
Twenty (Simple) �estions
Yuval Dagan

Technion — Israel Institute of Technology

Computer Science Department

Haifa, Israel

yuval.dagan@cs.technion.ac.il

Yuval Filmus

Technion — Israel Institute of Technology

Computer Science Department

Haifa, Israel

yuval�@cs.technion.ac.il

Ariel Gabizon

Zerocoin Electronic Coin Company (Zcash)

Lakewood, CO, USA

ariel.gabizon@gmail.com

Shay Moran

University of California at San Diego

Computer Science and Engineering Department

San Diego, CA, USA

Simons Institute for the Theory of Computing

Berkeley, CA, USA

shaymoran1@gmail.com

ABSTRACT
A basic combinatorial interpretation of Shannon’s entropy function

is via the “20 questions” game. This cooperative game is played by

two players, Alice and Bob: Alice picks a distribution π over the

numbers {1, . . . ,n}, and announces it to Bob. She then chooses a

number x according to π , and Bob attempts to identify x using as

few Yes/No queries as possible, on average.

An optimal strategy for the “20 questions” game is given by a

Hu�man code for π : Bob’s questions reveal the codeword for x bit

by bit. This strategy �nds x using fewer than H (π)+ 1 questions on

average. However, the questions asked by Bob could be arbitrary. In

this paper, we investigate the following question: Are there restricted
sets of questions that match the performance of Hu�man codes, either
exactly or approximately?

Our �rst main result shows that for every distribution π , Bob

has a strategy that uses only questions of the form “x < c?” and

“x = c?”, and uncoversx using at mostH (π)+1 questions on average,

matching the performance of Hu�man codes in this sense. We also

give a natural set ofO (rn1/r) questions that achieve a performance

of at most H (π) + r , and show that Ω(rn1/r) questions are required

to achieve such a guarantee.

Our second main result gives a set Q of 1.25n+o (n) questions

such that for every distribution π , Bob can implement an optimal
strategy for π using only questions from Q. We also show that

1.25n−o (n) questions are needed, for in�nitely many n. If we allow

a small slack of r over the optimal strategy, then roughly (rn)Θ(1/r)

questions are necessary and su�cient.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . . $15.00

DOI: 10.1145/3055399.3055422

CCS CONCEPTS
• Mathematics of computing → Combinatoric problems; In-
formation theory;

KEYWORDS
combinatorial search theory, twenty questions game, binary deci-

sion tree, information theory, redundancy

ACM Reference format:
Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran. 2017. Twenty

(Simple) Questions. In Proceedings of 49th Annual ACM SIGACT Symposium
on the Theory of Computing, Montreal, Canada, June 2017 (STOC’17), 13 pages.

DOI: 10.1145/3055399.3055422

1 INTRODUCTION
A basic combinatorial and operational interpretation of Shannon’s

entropy function, which is often taught in introductory courses on

information theory, is via the “20 questions” game (see for example

the well-known textbook [17]). This game is played between two

players, Alice and Bob: Alice picks a distribution π over a (�nite)

set of objects X , and announces it to Bob. Alice then chooses an

object x according to π , and Bob attempts to identify the object

using as few Yes/No queries as possible, on average.
1

The “20 questions” game is the simplest model of combinatorial
search theory [3] and of combinatorial group testing [20]. It also has a

natural interpretation in the context of interactive learning [15]: Bob

wishes to learn the secret x , and may interact with the environment

(Alice) by querying features of x .

What questions should Bob ask? An optimal strategy for Bob is

to compute a Hu�man code for π , and then follow the correspond-

ing decision tree: his �rst query, for example, asks whether x lies

in the left subtree of the root. While this strategy minimizes the

1
Another basic interpretation of Shannon’s entropy function is via the transmission

problem, in which Alice wishes to transmit to Bob a message x drawn from a distribu-

tion π overX , over a noiseless binary channel, using as few bits as possible on average.

While the entropy captures the complexity of both problems, the two problems di�er

in the sense that in the “20 questions” game, Alice is “passive”: she only answers the

queries posed by Bob, but she does not help him by “actively” transmitting him the

secret x , as she does in the transmission problem.

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

expected number of queries, the queries themselves could be arbi-

trarily complex; already for the �rst question, Hu�man’s algorithm

draws from an exponentially large reservoir of potential queries.

Therefore, it is natural to consider variants of this game in which

the set of queries used is restricted; for example, it is plausible that

Alice and Bob would prefer to use queries that (i) can be communi-

cated e�ciently (using as few bits as possible), and (ii) can be tested

e�ciently (i.e. there is an e�cient encoding scheme for elements

of X and a fast algorithm that given x ∈ X and a query q as input,

determines whether x satis�es the query q).

We summarize this with the following meta-question, which

guides this work:

Main question
Are there “nice” sets of queries such that for any distribution,

there is a “high quality” strategy that uses only these queries?

Formalizing this question depends on how “nice” and “high qual-

ity” are quanti�ed.

Variants of this question, which focus on speci�c sets of queries,

are commonplace in computer science and related �elds. Here are

just a few examples:

• Binary decision trees, as used in statistics, machine learn-

ing, pattern recognition, data mining, and complexity the-

ory, identifyX as a subset of {0, 1}n , and allow only queries

of the form “xi = 1?”.

• Feature selection and generation in machine learning can

naturally be interpreted as the task of �nding queries that

reveal a lot of information about the learned concept.

• In the setting of binary search trees, X is a linearly ordered

set, and the set of queriesQ is the set of comparison queries,

“x < c , x = c , or x > c?”.
2

• In the setting of comparison-based sorting algorithms, X
is the set of permutations or linear orders over an array

x1, . . . ,xn , and Q contains queries of the form “xi < x j?”.

• Algebraic decision trees, used in computational geometry

and studied in complexity theory, identify X = Fn for

some �eld F, and allow queries of the form “P (~x) = 0?”

(or “P (~x) ≥ 0?” when F is an ordered �eld) for low-degree

polynomials.

• Searching in posets generalizes binary search trees by al-

lowing X to be an arbitrary poset (usually a rooted tree).

The set of queries Q is the set of comparison queries of the

form “x ≺ c?”.

We consider two di�erent benchmarks for sets of queries:

(1) An information-theoretic benchmark: A set of queries

Q has redundancy r if for every distribution π there is a

strategy using only queries fromQ that �nds x with at most

H (π) + r queries on average when x is drawn according

to π .

(2) A combinatorial benchmark: A set of queries Q is r -
optimal (or has prolixity r) if for every distribution π there

2
A comparison query has three possible answers: “<”, “=”, and “>”, and so in this

setting it is more natural to consider the variant of the “20 questions” game in which

three answers are allowed.

is a strategy using queries from Q that �nds x with at most

Opt(π)+r queries on average when x is drawn according to

π , where Opt(π) is the expected number of queries asked

by an optimal strategy for π (e.g. a Hu�man tree).

Given a certain redundancy or prolixity, we will be interested in

sets of questions achieving that performance that (i) are as small

as possible, and (ii) allow e�cient construction of high quality

strategies which achieve the target performance. In some cases we

will have to settle for only one of these properties.

Information-theoretical benchmark. Let π be a distribution over

X . A basic result in information theory is that every algorithm

that reveals an unknown element x drawn according to π (in short,

x ∼ π) using Yes/No questions must make at least H (π) queries on

average. Moreover, there are algorithms that make at most H (π)+1
queries on average, such as Hu�man coding and Shannon–Fano

coding. However, these algorithms may potentially use arbitrary

queries.

Are there restricted sets of queries that match the performance

of H (π) + 1 queries on average, for every distribution π? Consider

the setting in which X is linearly ordered (say X = [n], with its

natural ordering: 1 < · · · < n). Gilbert and Moore [34], in a result

that paved the way to arithmetic coding, showed that two-way

comparison queries (“x < c?”) almost �t the bill: they achieve a

performance of at most H (π) + 2 queries on average. Our �rst

main result shows that the optimal performance of H (π) + 1 can

be achieved by allowing also equality queries (“x = c?”):

Theorem 1.1. For every distribution π there is a strategy that uses
only comparison and equality queries which �nds x drawn from π
with at most H (π) + 1 queries on average. Moreover, such a strategy
can be computed in time O (n logn).

In a sense, this result gives an a�rmative answer to our main

question above. The set of comparison and equality queries (�rst

suggested by Spuler [81]) arguably quali�es as “nice”: linearly

ordered universes appear in many natural and practical settings

(numbers, dates, names, IDs) in which comparison and equality

queries can be implemented e�ciently. Moreover, from a commu-

nication complexity perspective, Bob can communicate a compari-

son/equality query using just log
2
n + 1 bits (since there are just 2n

such queries). This is an exponential improvement over the Ω(n)
bits he would need to communicate had he used Hu�man coding.

We extend this result to the case where X is a set of vectors

of length r , ~x = (x1, . . . ,xr), by showing that there is a strategy

using entry-wise comparisons (“xi < c?”) and entry-wise equalities

(“xi = c?”) that achieves redundancy r :

Theorem 1.2. LetX be the set of vectors of length r over a linearly
ordered universe. For every distribution π there is a strategy that uses
only entry-wise comparison queries and entry-wise equality queries
and �nds ~x ∼ π with at mostH (π)+r queries. Moreover, this strategy
can be computed in time O (|X | log |X |).

This shows that in settings that involve lists or vectors, entry-

wise comparison and equality queries achieve redundancy that

is equal to the length of the vectors. The theorem is proved by

applying the algorithm of the preceding theorem to uncover the

vector ~x entry by entry.

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

As a toy example, imagine that we wish to maintain a data struc-

ture that supports an operation �nd (~x), where each x is represented

by a list (x1, . . . ,xr) of r numbers (think of r as small, say r = 9 and

the ~x ’s denote Social Security Numbers). Moreover, assume that

we have a good prior estimate on π (x) — the frequency of �nd (x)
operations (derived from past experience, perhaps even in an online

fashion). The above corollary shows how to achieve an amortized

cost of H (π) + r per �nd (~x) operation, accessing the input only via

queries of the form “xi < c?” and “xi = c?”.

