
Universal codes of the natural numbers

Yuval Filmus

July 26, 2013

Abstract

A code of the natural numbers is a uniquely-decodable binary code of the natural numbers with
non-decreasing codeword lengths, which satisfies Kraft’s inequality tightly. We define a natural partial
order on the set of codes, and show how to construct effectively a code better than a given sequence of
codes, in a certain precise sense. As an application, we prove that the existence of a scale of codes (a
well-ordered set of codes which contains a code better than any given code) is independent of ZFC.

1 Introduction

Lossless coding theory concerns the problem of encoding a sequence of symbols in some alphabet, usually
binary. We demand two properties from our codes: they need to be (uniquely) decodable, and they should
be concise, that is, the codewords should be short. In this paper we address the following problem: how
concise can a coding system for the natural numbers be?

In 1975, Elias [7] considered this problem and constructed a sequence of efficient codes, culminating in
the so-called ω-code (almost the same code had been discovered by Levenshtein [14] in 1968). The third
member in Elias’s sequence of codes, called the γ-code, is already asymptotically optimal in the sense that
given a non-decreasing high-entropy distribution on the natural numbers, the expected codeword length is
almost optimal; consult Elias [7] for a formal definition.

Other concise codes have been constructed by Bentley and Yao [3], Even and Rodeh [8] and Stout [18].
These codes were analyzed by Ahlswede et al. [1]. More recent examples are Yamamoto [22] and Tarau [19].
An online universal code has been constructed by Dodis et al. [5].

A natural question to ask is whether there exists an optimal code. We formulate this question in Section 3
and show that not only is there no single optimal code, but there is also no optimal sequence of codes. Since
the proofs of these results are constructive, they can be used to construct a fast-growing hierarchy of codes.
Elias’s construction cannot be used to obtain this result, as we show in Section 3.1.

Care must be taken when considering the practical implications of these results: while all codes we
consider are effective, they are not necessarily efficient, in the sense that encoding and decoding could
be slow. Furthermore, in practice one is not interested in the asymptotic performance of a code, but in its
performance on integers up to a certain application-specific bound, or even on a certain class of distributions.

We go on further and consider the existence of a scale of codes, which is an uncountable sequence of
codes, ordered so that latter codes are better (in the sense of Definition 2.3 below), and containing a code
better than any given code. We show in Section 4 that the existence of a scale is independent of ZFC,
imitating classical results on functions on the natural numbers ordered by dominance.

2 Definitions

We start with some basic notations. The set of all finite binary strings is denoted {0, 1}∗. The set of natural
numbers (including zero) is denoted N. The set of finite sequences of natural numbers is denoted N∗. The
length of a binary string x is denoted |x|.

1

Next, some terminology from recursion theory. A sequence a(n) is called effective if the mapping n 7→ a(n)
is recursive (computable by an algorithm). A sequence an(m) of sequences is effective if the mapping
(n,m) 7→ an(m) is recursive. A real number x is effective if there is a recursive function mapping n to a
closed rational interval of width at most 1/n containing x (all rational intervals appearing in this paper are
closed).

A sequence a(n) is effective relative to another sequence b(n) if the mapping n 7→ a(n) is recursive given
an oracle for the mapping n 7→ b(n). The concept of being effective relative to a sequence of sequences or to
a real number is defined analogously. Similarly we can extend the definition to cover sequences of sequences
and real numbers which are effective relative to other data.

We proceed to define binary codes, which are our main focus of study.

Definition 2.1. A (uniquely-decodable) binary code of the natural numbers is a mapping C : N → {0, 1}∗
with the property that the function C∗ : N∗ → {0, 1}∗ defined by C∗(n1 . . . nk) = C(n1) . . . C(nk) is injective.
If furthermore |C(n)| ≤ |C(m)| whenever n ≤ m, then C is monotone.

A prefix code has the additional property that C(n) is not a prefix of C(m) for any n 6= m.

Kraft [13] and McMillan [16] proved the following well-known inequality.

