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1 Introduction

The following question was asked on math.stackexchange.com. Given a finite
alphabet Σ, consider the language of all words containing an even number of each
symbol σ ∈ Σ. The language is clearly regular, but a DFA for it requires 2|Σ|

states, by Nerode’s theorem. Does the language have a context-free grammar
(CFG) of size polynomial in |Σ|? In this note, we answer this question in the
negative.

2 Problem statement

We will consider the following generalization of the problem alluded to in the
introduction.

Definition 2.1. Let Λ ⊂ N be an arbitrary subset, and let Σ be a finite alpha-
bet. The language LΛ consists of all words in which the number of occurrences
of each symbol σ ∈ Σ belongs to Λ.

In other words, if we make a histogram for an arbitrary word w ∈ Σ∗, then
w ∈ LΛ iff the histogram is supported by Λ. We may call these languages
restricted histogram languages.

Note that in general, the language LΛ need not be context-free, or even
computable (there are uncountably many choices for Λ). However, if Λ is finite
then the language is regular, with a minimal DFA having |Λ||Σ| states. We get
similar results if Λ is cyclic or eventually cyclic.

For some Λ we have very simple DFAs.

Definition 2.2. A subset Λ ⊂ N is trivial if it is one of

∅, {0},N \ {0},N.

The languages L∅, LN are accepted by DFAs with a single state, whereas
L{0}, LN\{0} require two states. All of these have linear size CFGs. Our goal
is to provide an exponential lower bound for the size of CFGs of LΛ for all
non-trivial Λ.
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3 Chomsky normal form

It will be convenient to work with a grammar in Chomsky normal form (CNF).

Definition 3.1. A grammar is in Chomsky normal form if all its productions
are either of the form A → BC or of the form A → a, where A,B,C are non-
terminals and a is a terminal. In addition, we also allow the production S → ε,
where S is the starting symbol.

Every CFG can be put into Chomsky normal form (CNF) with at most a
quadratic blowup.

Lemma 3.2. If G is a CFG then there is an equivalent CNF G′ with |G′| =
O(|G|2).

Proof. Check any standard text.

A derivation of a word using a CNF grammar can be viewed as a binary tree
where each node either has two non-leaf children or one leaf child. This implies
the following useful lemma.

Lemma 3.3. Let L be a context-free language with CNF grammar G. For each
word w and each positive ` ≤ |w| there is a subword x of w generated by a
non-terminal of G of size ` ≤ |x| < 2`.

Proof. Consider the derivation tree of w. For a node v, let w(v) be the subword
generated by v. We find the required subword using an iterative process. The
starting point v0 is the root. We stop the process at vt if |w(vt)| < 2`. Otherwise,
we choose vt+1 as the child of vt generating the bigger subword.

The process must eventually stop. If it stops at v0 then w is the required
subword. If it stops at vt+1 then |w(vt+1)| ≥ |w(vt)|/2 ≥ `.

4 Main theorem

Theorem 4.1. Let Λ ⊂ N be non-trivial. There is a constant c > 1 such that
any CFG grammar for LΛ on alphabet Σ is of size Ω(c|Σ|).

Proof. Put n = |Σ|. We given an exponential lower bound for the number of
non-terminals in a CNF grammar for LΛ; the result follows from Lemma 3.2.

Since Λ is non-trivial, there is an ` > 0 such that ` ∈ Λ and either `−1 /∈ Λ or
`+1 /∈ Λ. For π ∈ S(Σ), the set of all n! permutation of Σ, define wπ = π` ∈ LΛ.
For each π we use Lemma 3.3 to find a subword xπ of length n/3 ≤ |xπ| <
2n/3 generated by some non-terminal sπ. Note that since |xπ| ≤ n, xπ has no
repeated symbols.

If sα = sβ then we can replace xα with xβ in wα, and xβ with xα in wβ .
If ` − 1 /∈ Λ then wα(xα = xβ) ∈ L implies that as sets xα ⊂ xβ . Using
wβ(xβ = xα) ∈ L we conclude that as sets xα = xβ . If ` + 1 /∈ Λ then the
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inclusions are reversed. Thus xα, xβ are permutations of each other. Given xα,
for how many permutations is it true that xβ is a permutation of xα? We have

|xα|(n− |xα|) < (n/3)!(2n/3)!

choices for xβ and for the rest of β; however, this defines β only up to cyclic ro-
tation, so that xα = xβ for at most n(n/3)!(2n/3)! permutations β. Since there
are n! permutations, the grammar must contain at least these many symbols:

n!
n(n/3)!(2n/3)!

= Ω
(
c′n

n3/2

)
, c′ =

3
22/3

.

The approximation can be obtained using Stirling’s formula. Applying Lemma 3.2,
we get a lower bound of

Ω
(
cn

n3/4

)
, c =

31/2

21/3
.

Note that 33 > 22 and so c > 1.
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