As a corollary, we are able to determine almost exactly the min-

imum size of a set of queries that achieves redundancy r ≥ 1. In

more detail, letuH (n, r) denote the minimum size of a set of queries

Q such that for every distribution π on [n] there is a strategy using

only queries from Q that �nds x with at most H (π) + r queries on

average, when x is drawn according to π .

Corollary 1.3. For every n, r ∈ N,

1

e
rn1/r ≤ uH (n, r) ≤ 2rn1/r .

Obtaining this tight estimate of uH (n, r) = Θ(rn1/r) hinges on

adding equality queries; had we used only entry-wise compari-

son queries and the Gilbert–Moore algorithm instead, the result-

ing upper bound would have been uH (n, r) = O
(
rn2/r

)
, which is

quadratically bigger.

Combinatorial benchmark. The analytical properties of the en-

tropy function make H (π) a standard benchmark for the average

number of bits needed to describe an element x drawn from a

known distribution π , and so it is natural to use it as a benchmark

for the average number of queries needed to �nd x when it is drawn

according to π . However, there is a conceptually simpler, and ar-

guably more natural, benchmark: Opt(π) — the average number of

queries that are used by a best strategy for π (several might exist),

such as one generated by Hu�man’s algorithm.

Can the optimal performance of Hu�man codes be matched

exactly? Can it be achieved without using all possible queries? Our

second main result answers this in the a�rmative:

Theorem 1.4. For every n there is a set Q of 1.25n+o (n) queries
such that for every distribution over [n], there is a strategy using
only queries from Q which matches the performance of the optimal
(unrestricted) strategy exactly. Furthermore, for in�nitely many n, at
least 1.25n−o (n) queries are required to achieve this feat.

Consider a setting (similar to the one analyzed in [2, 86]) in which

Alice (the client) holds an element x coming from a domain of size

n, and Bob (the server) tries to determine it. Bob (who has collected

statistics on Alice) knows the distribution π of x , but Alice does

not. Furthermore, the downlink channel from Bob to Alice is much

cheaper than the uplink channel in the opposite direction. If Bob’s

goal is to minimize the amount of information that Alice sends him,

he can use a Hu�man code to have her send the minimum amount

of information on average, namely Opt(π). Naively representing a

question as an arbitrary subset of [n], Bob has to send Opt(π) ·n bits

on average to Alice. Our theorem allows him to cut that amount by

a factor of log 2/ log 1.25 ≈ 3.1, since it only takes log
2
1.25n bits

to specify a question from Q.

One drawback of our construction is that it is randomized. Thus,

we do not consider it particularly “e�cient” nor “natural”. It is

interesting to �nd an explicit set Q that achieves this bound. Our

best explicit construction is:

Theorem 1.5. For every n there is an explicit set Q of O (2n/2)
queries such that for every distribution over [n], there is a strategy
using only queries from Q which matches the performance of the
optimal (unrestricted) strategy exactly. Moreover, we can compute
this strategy in time O (n2).

It is natural to ask in this setting how small can a set of queries

be if it is r -optimal; that is, if it uses at most Opt(π)+r questions on

average when the secret element is drawn according to π , for small

r > 0. Let uOpt (n, r) denote the minimum size of a set of queries Q

such that for every distribution π on [n] there is a strategy using

only queries from Q that �nds x with at most Opt(π) + r queries

on average when x is drawn from π . We show that for any �xed

r > 0, signi�cant savings can be achieved:

Theorem 1.6. For all r ∈ (0, 1):

(r · n)
1

4r . uOpt (n, r) . (r · n)
16

r .

Instead of the exponential number of questions needed to match

Hu�man’s algorithm exactly, for �xed r > 0 an r -optimal set of

questions has polynomial size. In this case the upper bound is

achieved by an explicit set of queriesQr . We also present an e�cient

randomized algorithm for computing an r -optimal strategy that

uses queries from Qr .

Spread-out distributions. Before closing this introduction, let us

go back to the information-theoretical benchmark. We mentioned

that the best performance that can be achieved is H (π) + 1. This

is due to distributions in which one element has probability 1 − ϵ :

such distributions have very small entropy, but require at least one

question to disambiguate the probable element form the rest.

When we rule out such distributions, by requiring all proba-

bilities to be small, the best achievable performance improves to

H (π) + 0.086, a classical result of Gallager [29]. Comparison and

equality queries also bene�t from such a promise:

Theorem 1.7. For every distribution π over [n] in which all el-
ements have low probability there is a strategy that uses only com-
parison and equality queries and �nds x drawn from π with at most
H (π) + 0.586 queries on average.

There are distributions π , in which all elements have low probabil-
ity, that require H (π) + 0.5011 comparison and equality queries on
average to �nd x drawn from π .

Comparison and equality queries thus no longer match the op-

timal performance in this setting, but they do take advantage of

it. The algorithm used to construct the strategy mentioned in the

theorem is very di�erent from the one used to achieve H (π) + 1,

and therefore may be of independent interest.

Organization of the paper. We provide a more complete summary

of the paper in Section 2, followed by a brief literature review in

Section 3. Appendix A corrects reference [18].

This version of the paper is an advertisement for the complete

version of the paper, which is available on arXiv.

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

2 PAPER OUTLINE
In this section we outline our results in more detail, and give some

idea about their proofs.

We start with a few formal de�nitions:

De�nition 2.1. Let Xn = {x1, . . . ,xn }. We think of Xn as linearly

ordered: x1 ≺ x2 ≺ · · · ≺ xn .

Consider the following game: Alice picks an element x ∈ Xn ,

which we call the secret element as it is unknown to Bob, and Bob

asks Yes/No (binary) questions about x , one after the other, until x
is revealed. Each question is of the form “x ∈ A?" for some subset

A ⊆ Xn .

Bob’s strategy can be modeled using a decision tree, which is

a rooted binary tree in which each internal vertex (including the

root) is labeled by a question (a subset of Xn), the two outgoing

edges are labeled Yes and No, and each leaf is labeled by an element

of Xn . Such a tree corresponds to a strategy for Bob: he starts by

asking the question at the root, and continues recursively to one

of its children according to the answer. When reaching a leaf, the

secret element is revealed to be the leaf’s label. Thus, in order for

a tree to be valid, the label of each leaf must be the only element

in Xn which is consistent with the answers to all questions on the

way. If a decision tree uses only questions from Q ⊆ 2
Xn

, we call it

a decision tree using Q.

Alice picks the element x from a distribution π = (π1, . . . ,πn),
where πi = Prx∼π [x = xi]. Bob, who knows π , and has to identify

x among all elements in the support of π . Thus, a decision tree for π
is de�ned as a decision tree for supp(π). The cost of such a tree is

the average number of questions asked on a random element x ∼ π .

We denote the cost of the optimal unrestricted decision tree for π
by Opt(π).

Given a distribution π , its binary entropy is de�ned by H (π) =∑n
i=1 πi log2

1

πi . The binary entropy function is denoted h(p) =

p log
2

1

p + (1−p) log2
1

1−p for 0 ≤ p ≤ 1. A classical inequality due

to Shannon [76] states that

H (π) ≤ Opt(π) < H (π) + 1.

We say that a set of questions Q has redundancy r if for every

distribution π there exists a decision tree using Q whose cost is at

mostH (π)+r . We say that it has prolixity r if for every distribution π
there exists a decision tree using Q whose cost is at most Opt(π)+r .

We will be particularly interested in the following sets of ques-

tions:

• Equality queries: questions of the form “x = xi?” for i ∈
{1, . . . ,n}.

• Comparison queries: questions of the form “x ≺ xi?” for

i ∈ {1, . . . ,n}.
• Interval queries: questions of the form “xi � x � x j?” for

1 ≤ i ≤ j ≤ n.

Section organization. Our results on comparison and equality

queries are described in Subsection 2.1. Our results on sets of ques-

tions that match the performance of Hu�man codes exactly are

described in Subsection 2.2. Our results on sets of question that

achieve small prolixity are described in Subsection 2.3.

2.1 Comparison And Equality Queries
2.1.1 Achieving Redundancy 1. Hu�man codes achieve redun-

dancy 1. Are there small sets of questions which also achieve re-

dundancy 1? A natural candidate is the set of comparison queries,

which gives rise to a class of decision trees known as alphabetic
trees (for the di�erence between these and binary search trees,

see Section 3.1.2). However, for some distributions comparison

queries cannot achieve redundancy smaller than 2: the distribution

(ϵ, 1−2ϵ, ϵ) requires two comparison queries to identify the central

element, but has entropy O (ϵ log(1/ϵ)), which goes to 0 with ϵ .

The only way to achieve redundancy 1 on this kind of distribution

is to also allow equality queries. The resulting class of decision trees,

�rst suggested by Spuler [81, 82], is known as two-way comparison
search trees or binary comparison search trees. To the best of our

knowledge, the redundancy of two-way comparison search trees

has not been considered before. We show:

Theorem 2.2. Comparison and equality queries achieve redun-
dancy 1.

Our proof is constructive: given a distribution π , we show how to

construct e�ciently a decision tree using comparison and equality

queries whose cost is at most H (π) + 1. Our construction is based

on the weight balancing algorithm of Rissanen [73], which uses

only comparison queries:

Weight balancing algorithm
Given a probability distribution π , ask a comparison query

minimizing | Pr[Yes]−Pr[No]|, and recurse on the distribution

of π conditioned on the answer. Stop when the secret element

is revealed.

Horibe [39] showed that this algorithm achieves redundancy 2.

Given the additional power of asking equality queries, it is natural to

ask such queries when some element has large probability. Indeed,

this is exactly what our algorithm does:

Weight balancing algorithm with equality queries
If the most probable element has probability at least 0.3,

compare it to the secret element, and recurse if the answer is

negative.

Otherwise, ask a comparison query minimizing | Pr[Yes] −

Pr[No]|, and recurse on the answer.