Lemma 2.1 (Kraft’s inequality). Let C be a binary code. Then∑
n∈N

2−|C(n)| ≤ 1.

Conversely, given a sequence c : N→ N satisfying the inequality∑
n∈N

2−c(n) ≤ 1,

there exists a prefix code C such that |C(n)| = c(n). Furthermore, C is effective relative to c.

Due to this inequality and its converse, our study will concentrate only on the lengths of codewords rather
than the codewords themselves. This prompts the following definition.

Definition 2.2. A precode is a monotone non-decreasing function c : N→ N satisfying Kraft’s inequality

σ(c) ,
∞∑
n=0

2−c(n) ≤ 1.

A code is a precode in which Kraft’s inequality is tight. A proper precode is a precode in which Kraft’s
inequality is strict.

The theory can also be developed with respect to non-monotone codes, but we feel that this is less natural.
We require that Kraft’s inequality be tight for technical reasons (to make our constructions effective). We
feel that this is not a large concession since (as we show in Section 3) any binary code can be improved to a
binary code in which Kraft’s inequality is tight.

Following properties of the sequence of codes constructed by Elias [7], we define a partial order on
precodes.

Definition 2.3. Let c, d be precodes. We say that c ≺ d (read c is better than d) if

lim
n→∞

c(n)− d(n) = −∞.

We say that c � d if
sup
n→∞

c(n)− d(n) <∞.

2

This definition corresponds to the ratio test for convergent series: indeed, with any precode c we can
associate a convergent series c′(n) = 2−c(n), and then c ≺ d if and only if c′(n)/d′(n)→∞. This differs from
the definition used by Cholshchevnikova [4] and Vojtáš [21], who apply the ratio test to the remainder term.

Armed with this definition, we can give some evidence to our claim that non-monotone codes are less
natural.

Lemma 2.2. There is a function d : N → N, satisfying Kraft’s inequality tightly, such that c � d for any
code c.

Proof. Define d as follows:

d(n) =

{
k + 2 if n = 4k + k − 1,

3k + 2 if 4k + k ≤ n ≤ 4k+1 + k − 1.

The critical values, n = 4k+k−1, are 0, 4, 17, 66, . . . and so on. Let us check that d satisfies Kraft’s equality:

∞∑
n=0

2−d(n) =

∞∑
k=0

(
2−k−2 + 4k · 2−3k−2

)
=

∞∑
k=0

2−k−1 = 1.

If c is any code then for any n we have

1 >

n∑
m=0

2−c(m) ≥ (n+ 1)2−c(n).

Thus c(n) > log2(n+ 1). Choosing n = 4k + k − 1, we conclude that

c(4k + k − 1) > log2(4k + k) > 2k.

Therefore c(4k + k− 1) ≥ 2k+ 1 = d(4k + k− 1) + k− 1, and so supn→∞ c(n)− d(n) =∞, that is c � d.

3 Existence of optimal codes

Our goal in this section is to show that there is no optimal code, or even optimal sequence of codes. This is
the statement of the following theorem.

Theorem 3.1. For every sequence of codes (cn)n∈N there is a code d, effective relative to the sequence, such
that d ≺ cn for every n ∈ N.

Similar results in the related context of fast-growing functions were proved by du Bois-Reymond [6] and
Hadamard [10]. Compared to these results, the main challenges in proving Theorem 3.1 are constructing d
in an effective way, and ensuring that d is monotone.

The first step in proving Theorem 3.1 is constructing effectively a precode e satisfying e ≺ cn for every
n ∈ N.

Lemma 3.2. For every sequence of codes c = (ck)k∈N there is a proper precode e, effective relative to c,
such that e ≺ ck for every k ∈ N. Furthermore, σ(e) ≤ 1/2 and σ(e) is also effective relative to c.

