥ · · · , and
since n ≤ 2k we conclude that ∆k ≥ ∆k+1 ≥ · · · .

Corollary 4.2. Let B > 0, and suppose that n = Bα2k, where α ∈ [1/2, 1]. Then `n − B2` is
maximized over the integers at ` = k.

Proof. Apply the lemma to m = n/B, noticing that `n−B2` = B(`m− 2`).

We start by analyzing the cost of these distributions under unrestricted decision trees:

Lemma 4.3. Suppose n = α2k, where α ∈ [1/2, 1]. Then

c(Qall,Un) = k + 1− 1

α
,

c(Qall,U
0
n) = k + 1− 1− 2−k

α
.

Moreover, the bound on U0
n holds for any distribution obtained from Un by adding any (positive)

number of zeroes, and in particular for Pn,P
0
n,P

00
n .

Proof. In terms of the scaled cost, our goal is to prove

C(Qall,Un) = (k + 1)n− 2k,

C(Qall,U
0
n) = (k + 1)n− 2k + 1.

The proof is by induction on n. For the base case, n = 1, we are claiming that C(Qall, (1)) = 0 and
C(Qall, (0, 1)) = 1; both claims are easy to verify.

Suppose now that n > 1. Any non-trivial algorithm for Un splits Un into Un1 ,Un2 for some
n1 + n2 = n, where n1, n2 ≥ 1. Lemma 4.1 (choosing ` = k − 1) shows that the scaled cost of such
an algorithm is

n+ C(Qall,Un1) + C(Qall,Un2) ≥ n+ [kn1 − 2k−1] + [kn2 − 2k−1] = (k + 1)n− 2k.

To show that (k+1)n−2k can be achieved, we consider two cases. If n = 2m then 2k−2 ≤ m ≤ 2k−1,
and so splitting Un into Um,Um results in a scaled cost of

n+ 2(km− 2k−1) = (k + 1)n− 2k.

If n = 2m + 1 then 2k−2 ≤ m + 1/2 ≤ 2k−1, and so 2k−2 ≤ m ≤ m + 1 ≤ 2k−1. Splitting Un into
Um,Um+1 thus results in a scaled cost of

n+ [km− 2k−1] + [k(m+ 1)− 2k−1] = (k + 1)n− 2k.

This completes the proof in the case of Un.
The proof of the inductive step for U0

n is very similar, and left to the reader; the crucial obser-
vation is that any non-trivial algorithm splits U0

n into Un1 ,U
0
n2

for some positive n1, n2 satisfying
n1 + n2 = n.

Finally, the claim about distributions obtained from U0
n by adding zeroes follows from Huffman’s

algorithm.

8

We continue by analyzing the cost under decision trees using Q≺:

Lemma 4.4. Suppose n = α2k, where α ∈ [1/2, 1]. Then

c(Q≺,Pn) = k + 2− 1 + 2−k

α
,

c(Q≺,P0
n) = k + 2− 1

α
,

c(Q≺,P00
n) = k + 2− 1− 2−k

α
.

Proof. The proof of this lemma is very similar to the proof of Lemma 4.3. In terms of the scaled
cost, we are aiming at proving the following:

C(Q≺,Pn) = (k + 2)n− 2k − 1,

C(Q≺,P0
n) = (k + 2)n− 2k,

C(Q≺,P00
n) = (k + 2)n− 2k + 1.

When n = 1, we verify that c(Q≺, (1)) = 0, c(Q≺, (0, 1)) = 1, and c(Q≺, (0, 1, 0)) = 2.
For the induction step, note that the distributions split as follows:

Pn −→ Pn1 ,P
0
n2
,

P0
n −→ Pn1 ,P

00
n2
| P0

n1
,P0

n2
,

P00
n −→ P0

n1
,P00

n2
,

where in all cases, n1 + n2 = n. The rest of the proof is very similar to that of Lemma 4.3, and we
leave it to the reader.

Finally, we analyze the cost under decision trees using Q≺,= (a similar calculation appears in
Spuler [11]):

Lemma 4.5. Suppose n = 3α2k, where α ∈ [1/2, 1] and k ≥ 0. Then

c(Q≺,=,Pn) = k + 3− 1

α
,

and the same formula holds for P0
n and P00

n .
When n = 1:

c(Q≺,=,P1) = 0,

c(Q≺,=,P0
1) = c(Q≺,=,P00

1) = 1.

Proof. In terms of the scaled cost, our goal is to prove that for n > 1,

C(Q≺,=,Pn) = (k + 3)n− 3 · 2k,

and the same holds for P0
n and P00

n .
The base case requires us to verify that C(Q≺,=, (1)) = 0 while C(Q≺,=, (0; 1)) = 1 and

C(Q≺,=, (0; 1; 0)) = 1.
We also need to verify the cases n = 2 and n = 3 manually. We verify that the scaled cost of

the distributions P2,P
0
2,P

00
2 is 3, and that of P3,P

0
3,P

00
3 is 6.

9

The induction step is very similar to the analysis in Lemma 4.4, replacing Lemma 4.1 by
Corollary 4.2 (with B = 3); note that equality queries correspond to the choice n1 = 1, since the
surrounding zero probability elements (if there is more than one) can be merged without affecting
the cost.