The constant 0.3 here is just one of the possible values for which

this algorithm achieves redundancy 1.

Our analysis of the redundancy in the proof of Theorem 2.2

depends on πmax, the probability of the most probable element in

the distribution π . It proceeds by �rst showing that if πmax ≥ 0.3

then the redundancy is at most 1, and then recursively reducing

the case in which πmax < 0.3 to the case πmax ≥ 0.3 via a careful

analysis of how πmax (that now refers to the most probable element

in the recursively de�ned conditional distribution) varies according

to the answers that the algorithm receives.

2.1.2 Higher redundancy. The weight balancing algorithms as-

sume that the domain of π is linearly ordered. Another natural

setting is when the domain is Y r , where Y is a linearly ordered set

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

of size n1/r . In other words, each element of X is a vector of length

r , and the secret element is a vector ~x = (x (1) , . . . ,x (r)).
A corollary to Theorem 2.2 is that in this setting, the set of all

queries of the form “Is x (i) at most y?” and “Does x (i) equal y?”, for

1 ≤ i ≤ r and y ∈ Y , achieves redundancy at most r .

Indeed, suppose that x is drawn according to a probability dis-

tribution π with components π (1) , . . . ,π (r)
. If we determine the

components x (1) , . . . ,x (r) consecutively using the weight balanc-

ing algorithm with equality queries, we obtain a decision tree whose

cost is at most

[H (π (1)) + 1] + [H (π (2) |π (1)) + 1] + · · ·+

[H (π (r) |π (1) , . . . ,π (r−1)) + 1] = H (π) + r .

Since the number of questions is roughly rn1/r , this proves the �rst

part of the following theorem:

Theorem 2.3. There is a set of O (rn1/r) questions that achieve
redundancy r .

Moreover, Ω(rn1/r) questions are required to achieve redundancy r .

The other direction is proved by considering distributions almost

concentrated on a single element: a set of questions Q can have

redundancy r only if it identi�es any single element using at most

r questions, and this shows that 2
r
(
|Q |
≤r

)
≥ n, implying the lower

bound in the theorem.

We slightly improve this lower bound via a connection with

witness codes, which are sets of vectors in {0, 1}m in which each

vector is identi�able using at most r coordinates.

2.1.3 Spread-out distributions. Theorem 2.2 shows that compar-

ison and equality queries achieve redundancy 1. Although this is the

best redundancy achievable, the only distributions which require

this redundancy are those which are almost entirely concentrated

on a single element. Can we obtain a better bound if this is not the

case? More concretely, what redundancy is achievable when the

distribution has high min-entropy, that is, when all elements have

small probability?

To make this question precise, let rp be the maximal redundancy

of comparison and equality queries on distributions in which the

maximal probability is at most p (on an arbitrarily large domain),

and let r0 = limp→0 rp . We show:

Theorem 2.4. The quantity r0 is bounded by

0.5011 < r0 < 0.586.

The lower bound is attained by distributions of roughly the

form ϵ, 1/n, ϵ, 1/n, . . . , ϵ, 1/n, ϵ for n ≈ 3

log
2
e · 2

k
, where k is a

large integer. The upper bound is proved by modifying another

algorithm achieving redundancy 2 using only comparison queries:

the Gilbert–Moore algorithm [34], also known as Shannon–Fano–

Elias encoding, which forms the basis of arithmetic encoding. Before

describing our upper bound, we �rst explain this algorithm and

why it achieves redundancy 2.

Given a distribution π on Xn in which xi has probability πi , the

Gilbert–Moore algorithm proceeds as follows:

Gilbert–Moore algorithm
Partition [0, 1] into segments T1, . . . ,Tn of lengths

π1, . . . ,πn , where Ti+1 is placed to the right of Ti . Put a point

pi at the middle of Ti for all i . Intuitively speaking, we now

perform binary search on [0, 1] to reveal the point pi corre-

sponding to the secret element.

Formally, we maintain an interval I = [a,b], initialized at

[0, 1]. At every iteration we ask whether the secret element

resides to the left or to the right of
a+b
2

, and update I accord-

ingly, decreasing its length by a half (exactly). We stop once I
contains only one point.

The secret element xi is isolated after at most dlog
2

2

πi e <

log
2

1

πi + 2 steps, and so the Gilbert–Moore algorithm has redun-

dancy 2. Indeed, after dlog
2

2

πi e steps, the binary search focuses on

an interval containing pi whose length is at most πi/2 and is thus

contained entirely inside Ti .
The choice of πi as the length ofTi isn’t optimal. A better choice

is 2
−`i

, where `i is the length of the codeword for xi in a Hu�man

code for π . The same argument as before shows that xi is isolated

after at most `i + 1 steps, and so the modi�ed algorithm has cost at

most Opt(π)+1 < H (π)+2. This algorithm appears in Nakatsu [69].

How can we use equality queries to improve on this algorithm?

As in the modi�ed weight balancing algorithm, the idea is to use

equality queries to handle elements whose weight is large. However,

the exact mechanism is rather di�erent:

Random placement algorithm with interval queries
Partition [0, 1] into segments T1, . . . ,Tn of length

2
−`1 , . . . , 2−`n , where `1, . . . , `n are de�ned as explained

above, and put a point pi at the middle of Ti . Then rotate

the entire setup by a random amount.

Perform “modi�ed binary search” on [0, 1]:

• If the current interval J contains a segment Ti of size

|J |/2 in its entirety, ask whether x = xi , and if the

answer is negative, remove Ti from J .
• Otherwise, perform one step of binary search on J ,

as described in the Gilbert–Moore algorithm.

In both cases, the size of J exactly halves at each iteration of the

modi�ed binary search. The same argument as before shows that

xi is always isolated after at most `i + 1 steps. After `i − 1 steps, J is

an interval of length 2 · 2−`i = 2|Ti | containing pi , and it contains

all of Ti with probability 1/2; in this case, xi is isolated after only

`i steps. The resulting algorithm has cost at most Opt(π) + 1/2.

However, since we rotated the entire setup, interval queries are

needed to implement the binary search.

In order to obtain an algorithm which uses comparison queries

rather than interval queries (in addition to equality queries), we

need to constrain the rotation somehow. Re�ecting on the argument

above, we see that if all segments have length at most 2
−`

then

it su�ces to randomly “slide” the setup across an interval of free

space of length 2 · 2−` . This leads to the following algorithm, in

which ` = min(`1, . . . , `n):

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

Random placement algorithm with comparison
queries

Partition [0, 1] into segments T1, . . . ,Tn of length

2
−`1 , . . . , 2−`n . Choose a random set of intervals of total length

4 · 2−` , and halve their lengths while keeping all intervals ad-

jacent to each other, thus forming a slack of length 2 · 2−` at

the right end of [0, 1]. Put a point pi at the middle of Ii , and

shift the entire setup to the right by a random amount chosen

from [0, 2 · 2−`].

Perform modi�ed binary search as in the preceding algo-

rithm.

Essentially the same analysis as before shows that this algorithm,

which now uses only comparison and equality queries, has cost at

most Opt(π) + 1/2 + 4 · 2−` .

As the maximal probability πmax tends to zero, the length ` of the

minimal codeword tends to in�nity, and thus the cost is bounded by

Opt(π) + 1/2 in the limit. A classical result of Gallager [29] states

that Opt(π) ≤ H (π) + 0.0861 + πmax, and so we obtain the bound

r0 < 0.586.

2.2 Optimal Sets Of Questions Of Minimal Size
We have shown above that comparison and equality queries su�ce

to obtain redundancy 1, matching the performance of Hu�man’s

algorithm in this regard. What if we want to match the performance

of Hu�man’s algorithm exactly?

De�nition 2.5. A set of questions Q over Xn is optimal if for

every distribution π there exists a decision tree using Q whose cost

is Opt(π). Stated succinctly, a set of questions is optimal if it has

zero prolixity.

It is not clear at the outset what condition can guarantee that a set

of questions is optimal, since there are in�nitely many distributions

to handle. Fortunately, it turns out that there exists a “0-net” for

this:

De�nition 2.6. A distribution is dyadic if every non-zero element

has probability 2
−`

for some integer `.

Observation 1. A set of questions is optimal for all distributions

over Xn if and only if it is optimal for all dyadic distributions over

Xn .

Roughly speaking, this observation follows from the fact that

binary decision trees correspond to dyadic distributions, a property

that is exploited in Section 2.1.3 as well.

A further simpli�cation is:

Observation 2. A set of questions is optimal if and only if it is

a dyadic hitter: for every non-constant dyadic distribution π it

contains a question Q splitting π , that is, π (Q) = π (Q) = 1/2.

This observation follows from the following characterization of

optimal decision trees for dyadic distributions, whose proof is a

straightforward application of the chain rule for entropy:

Lemma 2.7. Let π be a dyadic distribution. A decision tree T for π
has optimal cost Opt(π) if and only if the following holds for every

internal node v with children v1,v2:

π (v1) = π (v2) =
π (v)

2

,

where π (v) is the probability that the decision tree reaches the node
v .

Our task is thus reduced to determining the size of a dyadic

hitter. To understand what we are up against, consider distributions

that have 2βn − 1 “heavy" elements of probability
1

2βn each, and

(1 − 2β)n + 1 “light" elements of total probability
1

2βn , where β is a

positive number such that βn is a power of 2.

A short argument shows that the only sets splitting such a dis-

tribution are those containing exactly βn heavy elements, and their

complements. By considering all possible partitions of Xn into

heavy and light elements, we see that every dyadic hitter must

contain at least this many questions:

#partitions to heavy and light elements

#partitions split by a question of size βn

=
#questions of size βn

#questions of size βn splitting each partition

=

(n
βn

)
(
2βn−1
βn

) ≈ 2
(h (β)−2β)n .

(To see the �rst equality, cross-multiply to get two di�erent expres-

sions for the number of pairs consisting of a partition to heavy and

light elements and a question of size βn splitting it.)