Proof. Let d(n) = mink ck(n)+k. If k ≥ c0(n) then ck(n)+k > c0(n) ≥ d(n), and so d(n) = mink<c0(n) ck(n)+
k. This shows that d is effective relative to c. Moreover, since the codes ck are monotone, so is d. We will
construct a precode e ≺ d, and it will follow (as we show below) that e ≺ ck for all k ∈ N.

We start by computing a sequence (pm)m∈N satisfying
∑∞
n=pm

2−d(n) ≤ 2−m. For m, k ∈ N let qm,k ≥ 1

be the minimal index satisfying
∑qm,k−1
n=0 2−ck(n) ≥ 1 − 2−m−2, and note that

∑∞
n=qm,k

2−ck(n) ≤ 2−m−2.

3

Define pm = maxk≤m+1 qm,k. We have

∞∑
n=pm

2−d(n) <

∞∑
n=pm

∞∑
k=0

2−ck(n)−k =

∞∑
k=0

2−k
∞∑

n=pm

2−ck(n)

<

∞∑
k=m+2

2−k +

m+1∑
k=0

2−k
∞∑

n=qm,k

2−ck(n) ≤ 2−m−1 +

m+1∑
k=0

2−k2−m−2 < 2−m.

The existence of p0 implies that σ(d) is convergent, and so d(n) −→∞. Let J = {n ≥ 1 : d(n) > d(n−1)}.
Since d(n) −→∞, J is infinite. The idea now is to construct the sequence e as follows. Choose an appropriate
increasing sequence 0 = r0 < r1 < · · · , and let e(n) = d(n) −m + C for rm ≤ n < rm+1. We will choose
the points rm for m ≥ 1 from the set J , and this will ensure that e is monotone. An appropriate choice of
the points rm will ensure that σ(e) <∞ is computable (as a function of C), and will enable us to choose a
value of C guaranteeing σ(e) ≤ 1/2.

The sequence (rm)m∈N is defined as follows. Let r0 = 0, and for m ≥ 1, let rm be the minimal element of
J which is larger than both rm−1 and p2m. The sequence r is clearly effective relative to c. Define a sequence
e′ by e′(n) = d(n)−m in the range rm ≤ n < rm+1. The sequence e′ is also effective relative to c. We claim
that e′ is monotone. Indeed, if rm ≤ n < rm+1 − 1 then e′(n+ 1) = d(n+ 1)−m ≥ d(n)−m = e′(n), and
if n = rm+1 − 1 then e′(n + 1) = d(n + 1) − m − 1 ≥ d(n) − m = e′(n) since n + 1 = rm+1 ∈ J implies
d(n+ 1)− 1 ≥ d(n).

We proceed to show that σ(e′) is computable. For all m ∈ N we have

∞∑
n=rm

2−e
′(n) =

∞∑
l=m

rl+1−1∑
n=rl

2−d(n)+l ≤
∞∑
l=m

2l
∞∑

n=p2l

2−d(n) ≤
∞∑
l=m

2l2−2l = 2−m+1.

This shows that σ(e′) is computable. In particular, we can find an integer C such that σ(e′) ≤ 2C−1. Define
e(n) = e′(n) + C. Since e′ is monotone so is e, and since σ(e) = 2−Cσ(e′) ≤ 1/2, e is a precode. Moreover,
σ(e) is computable.

It remains to show that for all k ∈ N, e ≺ ck. Given k, t ∈ N, for all n ≥ rk+t+C we have

e(n) ≤ d(n)− k − t ≤ ck(n)− t.

This implies that e(n)− ck(n) −→ −∞, and so e ≺ ck.

The second step of the proof of Theorem 3.1 completes the precode constructed in Lemma 3.2 to a code.
Given a proper precode e, we construct a code d � e by pointwise decreasing e. The idea is as follows.
Suppose that 2−k ≤ 1 − σ(e) ≤ 2−k+2. Find the first m such that e(m) > k, and create a new code e′

by setting e′(m) = k and e′(n) = e(n) for n 6= m. The new code satisfies σ(e′) ≥ σ(e) + 2−k−1 and so
1− σ(e′) ≤ (7/8)(1− σ(e)). Repeating this operation, we obtain a code d.

