CFGs for Restricted Histogram Languages

Yuval Filmus

December 2010

1 Introduction

The following question was asked on math.stackexchange.com. Given a finite alphabet Σ , consider the language of all words containing an even number of each symbol $\sigma \in \Sigma$. The language is clearly regular, but a DFA for it requires $2^{|\Sigma|}$ states, by Nerode's theorem. Does the language have a context-free grammar (CFG) of size polynomial in $|\Sigma|$? In this note, we answer this question in the negative.

2 Problem statement

We will consider the following generalization of the problem alluded to in the introduction.

Definition 2.1. Let $\Lambda \subset \mathbb{N}$ be an arbitrary subset, and let Σ be a finite alphabet. The language L_{Λ} consists of all words in which the number of occurrences of each symbol $\sigma \in \Sigma$ belongs to Λ .

In other words, if we make a histogram for an arbitrary word $w \in \Sigma^*$, then $w \in L_{\Lambda}$ iff the histogram is supported by Λ . We may call these languages restricted histogram languages.

Note that in general, the language L_{Λ} need not be context-free, or even computable (there are uncountably many choices for Λ). However, if Λ is finite then the language is *regular*, with a minimal DFA having $|\Lambda|^{|\Sigma|}$ states. We get similar results if Λ is cyclic or eventually cyclic.

For some Λ we have very simple DFAs.

Definition 2.2. A subset $\Lambda \subset \mathbb{N}$ is *trivial* if it is one of

$$\emptyset, \{0\}, \mathbb{N} \setminus \{0\}, \mathbb{N}$$

The languages $L_{\emptyset}, L_{\mathbb{N}}$ are accepted by DFAs with a single state, whereas $L_{\{0\}}, L_{\mathbb{N}\setminus\{0\}}$ require two states. All of these have linear size CFGs. Our goal is to provide an exponential lower bound for the size of CFGs of L_{Λ} for all non-trivial Λ .

3 Chomsky normal form

It will be convenient to work with a grammar in Chomsky normal form (CNF).

Definition 3.1. A grammar is in Chomsky normal form if all its productions are either of the form $A \to BC$ or of the form $A \to a$, where A, B, C are non-terminals and a is a terminal. In addition, we also allow the production $S \to \epsilon$, where S is the starting symbol.

Every CFG can be put into Chomsky normal form (CNF) with at most a quadratic blowup.

Lemma 3.2. If G is a CFG then there is an equivalent CNF G' with $|G'| = O(|G|^2)$.

Proof. Check any standard text.

A derivation of a word using a CNF grammar can be viewed as a binary tree where each node either has two non-leaf children or one leaf child. This implies the following useful lemma.

Lemma 3.3. Let L be a context-free language with CNF grammar G. For each word w and each positive $\ell \leq |w|$ there is a subword x of w generated by a non-terminal of G of size $\ell \leq |x| < 2\ell$.

Proof. Consider the derivation tree of w. For a node v, let w(v) be the subword generated by v. We find the required subword using an iterative process. The starting point v_0 is the root. We stop the process at v_t if $|w(v_t)| < 2\ell$. Otherwise, we choose v_{t+1} as the child of v_t generating the bigger subword.

The process must eventually stop. If it stops at v_0 then w is the required subword. If it stops at v_{t+1} then $|w(v_{t+1})| \ge |w(v_t)|/2 \ge \ell$.

4 Main theorem

Theorem 4.1. Let $\Lambda \subset \mathbb{N}$ be non-trivial. There is a constant c > 1 such that any CFG grammar for L_{Λ} on alphabet Σ is of size $\Omega(c^{|\Sigma|})$.

Proof. Put $n = |\Sigma|$. We given an exponential lower bound for the number of non-terminals in a CNF grammar for L_{Λ} ; the result follows from Lemma 3.2.

Since Λ is non-trivial, there is an $\ell > 0$ such that $\ell \in \Lambda$ and either $\ell - 1 \notin \Lambda$ or $\ell + 1 \notin \Lambda$. For $\pi \in S(\Sigma)$, the set of all n! permutation of Σ , define $w_{\pi} = \pi^{\ell} \in L_{\Lambda}$. For each π we use Lemma 3.3 to find a subword x_{π} of length $n/3 \leq |x_{\pi}| < 2n/3$ generated by some non-terminal s_{π} . Note that since $|x_{\pi}| \leq n, x_{\pi}$ has no repeated symbols.

If $s_{\alpha} = s_{\beta}$ then we can replace x_{α} with x_{β} in w_{α} , and x_{β} with x_{α} in w_{β} . If $\ell - 1 \notin \Lambda$ then $w_{\alpha}(x_{\alpha} = x_{\beta}) \in L$ implies that as sets $x_{\alpha} \subset x_{\beta}$. Using $w_{\beta}(x_{\beta} = x_{\alpha}) \in L$ we conclude that as sets $x_{\alpha} = x_{\beta}$. If $\ell + 1 \notin \Lambda$ then the inclusions are reversed. Thus x_{α}, x_{β} are permutations of each other. Given x_{α} , for how many permutations is it true that x_{β} is a permutation of x_{α} ? We have

$$|x_{\alpha}|(n - |x_{\alpha}|) < (n/3)!(2n/3)!$$

choices for x_{β} and for the rest of β ; however, this defines β only up to cyclic rotation, so that $x_{\alpha} = x_{\beta}$ for at most n(n/3)!(2n/3)! permutations β . Since there are n! permutations, the grammar must contain at least these many symbols:

$$\frac{n!}{n(n/3)!(2n/3)!} = \Omega\left(\frac{c'^n}{n^{3/2}}\right), \quad c' = \frac{3}{2^{2/3}}.$$

The approximation can be obtained using Stirling's formula. Applying Lemma 3.2, we get a lower bound of

$$\Omega\left(\frac{c^n}{n^{3/4}}\right), \quad c = \frac{3^{1/2}}{2^{1/3}}.$$

Note that $3^3 > 2^2$ and so c > 1.