Choosing β = 1/5 (which maximizes h(β) − 2β), we �nd out that

roughly 1.25n questions are necessary just to handle distributions of

this form. There is a �ne print: the value β = 1/5 is only achievable

when n/5 is a power of 2, and so the bound obtained for other

values of n is lower.

Somewhat surprisingly, there is a matching upper bound: there

is a set of roughly 1.25n questions which forms a dyadic hitter!

In order to show this, we �rst show that for every non-constant

dyadic distribution π there is some question size 1 ≤ c ≤ n such

that

#questions of size c that split π

#questions of size c
≥ 1.25−n−o (n) .

Therefore, by choosing 1.25n+o (n) random questions of size c , it is

highly probable that one of them splits π .

This suggests considering a random set of questions Q formed by

taking 1.25n+o (n) questions at random of size c for each 1 ≤ c ≤ n.

Since there are only exponentially many dyadic distributions, a

union bound shows that with high probability, Q splits all dyadic

distributions.

How do we identify a value of c and a large set of questions of size

c splitting an arbitrary dyadic distribution π? Roughly speaking, we

bucket the elements of µ according to their probabilities. Suppose

that there arem non-empty buckets, of sizes c1, . . . , cm , respectively.

Assume for simplicity that all ci are even; in the actual proof, we

essentially reduce to this case by bundling together elements of

lower probability. A question containing exactly half the elements

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

in each bucket thus splits µ. The number of such questions is

m∏
i=1

(
ci
ci/2

)
≈

m∏
i=1

2
ci
√
ci
≈

2
c1+· · ·+cm

nm/2
.

By “throwing out” all elements of small probability (corresponding

to the light elements considered above), we can guarantee thatm ≤

logn, ensuring that the factor n−m/2
is subexponential; however,

this means that not all elements are going to belong to a bucket. If

c1 + · · · + cm = 2βn after throwing out all light elements then we

have constructed roughly 2
2βn

questions of size c = βn. Since(n
c

)
2
2βn
≈ 2

(h (β)−2β)n ≤ 1.25n ,

we have ful�lled our promise.

To summarize:

Theorem 2.8. For every n there is an optimal set of questions of
size 1.25n+o (n) .

For in�nitely many n, every optimal set of questions contains at
least 1.25n−o (n) questions.

While our upper bound works for every n, our lower bound only

works for in�nitely many n. For arbitrary n our best lower bound

is only 1.232n−o (n) . We suspect that the true answer depends on

the fractional part of log
2
n.

Our upper bound is non-constructive: it does not give an explicit

optimal set of questions of size 1.25n+o (n) , but only proves that

one exists. It is an interesting open question to obtain an explicit

such set of this size. However, we are able to construct an explicit

optimal set of questions of size O (
√
2

n
):

Theorem 2.9. For every n there is an explicit optimal set of ques-
tions Q of size O (2n/2).

Furthermore, given a distribution on Xn , we can construct an opti-
mal decision tree using Q in time O (n2).

The explicit set of questions is easy to describe: it consists of

all subsets and all supersets of S = {x1, . . . ,x bn/2c }. Why does this

work? Given the observations above, it su�ces to show that this

collection contains a question splitting any non-constant dyadic

distribution π on Xn . If π (S) = 1/2 then this is clear. If π (S) > 1/2,

suppose for simplicity that π1 ≥ · · · ≥ π bn/2c . A simple parity

argument shows that π ({x1, . . . ,xm }) = 1/2 for some m < bn/2c.
The case π (S) < 1/2 is similar.

This set of questions, known as a cone, appears in the work of

Lonc and Rival [60] on �bres, which are hitting sets for maximal

antichains. The lower bound 1.25n−o (n) on optimal sets of questions

appears, in the context of �bres, in Du�us, Sands and Winkler [22].

The connection between these results and ours is that every �bre

is an optimal set of questions.

2.3 Sets Of Questions With Low Prolixity
The hard distributions described in the preceding section show that

any strictly optimal set of questions must have exponential size.

The following theorem shows that this exponential barrier can be

overcome by allowing a small prolixity:

Theorem 2.10. For every n and r ∈ (0, 1) there is a set Qr of
roughly (r · n)16/r questions which has prolixity r .

Furthermore, at least roughly (r · n)0.25/r questions are required
to achieve prolixity r .

As in the case of prolixity 0, the lower bound relies on a family

of hard distributions: Assume that r is of the form 2
−k

for some

integerk > 0. A hard distribution consists of 2
k−1 “heavy elements”

of total probability 1 − δ , and n − (2k − 1) “light elements” of total

probability δ , where δ = r2/2 (or any smaller positive number).

A case analysis shows that every 2
−k

-optimal decision tree (one

whose cost exceeds the optimal Hu�man cost by at most 2
−k

) for

this distribution must partition the heavy elements evenly (into

parts of size 2
k−1

and 2
k−1 − 1), and put all light elements in the

same part. Ignoring the di�erence between 2
k−1

and 2
k−1 − 1, this

shows that any 2
−k

-optimal set of questions must contain at least

this many questions: (n
2
k−1

)
(n−(2k−1−1)

2
k−1

) ≥ (n

2
k

)
2
k−1−1

.

In terms of r = 2
−k

, this lower bound is (r ·n)0.5/r−1, from which we

obtain the form above (approximating an arbitrary r by a negative

power of 2).

The upper bound is more involved. The set of questions consists

of all interval queries with up to 2
k

elements added or removed

(in total, about n2
(n
≤2k

)
2
2
k
= n2 · O (n/2k)2

k
questions); we will

aim at a redundancy of roughly 4 · 2−k . The algorithm has some

resemblance to the Gilbert–Moore line of algorithms described in

Section 2.1.3. As in that section, given a distribution π , our starting

point is the distribution 2
−`1 , . . . , 2−`n formed from a Hu�man

code for π , where `i is the length of the codeword corresponding

to xi .
In contrast to Gilbert–Moore-style algorithms, though, instead

of maintaining an interval we will maintain a dyadic subestimate for

the probabilities of all elements “in play”. That is, for every element

consistent with the answers so far we will assign a probability

qi = 2
−ti

, ensuring that

∑
i qi ≤ 1.

The algorithm is recursive, getting as input a dyadic subdistri-

bution q1, . . . ,qm , which is initially 2
−`1 , . . . , 2−`n ; the recursion

stops when m = 1. The algorithm classi�es its input elements ac-

cording to the magnitude of qi as either heavy (at least 2
−k

), or

light (otherwise), and proceeds as follows:

Random window algorithm
Case 1: the total mass of heavy elements is at least

1/2. Find a set of heavy elements whose probability is exactly

1/2, and ask whether the secret element lies in that set. Double

the probability of all conforming elements, and recurse with

the set of conforming elements.

Case 2: the totalmass of heavy elements and the total
mass of light elements are at most 1/2. Ask whether the

secret element is heavy or light. Double the probability of all

conforming elements, and recurse with the set of conforming

elements.

Case 3: The total mass σ of light elements is at least
1/2. Identify a light element xi with a segment Ti of length

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

qi , and place all such segments consecutively on a circle of

circumference σ . Choose a random arcW of length 1/2 (the

window). Ask whether the secret element is a light element

whose segment’s midpoint lies in the window. Double the

probability of all conforming elements not intersecting the

boundaries of the window, and recurse with the set of con-

forming elements.

Achieving an optimal cost requires that at each step the proba-

bility of each conforming element is doubled. However, by Theo-

rem 2.8 this would require exponentially many potential queries

(rather than just our modi�ed interval queries), and so we have

to compromise by not doubling some of the probabilities of con-

forming elements in some steps (in Case 3, the probabilities of the

two boundary elements are not doubled). Nevertheless, the above

randomized algorithm ensures that the expected number of times

each element is being “compromised” is O (2−k).
How many questions does it take to �nd an element xi whose

starting probability is 2
−`i

? At any iteration in which qi ≥ 2
−k

,

the probability qi always doubles. When qi < 2
−k

, Case 3 could

happen, but even then the probability that qi doesn’t double is only

2qi/σ ≤ 4qi . A straightforward calculation shows that qi doubles

after at most
1

1−4qi questions in expectation when qi < 2
−k

, and so

the expected number of questions needed to discover xi is at most

k +

`i∑
j=k+1

1

1 − 4 · 2−j
< `i + 4 · 2

−k +
2

3

(4 · 2−k)2.

Roughly speaking, the resulting prolixity is r ≈ 4 · 2−k , and the

number of questions is about n2 ·O (n/2k)2
k
≈ n2 ·O (r · n)4/r .

3 RELATEDWORK
Our work can be seen as answering two di�erent, but related, ques-

tions:

(1) How good are certain particular sets of questions (particu-

larly comparison and equality queries), compared to the

information-theoretical benchmark and the combinatorial

benchmark?

(2) What is the smallest set of questions which matches the

performance of Hu�man codes, in terms of the information-

theoretical benchmark or the combinatorial benchmark?

What if we allow a small slack?

To the best of our knowledge, existing literature only deals with

the �rst question. Apart from unrestricted questions, the only set of

questions which has been extensively studied from the perspective

of our two benchmarks is comparison queries.

We assume familiarity with the basic de�nitions appearing in

Section 2.

Section organization. We describe several sets of questions which

have been studied in the literature in Section 3.1. Other relevant

topics are discussed in Section 3.2.

3.1 Types Of Decision Trees
We can identify sets of questions with decision trees using them

(that is, using only questions from the set). For example, binary

search trees (more accurately, alphabetic trees; see below) are deci-

sion trees using comparison queries.

The cost function that we study and attempt to minimize in this

paper is distributional or average case: it is the average number of

questions asked on an element chosen from a given distribution.

Another cost function studied in the literature, especially in

problems whose motivation is algorithmic, is worst case: the maxi-

mum number of questions asked on any element. The most familiar

examples are binary search and sorting.

We go on to list several types of decision trees appearing in the

literature, brie�y commenting on each of them.