There is one slight difficulty: the analysis uses the formulas for the scaled costs of Pm,P
0
m,P

00
m ,

but these are invalid when m = 1. These formulas are used for both the lower bound and the upper
bound. The case m = 1 only appears in the upper bound when n ≤ 3. In the lower bound, the
formulas are used only via Corollary 4.2 applied to ` = k − 1. In view of this, it suffices to verify
that when n ≥ 4 (and so k ≥ 1), the inequality C(Q≺,=,P1) = 0 ≥ (k + 2)− 3 · 2k−1 holds.

Using these results, we can obtain lower bounds on the asymptotic redundancy and prolixity of
Q≺ and Q≺,=:

Theorem 4.6. The asymptotic redundancy and prolixity of Q≺ and Q≺,= are lower bounded by

rH0 (Q≺,=) ≥ 3− log 3− log e+ log log e ≈ 0.5011,

rOpt
0 (Q≺,=) ≥ 1/2,

rH0 (Q≺) ≥ 2− log e+ log log e ≈ 1.08607,

rOpt
0 (Q≺) ≥ 1.

Proof. We start by proving the results on Q≺. Let n = α2k, where α ∈ [1/2, 1]. Lemma 4.4 shows
that

c(Q≺,P0
n)−H(P0

n) =
[
k + 2− 1

α

]
−
[
k + logα

]
= 2− 1

α
− logα.

The choice of α ∈ [1/2, 1] that maximizes this quantity is α = 1/ log e, and this shows that
rH0 (Q≺) ≥ 2− log e+ log log e; note that while 2k/ log e is never an integer, for large k the quantity
αk defined by αk2

k = bα2kc is very close to α, and so in the limit k → ∞ we obtain the stated
bound. The same argument (substituting Lemma 4.3 for Lemma 4.4) proves Gallager’s result [5]
rH0 (Qall) ≥ 1− log e+ log log e.

Lemma 4.4 and Lemma 4.3 together show that

c(Q≺,P00
n)− c(Qall,P

00
n) =

[
k + 2− 1− 2−k

α

]
−
[
k + 1− 1− 2−k

α

]
= 1.

This shows that rOpt
0 (Q≺) ≥ 1.

We continue with the lower bound on rH0 (Q≺,=). Let n = 3α2k, where α ∈ [1/2, 1] and k ≥ 0.
Lemma 4.5 shows that

c(Q≺,=,Pn)−H(Pn) =
[
k + 3− 1

α

]
−
[
k + log 3 + logα

]
= 3− log 3− 1

α
− logα.

The choice of α ∈ [1/2, 1] that maximizes this quantity is α = 1/ log e, and this shows that
rH0 (Q≺) ≥ 3− log 3− log e+ log log e.

Finally, we prove the lower bound on rOpt
0 (Q≺,=). Let n = 2k = 3α2k−1, where α := 2/3.

Lemma 4.5 and Lemma 4.3 together show that

c(Q≺,=,Pn)− c(Qall,Pn) =
[
k +

1

2

]
−
[
k + 2−k

]
=

1

2
− 2−k.

This shows that rOpt
0 (Q≺,=) ≥ 1/2.

10

References

[1] Renato M. Capocelli, Raffaele Giancarlo, and Indeer Jeet Taneja. Bounds on the redundancy
of Huffman codes. IEEE Transactions on Information Theory, IT-32(6):854–857, 1986.

[2] Renato M. Capocelli and Alfredo De Santis. Variations on a theme by Gallager. In Image
and Text Compression, volume 176 of The Kluwer International Series in Engineering and
Computer Science, pages 181–213, 1992.

[3] Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. Twenty (simple) questions. In
Proceedings of the 49th ACM Symposium on Theory of Computing (STOC 2017), 2017.

[4] Robert Mario Fano. The transmission of information. Technical Report 65, Research Labora-
tory of Electronics at MIT, Cambridge (Mass.), USA, 1949.

[5] Robert G. Gallager. Variations on a theme by Huffman. IEEE Transactions on Information
Theory, IT-24(6):668–674, 1978.

[6] E. N. Gilbert and E. F. Moore. Variable-length binary encodings. Bell System Technical
Journal, 38:933–967, 1959.

[7] David A. Huffman. A method for the construction of minimum-redundancy codes. In Pro-
ceedings of the I.R.E., pages 1098–1103, 1952.

[8] Ottar Johnsen. On the redundancy of binary Huffman codes. IEEE Transactions on Infor-
mation Theory, IT-26(2):220–222, 1980.

[9] Dietrich Manstetten. Tight bounds on the redundancy of Huffman codes. IEEE Transactions
on Information Theory, IT-38(1):144–151, 1992.

[10] Narao Nakatsu. Bounds on the redundancy of binary alphabetical codes. IEEE Transactions
on Information Theory, IT-37(4):1225–1229, 1991.

[11] David A. Spuler. Optimal Binary Trees With Two-Way Key Comparisons. PhD thesis, James
Cook University, 1994.

11

	Introduction
	Preliminaries
	Algorithms
	Upper bound for interval queries
	Upper bound for comparison and equality queries

	Lower bounds