3.1.1 Unrestricted decision trees. The simplest type of decision

trees is unrestricted decision trees. Hu�man [44] showed how to

construct optimal decision trees, and van Leeuwen [83] showed

how to implement his algorithm in time O (n logn), or O (n) if the

probabilities are sorted. Hu�man also considered non-binary deci-

sion trees, generalizing his algorithm accordingly.

Gallager [29] showed that decision trees constructed by Hu�-

man’s algorithm are characterized by the sibling property: the nodes

of the tree can be arranged in non-decreasing order of probabil-

ity of being reached, in such a way that any two adjacent nodes

are siblings. This shows, among else, that in some cases there are

optimal decision trees which cannot be generated by Hu�man’s

algorithm. In the parlance of codes, a distinction should be made

between Hu�man codes and the more general minimum redundancy
codes.

Gallager also discussed the redundancy of Hu�man codes in

terms of the maximum probability of an element, showing that if

π is a distribution with maximum probability πmax then Opt(π) ≤
H (π)+πmax+1− log2 e+ log2 log2 e , where 1− log

2
e+ log

2
log

2
e ≈

0.086. He also showed that the constant 1 − log
2
e + log

2
log

2
e is

optimal.

The question of the redundancy of Hu�man codes in terms of

πmax has attracted some attention: a line of work, including [12, 46],

culminated in the work of Montgomery and Abrahams [65], who

found the optimal lower bound on H (π) −Opt(π) in terms of πmax,

and in the work of Manstetten [61], who found the optimal upper

bound.

The redundancy of Hu�man codes has also been considered

in terms of other parameters, such as the minimum probability,

both minimum and maximum probabilities, or some probability.

See Mohajer et al. [64] for a representative example with many

references.

Gallager also gave an algorithm for dynamically updating Hu�-

man trees, contemporaneously with Faller [26] and Knuth [53].

Their work was improved by Vitter [84]. Vitter’s data structure

is given an online access to a stream of symbols (σn)n∈N, and it

maintains a decision tree Tn which at time n is a Hu�man tree

for the empirical distribution µn of σ1, . . . ,σn . The update time is

O (Tn (σn)), where Tn (σn) is the depth (or codeword length) of σn

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

in Tn , and the output codewords satisfy

1

n

n∑
i=1

Ti (σi) ≤ Opt(µn) + 1.

Many variants of Hu�man coding have been considered: length-

restricted codes [24, 33], other cost functionals [8], unequal let-

ter costs [49], and many more. See the excellent survey of Abra-

hams [1].

3.1.2 Binary search trees. A binary search tree (BST) stores an

ordered list of elements x1 ≺ · · · ≺ xn over a linearly ordered

domain, and supports a search operation, which given an element

x can result in any of the following outcomes:

• x = xi for some i .
• x ≺ x1.

• xi ≺ x ≺ xi+1 for some i < n.

• x � xn .

Each node of the tree contains an element xi , and it tests whether

x ≺ xi , x = xi , or x � xi . Given probabilities p1, . . . ,pn for suc-

cessful searches (x = xi) and q0, . . . ,qn for unsuccessful searches

(xi ≺ x ≺ xi+1), an optimal BST is one that minimizes the number

of questions it takes to identify the class of a secret element x .

Binary search trees do not �t the model considered in the paper

as stated. However, if the probability of a successful search is zero

(that is, p1 = · · · = pn = 0), then the ternary queries become

binary queries, and the resulting decision tree is a decision tree

using comparison queries on the domain composed of the n + 1

gaps between and around the elements x1, . . . ,xn :

y0 = (−∞,x1),y1 = (x1,x2), . . . ,yn−1 = (xn−1,xn),yn = (xn ,∞).

The resulting model is also known as alphabetical trees or lexico-
graphical trees, and has been suggested by Gilbert and Moore [34]

in the context of variable-length binary encodings. Alphabetical

trees (of words) are decision trees in which the leaves are ordered

alphabetically. In our terminology, they are decision trees using

comparison queries.

Kraft’s inequality states that a decision tree whose leaves have

depths `1, . . . , `n exists if and only if

∑n
i=1 2

−`i ≤ 1. Nakatsu [69]

gave an analog of Kraft’s inequality for alphabetical trees.

Knuth [52] gave an O (n2) dynamic programming algorithm

for �nding the optimal BST. Hu and Tucker [41] and Garsia and

Wachs [32] gaveO (n logn) algorithms for �nding optimal alphabet-

ical trees. These algorithms are more complicated than Hu�man’s.

Several heuristics for constructing good alphabetical trees are

described in the literature. Gilbert and Moore [34] gave one heuristic

which produces a tree with cost at most H (π) + 2. Nakatsu [69]

gave the stronger bound Opt(π) + 1 for a very similar heuristic.

Another heuristic, weight balancing, was suggested by Rissa-

nen [73] (and even earlier by Walker and Gottlieb [85]), who showed

that it produces a tree with cost at most H (π) + 3. Horibe [39] im-

proved the analysis, showing that the cost is at most H (π) + 2.

The question of the redundancy of alphabetical trees has been

considered in the literature. While the boundH (π)+2 cannot be im-

proved upon in general, a better bound can be obtained given some

knowledge of the distribution π . Such improved bounds have been

obtained by Nakatsu [69], Sheinwald [78], Yeung [87], De Prisco

and De Santis [18] (who consider, among else, dyadic distributions),

Bose and Douïeb [11] (for general BSTs), and others. The paper of

De Prisco and De Santis contains a mistake, which we correct in

the full version of the paper.

Kleitman and Saks [51] considered the following problem: given

a probability distribution π , what order for π results in the largest

redundancy of the optimal alphabetic tree? Assuming π1 ≥ · · · ≥
πn , they showed that the worse order is xn ,x1,xn−1,x2, . . ., and

gave a formula for the cost of the optimal alphabetical tree for that

order.

Computing the optimal length-restricted alphabetical tree has

been studied extensively [8, 30, 40, 57, 75]. Dynamic alphabetical

trees have been considered by Grinberg, Rajagopalan, Venkatesan

and Wei [35]. See Nagaraj [68] for an extensive survey on these

and other topics.

3.1.3 Binary search trees with comparison queries. As we have

seen above, binary search trees involve a three-way comparison:

“x < c , x = c , or x > c?”. While modern programming languages

usually support three-way comparisons, in the past a three-way

comparison was implemented as two consecutive two-way compar-

isons: “x = c?” followed by “x < c?”. This prompted Sheil [77] to

suggest replacing the �rst comparison above by “x = d?”, where d
is the current most probable element. The resulting data structure

is known as a binary split tree.
Huang and Wong [43] and Perl [71] (see also [38]) gave O (n5)

dynamic programming algorithms that �nd the optimal binary split

tree given a distribution on the elements, and this was improved to

O (n4) by Chrobak et al. [14].

Huang and Wong [42] suggested relaxing the requirement that

d (the element participating in the query “x = d?”) be the current

most probable element. The resulting data structure is known as a

generalized binary split tree. They suggested a dynamic program-

ming algorithm for �nding the optimal generalized binary split tree,

but Chrobak et al. [14] showed that their algorithm is invalid; no

other e�cient algorithm is known.

Spuler [81, 82] suggested uncoupling the two comparisons. His

two-way comparison tree is a decision tree which uses comparison

and equality queries. Anderson et al. [5] called this data structure a

binary comparison search tree (BCST).

The notion of successful versus unsuccessful searches, which

di�erentiates binary search trees and alphabetical trees (see above),

also appears in the context of BCSTs. As an example, consider a

domain with a single element c . If only successful searches are

allowed, then the trivial BCST su�ces. Otherwise, two nodes are

needed to determine whether x < c , x = c , or x > c . The model

considered in this paper only allows successful searches.

Spuler gave an O (n5) dynamic programming algorithm for �nd-

ing the optimal BCST given a distribution on the successful searches,

and Anderson et al. [5] improved this toO (n4). They also list several

interesting properties of optimal BCSTs.

Chrobak et al. [14] generalized the algorithm of Anderson et

al. to the case in which unsuccessful searches are allowed, and

gave an O (n logn) algorithm based on weight-balancing which has

redundnacy 3.

3.1.4 Searching in trees and posets. Ben-Asher, Farchi and New-

man [9] consider the natural generalization of alphabetical trees to

posets. Given a poset X , the the task is to �nd a secret element x

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

using queries of the form “x ≺ c?”. When X is a linear order, this is

just an alphabetical tree.

Ben-Asher et al. concentrate on the case in which the Hasse

diagram of X is a rooted tree, the root being the maximum element.

In this case the queries can also be considered as edge queries: given

an edge e = (s, t), “Is x closer to s or to t?”. If t is the node closer

to the root, then this query is equivalent to the comparison query

“x ≺ t?”.

Ben-Asher et al. give several applications of this model, to data

transfer, software testing, and information retrieval. They are inter-

ested in minimizing the depth of the decision tree. Their main result

is an Õn4) algorithm which �nds a decision tree of minimum depth,

improved to O (n3) by Onak and Parys [70]. Lam and Yue [55] and

Mozes, Onak and Weimann [67] give a linear time algorithm for

the same problem.

Linial and Saks [58, 59] consider a di�erent model for search-

ing in posets: searching with partial information. In their model

(adapted to our setting
3
) we are given a linearly ordered setX whose

order is unknown, but is consistent with a known partial order on

X . Given an element x , the task is to identify x using comparison

queries. They are interested in minimizing the maximum number

of queries.

As an example, suppose that A is an n × n matrix in which the

rows and columns are increasing. How many queries are needed, in

the worst case, to locate an element? They show that the answer is

2n − 1, and relate this to the complexity of the merging procedure

in merge sort.

Let i be the number of ideals (downward-closed sets) in the

given partial order. Linial and Saks mention that log
2
i questions

are needed in the worst case, and show that O (log
2
i) is achievable.

3.1.5 Sorting. Suppose we are given an array of length n having

distinct elements. Sorting the array is the same as �nding the rela-

tive order of the elements, which is a permutation π ∈ Sn . We can

thus construe comparison-based sorting as the problem of �nding

a permutation π ∈ Sn using queries of the form “π (i) < π (j)?”.

We call such queries relative order queries. We are usually inter-

ested in the worst case complexity of sorting algorithms, that is, the

maximum number of relative order queries made by the algorithm.

Every comparison-based sorting algorithm must make at least

n log
2
n −O (n) comparisons in the worst case. Merge sort comes

very close, making n log
2
n+O (n) comparisons. In our terminology,

the minimum depth of a decision tree for Sn using relative order

queries is n log
2
n ± Θ(n).

Fredman [27] considered the problem of sorting with partial

information. In this problem, we are given a set of permutations

Γ ⊆ Sn , and the task is to identify a secret permutation π ∈ Γ using

relative order queries. Using the Gilbert–Moore algorithm, Fredman

showed that this can be accomplished using at most log
2
|Γ | + 2n

queries in the worst case.

Fredman applied his method to Berlekamp’s X + Y problem,

which asks for sorting an array of the form {xi + yj : 1 ≤ i, j ≤ n}.
Harper et al. [37] had improved on performance of merge sort

(which uses 2n2 log
2
n + O (n2) comparisons) by giving an algo-

rithm which uses only n2 log
2
n + O (n2) comparisons. Fredman

3
In their setting X ⊆ R, and the task is to decide, given x ∈ R, whether x ∈ X .

signi�cantly improved on this by showing that O (n2) comparisons

su�ce, albeit the corresponding algorithm cannot be implemented

e�ciently. Lambert [56] gave an explicit algorithm using O (n2)
comparisons, which also cannot be implemented e�ciently.

When Γ consists of all completions of some partial order, Kahn

and Saks [48] gave the upper bound O (log |Γ |) using the technique

of poset balancing, but the corresponding algorithm cannot be

implemented e�ciently. Kahn and Kim [47] gave an algorithm with

the same performance which can be implemented e�ciently. Their

algorithm relies on computing volumes of polytopes.

Moran and Yehudayo� [66] extended the results of Fredman

to the distributional case. They showed that given a probability

distribution µ on Sn , a secret permutation π ∼ µ can be found

using at most H (µ) + 2n relative order queries on average. In our

terminology, they showed that the redundancy of relative order

queries is at most 2n. They actually proved a stronger bound: the

number of queries required to identify π is at most log
2

1

µ (π) + 2n.

This stronger bound implies Fredman’s result.

Given a set of permutations Γ ⊆ Sn , endow Sn with the uniform

permutation µΓ over Γ. A decision tree for Γ of depth f (log
2
Γ)

is the same as a decision tree for µΓ of depth f (H (µΓ)). In this

way we can interpret all non-distributional results stated above as

distributional results for uniform distributions.

3.1.6 Binary decision trees. Binary decision trees, or binary de-

cision diagrams (BDDs), are used in statistics, machine learning,

pattern recognition, data mining, and complexity theory. The set-

ting is a set X ⊆ {0, 1}n and a function f : X → Y (for an arbitrary

set Y). The task is to construct a decision tree which on input x ∈ X
computes f (x) using only queries of the form “xi = 1?” (binary
queries).

In many settings, Y = {0, 1}, and such binary decision trees

do not really �t our model. In other settings, Y = X and f is the

identity function. In this case these are decision trees in our sense

which use binary queries.

We will not attempt to summarize the large literature on binary

decision trees. We only mention the result of Hya�l and Rivest [45],

who showed that it is NP-complete to compute the optimum cost of

a decision tree using binary queries under the uniform distribution.

3.1.7 Algebraic decision trees. Algebraic decision trees [10] are

commonplace in computational geometry. Given a set of real num-

bers x1, . . . ,xn ∈ R and a function f on Rn , a (two-way) linear
decision tree (LDT) is a decision tree for computing f using queries

of the form “

∑
i aixi + a < 0?” (linear queries); three-way variants

also exist. Algebraic decision trees (ADTs) of order d are more gen-

eral: they allow queries of the form “P (x1, . . . ,xn) < 0?” (d’th order
queries), where P is an arbitrary polynomial of degree at most d .

Interest has mainly focused on the worst-case cost of algebraic

decision trees.

While algebraic decision trees, as just described, do not �t our

model, the following variant does: given a �nite set S ⊆ Rn , the

task is to �nd a secret element x ∈ S using linear or d’th order

queries.

Out of the voluminous literature on algebraic decision trees, we

only mention the important paper of Ben-Or [10], which gives a

lower bound of Ω(n logn) on the depth of algebraic decision trees

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

of �xed order which solve the element distinctness problem, using

the Milnor–Thom theorem in real algebraic geometry.

A restricted type of linear decision trees occurs in the context of

the 3SUM problem. In this problem, which is related to the X + Y
problem discussed above in the context of sorting, we are given

three arrays X ,Y ,Z of size n, and our goal is to decide whether

there exist x ∈ X , y ∈ Y , z ∈ Z such that x + y + z = 0 (there

are many other equivalent formulations). In the more general k-

sum problem, we are given k arrays X1, . . . ,Xk of size n, and our

goal is to decide whether there exist elements xi ∈ Xi such that∑k
i=1 xi = 0.

A classical algorithm solves 3SUM in time O (n2) by �rst sorting

X and Y , and then, for each z ∈ Z , checking whether X and −z −Y
intersect using the merging procedure of merge sort. The classical

algorithm can be construed as a three-way decision tree using

queries of the form “ai < aj ?” and “ai +aj +ak < 0, ai +aj +ak = 0,

or ai +aj +ak > 0?”, where a1, . . . ,a3n are the elements of X ,Y ,Z .

More generally, a (two-way) s-linear decision tree is a decision

tree using questions of the form “

∑
i ciai < 0?”, where at most s

of the ci are non-zero; a three-way version is de�ned analogously.

The classical algorithm uses a three-way 3-linear decision tree.

Erickson [23] proved a lower bound of Ω(n(k+1)/2) on the depth

of a k-linear decision tree solving k-SUM when k is odd, and a lower

bound of Ω(nk/2) when k is even. Weaker lower bounds for s-linear

decision trees when s > k were proved by Ailon and Chazelle [4].

The 3SUM conjecture (in one formulation) states that 3SUM

cannot be solved in time Ω(n2−ϵ) for any ϵ > 0 (in the RAM

machine model). Indeed, the stronger lower bound of Ω(n2) had

been conjectured. Similar lower bounds (matching the exponents

stated above) exist for k-SUM.

Recently, in a breakthrough result, Grønlund and Pettie [36] gave

a o(n2) algorithm for 3SUM (see Freund [28] for a simpli�cation).

Their algorithm is based on a 4-linear decision tree for 3SUM whose

depth is Õ (n3/2). More generally, for odd k they gave a (2k − 2)-

linear decision tree for k-SUM whose depth is Õ (nk/2).
Meyer auf der Heide [63] gave a linear decision tree for k-SUM

whose depth is Õ (n4), for any constant k . Recently, Cardinal et

al. [13] improved this to Õ (n3) using a technique of Meiser [62], and

Ezra and Sharir [25] improved the bound to Õ (n2). These authors

solve a variant of the k-SUM problem in which we are given only

one list x1, . . . ,xn , and the task is to decide whetherk of its elements

sum to zero. Their methods also solve a generalization, k-linear
degeneracy testing (k-LDT), which asks whether there existk indices

i1 < · · · < ik such that a0 + a1xi1 + · · · + akxik = 0, for some

constants a0, . . . ,ak .

3.2 Other Topics
We close the literature review by mentioning a few other related

topics.

Combinatorial search theory. The “20 questions” game is the start-

ing point of combinatorial search theory. Well-known examples

include counterfeit coin problems [79] (also known as balance prob-

lems). See the survey by Katona [50], the monograph of Ahlswede

and Wegener [3], and the recent volume [7] in memory of Ahlswede.

Combinatorial search theory considers many di�erent variants of

the “20 questions” game, such as several unknown elements, non-

adaptive queries, non-binary queries, and a non-truthful Alice; we

expand below on the latter variant. Both average-case and worst-

case complexity measures are of interest.

An important topic in combinatorial search theory is combinato-
rial group testing, in which we want to identify a set of at most d
defective items out of n items using as few tests as possible. The

original motivation was blood testing [20]. See the monograph by

Du and Hwang [21]. Combinatorial group testing is related to the

area of combinatorial designs, see for example Colbourn et al. [16].

Playing 20 questions with a liar. We have described a distribu-

tional version of the “20 questions” game in the introduction. The

more usual version has Alice pick an object x from a known �nite

set X of size n. Bob is then tasked with discovering the secret object

x using as few Yes/No questions as possible (in the worst case).

If Bob is allowed to ask arbitrary questions, his optimal strategy

reveals x using dlog
2
ne questions at most.

In the usual version of the game, Alice is truthful. Rivest et al. [74]

considered the case in which Alice is allowed to lie k times. They

gave a strategy which asks at most log
2
n+k log

2
log

2
n+O (k logk)

questions in the worst case, all of them comparison queries. More-

over, they showed that log
2
n + k log

2
log

2
n +O (k logk) questions

are necessary, even if arbitrary questions are allowed.

Another line of work, which allows for a constant fraction r of

lies, culminated in the work of Spencer and Winkler [80], who de-

termined the threshold r for which Bob can win in several di�erent

scenarios. Aslam and Dhagat [6] and Dhagat et al. [19] analyze the

same scenarios under various restricted sets of questions

Another line of work, which allows for a constant fraction r
of lies, culminated in the work of Spencer and Winkler [80], who

determined the threshold r for which Bob can win in the following

three scenarios:

• Batch game: Alice knows Bob’s strategy, and is allowed to

lie in an r -fraction of answers.

• Adaptive game: Alice doesn’t know Bob’s strategy (which

can depend on Alice’s answers), and is allowed to lie in an

r -fraction of answers.

• Pre�x-bounded game: Alice doesn’t know Bob’s strategy,

and is allowed to lie at most rm times in the �rstm ques-

tions, for everym.

Aslam and Dhagat [6] and Dhagat et al. [19] analyze these sce-

narios under various restricted sets of questions, including:

• Bit queries: “Is the ith bit of the binary representation of x
equal to 1?”.

• Comparison queries, which they also call cut queries.

• Tree queries: “Is i2j ≤ x < (i + 1)2j?”.

Asymmetric communication. One practical motivation for the

(distributional) “20 questions” game is a communication scenario in

which two entities, a client (Alice) and a server (Bob), communicate,

and the uplink for the client to the server is much more costly than

the downlink from the server to the client.

Adler and Maggs [2] suggest a formalization of this setting. In

their model, the client holds a string x , the server has black-box

access to a distribution π on the set of possible strings, and the

server’s goal is to discover x , assuming it is drawn from π . The

STOC’17, June 2017, Montreal, Canada Yuval Dagan, Yuval Filmus, Ariel Gabizon, and Shay Moran

server is allowed to access π by determining, for any string t , the

probability that a string drawn from π has t as a pre�x. An algorithm

is measured using four di�erent parameters:

• The expected number of bits sent by the server.

• The expected number of bits sent by the client.

• The expected number of black box accesses.

• The expected number of rounds of communication.

Adler and Maggs give various algorithms exploring the various

trade-o�s. Watkinson et al. [86], in follow-up work, give more

algorithms, among them one based on comparison queries and the

Gilbert–Moore algorithm.

Weight balancing. The weight balancing algorithm of Walker

and Gottlieb [85] and Rissanen [73] (mentioned above in the section

on binary search trees) is an instance of the more general splitting
heuristic of Garey and Graham [31], also known as generalized
binary search (GBS).

Given an arbitrary set of queries, at any given moment the split-

ting heuristic chooses the query which minimizes | Pr[Yes]−Pr[No]|.
This is a special case of the well-known ID3 algorithm [72], used

in statistics, machine learning and data mining; the ID3 algorithm

also handles k-way queries.

Kosaraju et al. [54] analyzed the performance of the splitting

heuristic on general sets of questions. They showed that a slight

modi�cation of the heuristic gives an O (logn) approximation for

the optimal cost using the given set of questions, where n = |X | is
the size of the domain.

A CORRECT VERSION OF ON BINARY
SEARCH TREES

De Prisco and De Santis, in their paper On binary search trees [18],

claim that rH (Q≺,π) ≤ 1 + pmax, where pmax is the maximum

probability of an element in π . However, this is wrong even for the

simple distribution 0, 1/3, 0, 1/3, 0, 1/3, 0 (we require the algorithm

to identify correctly even the zero probability elements), as a simple

calculation reveals. Nevertheless, their ideas can be used to prove

the following result:

Lemma A.1. For any distribution π over Xn ,

rH (Q≺,π) < 1 −
π1 + πn

2

+
1

2

n−1∑
i=1
|πi+1 − πi |.

Proof. Let Y = x0.5 ≺ x1 ≺ x1.5 ≺ x2 ≺ · · · ≺ xn−0.5 ≺ xn ≺
xn+0.5, and extend π to a distribution σ by giving all new elements

zero probability. The Gilbert–Moore algorithm [34] produces a

decision tree using Q≺ whose cost is less than H (σ) + 2 = H (π) + 2.

The decision tree contains n+1 redundant leaves, corresponding

to the newly added elements. We get rid of them one by one:

xi+0.5 v

v

Getting rid of xi+0.5 in this way bumps up at least one of xi ,xi+1
by one level; when i = 0 or i = n, only one of these options is

available. In total, we bump up leaves whose total probability is at

least

π1+πn+
n−1∑
i=1

min(πi ,πi+1) = π1+πn+
n−1∑
i=1

πi + πi+1 − |πi − πi+1 |

2

= 1 +
π1 + πn

2

−
1

2

n−1∑
i=1
|πi − πi+1 |.

The cost of the pruned tree is thus as stated. Replacing each question

≺ xi+0.5 by the equivalent question ≺ xi+1, we get a legal decision

tree for the original distribution π using Q≺ . �

REFERENCES
[1] Julia Abrahams. 1997. Code and parse trees for lossless source encoding. In

Compression and Complexity of Sequences. 145–171.

[2] Micah Adler and Bruce M. Maggs. 2001. Protocols for Asymmetric Communica-

tion Channels. J. Comput. System Sci. 63, 4 (2001), 573–596.

[3] Rudolf Ahlswede and Ingo Wegener. 1987. Search problems. John Wiley & Sons,

Inc., New York.

[4] Nir Ailon and Bernard Chazelle. 2005. Lower bounds for linear degeneracy

testing. J. ACM 52, 2 (2005), 151–171.

[5] Richard Anderson, Sampath Kannan, Howard Karlo�, and Richard E. Ladner. 2002.

Thresholds and optimal binary comparison search trees. Journal of Algorithms
44 (2002), 338–358.

[6] Javad A. Aslam and Aditi Dhagat. 1991. Searching in the presence of linearly

bounded errors. In Proceedings of the twenty-third annual ACM symposium on
Theory of computing (STOC ’91). 486–493.

[7] Harout Aydinian, Ferdinando Cicalese, and Christian Deppe (Eds.). 2013. In-
formation Theory, Combinatorics, and Search Theory. Springer-Verlag Berlin

Heidelberg.

[8] Michael B. Baer. 2007. Twenty (or so) Questions: D-ary Length-Bounded Pre�x

Coding. In IEEE International Symposium on Information Theory (ISIT 2007). 896–

900.

[9] Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. 1999. Optimal search in trees.

SIAM J. Comput. 28, 6 (1999), 2090–2102.

[10] Michael Ben-Or. 1983. Lower bounds for algebraic computation trees. In Pro-
ceedings of the 15th ACM Symposium on Theory of Computing. 80–86.

[11] Prosenjit Bose and Karim Douïeb. 2009. E�cient Construction of Near-Optimal

Binary and Multiway Search Trees. In Algorithms and Data Structures (WADS
2009). 230–241.

[12] Renato M. Capocelli, Ra�aele Giancarlo, and Indeer Jeet Taneja. 1986. Bounds

on the Redundancy of Hu�man Codes. IEEE Transactions on Information Theory
IT-32, 6 (1986), 854–857.

[13] Jean Cardinal, John Iacono, and Aurélien Ooms. 2016. Solving k-SUM using few

linear queries. In 24th Annual European Symposium on Algorithms (ESA 2016).
LIPIcs, 25:1–25:17.

[14] Marek Chrobak, Mordecai Golin, J. Ian Munro, and Neal E. Young. 2015. Optimal

Search Trees with 2-Way Comparisons. In Algorithms and Computation (ISAAC
2015). 71–82.

[15] David Cohn, Les Atlas, and Richard Ladner. 1994. Improving Generalization

with Active Learning. Machine Learning 15 (1994), 201–221.

[16] C. J. Colbourn, J. H. Dinitz, and D. R. Stinson. 1993. Applications of combinato-

rial designs to communications, cryptography, and networking. In Surveys in
Combinatorics, 1993, K. Walker (Ed.). London Mathematical Society Lecture Note

Series, Vol. 187. Cambridge University Press.

[17] Thomas M. Cover and Joy A. Thomas. 2006. Elements of information theory (2.
ed.). Wiley.

[18] Roberto De Prisco and Alfredo De Santis. 1993. On Binary Search Trees. Inform.
Process. Lett. 45, 5 (1993), 249–253.

[19] Aditi Dhagat, Peter Gács, and Peter Winkler. 1992. On Playing “Twenty Questions”

with a Liar. In Proceedings of 3rd Symposium on Discrete Algorithms (SODA’92).
16–22.

[20] Robert Dorfman. 1943. The Detection of Defective Members of Large Populations.

The Annals of Mathematical Statistics 14, 4 (1943), 436–440.

[21] Ding-Zhu Du and Frank K. Hwang. 1999. Combinatorial Group Testing and Its
Applications (2nd ed.). Series on Applied Mathematics, Vol. 12. World Scienti�c.

[22] Dwight Du�us, Bill Sands, and Peter Winkler. 1990. Maximal chains and an-

tichains in Boolean lattices. SIAM Journal on Discrete Mathematics 3, 2 (1990),

197–205.

Twenty (Simple) �estions STOC’17, June 2017, Montreal, Canada

[23] Je� Erickson. 1999. Lower bounds for linear satis�ability problems. Chicago
Journal of Theoretical Computer Science 8 (1999).

[24] William Evans and David Kirkpatrick. 2004. Restructuring ordered binary trees.

Journal of Algorithms 50, 2 (2004), 168–193.

[25] Ester Ezra and Micha Sharir. 2016. The Decision Tree Complexity for k-SUM is

at most Nearly Quadratic. Manuscript. (2016).

[26] Newton Faller. 1973. An adaptive system for data compression. In Record of the
7th Asilomar Conference on Circuits, Systems, and Computers. 593–597.

[27] Michael L. Fredman. 1976. How good is the information theory bound in sorting?

Theoretical Computer Science 1, 4 (1976), 355–361.

[28] Ari Freund. 2015. Improved Subquadratic 3SUM. Algorithmica (2015), 1–19.

[29] Robert G. Gallager. 1978. Variations on a Theme by Hu�man. IEEE Transactions
on Information Theory IT-24, 6 (1978), 668–674.

[30] Michael R. Garey. 1974. Optimal Binary Search Trees with Restricted Maximal

Depth. SIAM J. Comput. 3, 2 (1974), 101–110.

[31] Michael R. Garey and Ronald L. Graham. 1974. Performance bounds on the

splitting algorithm for binary testing. Acta Informatica 3 (1974), 347–355.

[32] Adriano M. Garsia and Michelle L. Wachs. 1977. A new algorithm for minimum

cost binary trees. SIAM J. Comput. 6, 4 (1977), 622–642.

[33] Edgar N. Gilbert. 1971. Codes based on inaccurate source probabilities. IEEE
Transactions on Information Theory 17, 3 (1971), 304–314.

[34] E. N. Gilbert and E. F. Moore. 1959. Variable-Length Binary Encodings. Bell
System Technical Journal 38 (1959), 933–967.

[35] Dennis Grinberg, Sivaramakrishnan Rajagopalan, Ramarathnam Venkatesan,

and Vicor K. Wei. 1995. Splay Trees for Data Compression. In Proceedings of the
sixth annual ACM–SIAM symposium on Discrete algorithms (SODA’95). 522–530.

[36] Allan Grønlund and Seth Pettie. 2014. Threesomes, Degenerates, and Love Tri-

angles. In 55th Annual Symposium on Foundations of Computer Science (FOCS’14).
621–630.

[37] L. H. Harper, T. H. Payne, J. E. Savage, and E. Straus. 1975. Sorting X+Y. Commun.
ACM 18, 6 (1975), 347–349.

[38] James H. Hester, Daniel S. Hirschberg, Shou-Hsuan Stephen Huang, and C. K.

Wong. 1986. Faster Construction of Optimal Binary Split Trees. Journal of
Algorithms 7, 3 (1986), 412–424.

[39] Yasuichi Horibe. 1977. An improved bound for weight-balanced tree. Information
and Control 34, 2 (1977), 148–151.

[40] T. C. Hu and K. C. Tan. 1972. Path Length of Binary Search Trees. SIAM J. Appl.
Math. 22, 2 (1972), 225–234.

[41] T. C. Hu and Alan Curtiss Tucker. 1971. Optimal computer search trees and

variable length alphabetic codes. Journal of Applied Mathematics 21 (1971),

514–532.

[42] Shou-Hsuan Stephen Huang and C. K. Wong. 1984. Generalized binary split

trees. Acta Informatica 21, 1 (1984), 113–123.

[43] Shou-Hsuan Stephen Huang and C. K. Wong. 1984. Optimal binary split trees.

Journal of Algorithms 5, 1 (1984), 69–79.

[44] David A. Hu�man. 1952. A Method for the Construction of Minimum-

Redundancy Codes. In Proceedings of the I.R.E. 1098–1103.

[45] Laurent Hya�l and Ronald L. Rivest. 1976. Constructing optimal binary decision

trees is NP-complete. Inform. Process. Lett. 5, 1 (1976), 15–17.

[46] Ottar Johnsen. 1980. On the Redundancy of Binary Hu�man Codes. IEEE
Transactions on Information Theory IT-26, 2 (1980), 220–222.

[47] Je� Kahn and Jeong Han Kim. 1995. Entropy and Sorting. J. Comput. System Sci.
51, 3 (1995), 390–399.

[48] Je� Kahn and Michael Saks. 1984. Balancing poset extensions. Order 1, 2 (1984),

113–126.

[49] Richard M. Karp. 1961. Minimum-redundancy coding for the discrete noiseless

channel. I.R.E. Transactions on Information Theory (1961), 27–38.

[50] Gyula O. H. Katona. 1973. Combinatorial Search Problems. In A Survery of
Combinatorial Theory, J. N. Srivastava et al. (Ed.). North-Holland Publishing

Company.

[51] Daniel J. Kleitman and Michael E. Saks. 1981. Set orderings requiring costliest

alphabetic binary trees. SIAM Journal on Algebraic Discrete Mathematics 2, 2

(1981), 142–146.

[52] Donald E. Knuth. 1971. Optimum binary search trees. Acta Informatica 1, 1

(1971), 14–25.

[53] Donald E. Knuth. 1985. Dynamic Hu�man coding. Journal of Algorithms 6 (1985),

163–180.

[54] S. Rao Kosaraju, Teresa M. Przytycka, and Ryan Borgstrom. 1999. On an Op-

timal Split Tree Problem. In Algorithms and Data Structures: 6th International
Workshop, WADS’99 Vancouver, Canada, August 11–14, 1999 Proceedings, Frank

Dehne, Jörg-Rüdiger Sack, Arvind Gupta, and Roberto Tamassia (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 157–168. DOI:http://dx.doi.org/10.1007/

3-540-48447-7_17

[55] T. W. Lam and F. L. Yue. 2001. Optimal edge ranking of trees in linear time.

Algorithmica 30, 1 (2001), 12–33.

[56] Jean-Luc Lambert. 1992. Sorting the sums (xi + yj) in O (n2) comparisons.

Theoretical Computer Science 103, 1 (1992), 137–141.

[57] Lawrence L. Larmore. 1987. Height-restricted optimal binary trees. SIAM J.
Comput. 16 (1987), 1115–1123.

[58] Nati Linial and Michael Saks. 1985. Every poset has a central element. Journal
of Combinatorial Theory 40 (1985), 195–210.

[59] Nati Linial and Michael Saks. 1985. Searching order structures. Journal of
Algorithms 6 (1985), 86–103.

[60] Zbigniew Lonc and Ivan Rival. 1987. Chains, Antichains, and Fibres. Journal of
Combinatorial Theory, Series A 44 (1987), 207–228.

[61] Dietrich Manstetten. 1992. Tight Bounds on the Redundancy of Hu�man Codes.

IEEE Transactions on Information Theory IT-38, 1 (1992), 144–151.

[62] S. Meiser. 1993. Point location in arrangements of hyperplanes. Information and
Computation 106, 2 (1993), 286–303.

[63] Friedhelm Meyer auf der Heide. 1984. A polynomial linear search algorithm for

the n-dimensional knapsack problem. J. ACM 31 (1984), 668–676.

[64] Soheil Mohajer, Payam Pakzad, and Ali Kakhbod. 2006. Tight Bounds on the

Redundancy of Hu�man Codes. In Information Theory Workshop (ITW ’06). 131–

135.

[65] Bruce L. Montgomery and Julia Abrahams. 1987. On the Redundancy of Optimal

Binary Pre�x-Condition Codes for Finite and In�nite Sources. IEEE Transactions
on Information Theory IT-33, 1 (1987), 156–160.

[66] Shay Moran and Amir Yehudayo�. 2016. A note on average-case sorting. Order
33, 1 (2016), 23–28.

[67] Shay Mozes, Krzysztof Onak, and Oren Weimann. 2008. Finding an optimal tree

searching strategy in linear time. In Proceedings of 19th Symposium on Discrete
Algorithms (SODA’08). 1096–1105.

[68] S. V. Nagaraj. 1997. Optimal binary search trees. Theoretical Computer Science
188, 1–2 (1997), 1–44.

[69] Narao Nakatsu. 1991. Bounds on the Redundancy of Binary Alphabetical Codes.

IEEE Transactions on Information Theory IT-37, 4 (1991), 1225–1229.

[70] Krzysztof Onak and Paweł Parys. 2006. Generalization of Binary Search: Search-

ing in Trees and Forest-Like Partial Orders. In 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, Cali-
fornia, USA, Proceedings. 379–388. DOI:http://dx.doi.org/10.1109/FOCS.2006.32

[71] Yehoshua Perl. 1984. Optimum split trees. Journal of Algorithms 5, 3 (1984),

367–374.

[72] J. Ross Quinlan. 1986. Induction of Decision Trees. Machine Learning 1 (1986),

81–106.

[73] Jorma Rissanen. 1973. Bounds for weight balanced trees. IBM Journal of Research
and Development 17 (1973), 101–105.

[74] Ronald L. Rivest, Albert R. Meyer, Daniel J. Kleitman, Karl Winklmann, and

Joel Spencer. 1980. Coping with errors in binary search procedures. J. Comput.
System Sci. 20 (1980), 396–404.

[75] Baruch Schieber. 1998. Computing a Minimum Weight k -Link Path in Graphs

with the Concave Monge Property. Journal of Algorithms 29 (1998), 204–222.

[76] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication. Bell
System Technical Journal 27 (1948), 379–423.

[77] B. A. Sheil. 1978. Median split trees: a fast lookup technique for frequently

occuring keys. Commun. ACM 21, 11 (1978), 947–958.

[78] Dafna Sheinwald. 1992. On binary alphabetical codes. In Data Compression
Conference (DCC’92). 112–121.

[79] Cedric A. B. Smith. 1947. The Counterfeit Coin Problem. The Mathematical
Gazette 31, 293 (1947), 31–39.

[80] Joel Spencer and Peter Winkler. 1992. Three thresholds for a liar. Combinatorics,
Probability and Computing 1, 1 (1992), 81–93.

[81] David Spuler. 1994. Optimal search trees using two-way key comparisons. Acta
Informatica 31 (1994), 729–740.

[82] David A. Spuler. 1994. Optimal Binary Trees With Two-Way Key Comparisons.
Ph.D. Dissertation. James Cook University.

[83] Jan van Leeuwen. 1987. On the construction of Hu�man trees. In Third In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’87).
382–410.

[84] Je�rey Scott Vitter. 1987. Design and analysis of dynamic Hu�man codes. J.
ACM 34, 4 (1987), 825–845.

[85] W. A. Walker and C. C. Gottlieb. 1972. A top-down algorithm for constructing
nearly optimal lexicographical trees. Academic Press, 303–323.

[86] John Watkinson, Micah Adler, and Faith E. Fich. 2001. New Protocols for Asym-

metric Communication Channels. In 8th International Colloquium on Structural
Information and Communication Complexity (SIROCCO). 337–350.

[87] Raymond W. Yeung. 1991. Alphabetic codes revisited. IEEE Transactions on
Information Theory IT-37, 3 (1991), 564–572.

http://dx.doi.org/10.1007/3-540-48447-7_17
http://dx.doi.org/10.1007/3-540-48447-7_17
http://dx.doi.org/10.1109/FOCS.2006.32

	Abstract
	1 Introduction
	2 Paper Outline
	2.1 Comparison And Equality Queries
	2.2 Optimal Sets Of Questions Of Minimal Size
	2.3 Sets Of Questions With Low Prolixity

	3 Related Work
	3.1 Types Of Decision Trees
	3.2 Other Topics

	A Correct version of On binary search trees
	References