The main difficulty is computing an integer k such that 2−k ≤ 1 − σ(e) ≤ 2−k+2. This is accomplished
by computing an approximation to log2(1 − σ(e)), a function which is the subject of the following routine
technical lemma.

Lemma 3.3. Let δ > 0 be a rational number and let x be a real number satisfying x ≤ 1−δ. Then log2(1−x)
is effective relative to x and δ.

Proof. Let ∆ be an integer satisfying δ ≥ 1/∆. The function f(t) = log2(1 − t) satisfies −C∆ ≤ f ′(t) ≤ 0
for t ≤ 1 − 1/(2∆), where C = 2 log2 e > 1. Hence if I = [a, b] ⊆ [0, 1 − 1/(2∆)] is an interval of width `
containing x then [f(b), f(a)] is an interval of width at most C∆` containing f(x).

Given non-zero n ∈ N, we show how to compute an interval of length at most 1/n containing log2(1−x),
given δ and an oracle for x. We start by computing ∆ = d1/δe and N = d2C∆ne ≥ 2∆. We ask the
oracle for a rational interval [a, b] of length at most 1/N containing x. Since 1/N ≤ 1/(2∆), we have

4

b ≤ x + 1/(2∆) ≤ (1 − 1/∆) + 1/(2∆) = 1 − 1/(2∆). Therefore [f(b), f(a)] is an interval of width at most
C∆/N ≤ 1/(2n) containing f(x). Finally, using a Taylor series expansion we compute rationals g(a), g(b)
approximating f(a), f(b) up to 1/(4n). The interval [g(b), g(a)] is a rational interval of width at most 1/n
containing f(x).

Given this technical lemma, we are able to implement the program described above for the second step
of the proof of Theorem 3.1.

Lemma 3.4. For any proper precode e there is a code d, effective relative to e and log2(1− σ(e)), such that
d(n) ≤ e(n) for all n ∈ N.

Proof. In this proof, whenever we use the term effective, we mean effective relative to e and log2(1− σ(e)).
We construct a sequence dt of precodes converging to d (we make this notion precise below). We will

ensure that σ(dt) < 1 and that the sequences dt and log2(1 − σ(dt)) are effective, and furthermore σ(dt) is
strictly increasing.

The starting point is the sequence d0(n) = e(n). Next suppose that dt has been defined. We will find
effectively an integer kt satisfying

2−kt ≤ 1− σ(dt) ≤ 2−kt+2. (1)

Since log2(1− σ(dt)) is effective, we can effectively find an interval It of width at most 1 containing it, and
an integer k′t such that It ⊂ [k′t − 2, k′t], implying

2−k
′
t ≤ 1− σ(dt) ≤ 2−k

′
t+2.

If t = 0 then we put kt = k′t, and otherwise we put kt = max(k′t, kt−1). If kt = k′t then (1) clearly holds. If
kt = kt−1 then using the assumption σ(dt) > σ(dt−1) and the inequality 1− σ(dt−1) ≤ 2−kt−1+2 we have

2−kt ≤ 2−k
′
t ≤ 1− σ(dt) < 1− σ(dt−1) ≤ 2−kt−1+2 = 2−kt+2.

Given dt and kt, define dt+1 as follows. Let mt be the minimal position for which dt(mt) > kt. The new
sequence dt+1 is obtained from dt by setting dt+1(mt) = kt and dt+1(n) = dt(n) for n 6= mt; our choice of
mt guarantees that dt+1 is monotone. We have

1− σ(dt+1) = 1− σ(dt)− 2−kt + 2−dt(mt).

Since dt(mt) ≥ kt + 1,
1− σ(dt+1) ≤ 1− σ(dt)− 2−kt−1 ≤ 7

8 (1− σ(dt)).

This shows that 1− σ(dt) −→ 0. Moreover, it implies that kt −→∞. Clearly σ(dt+1) is effective. Since

1− σ(dt+1) ≥ 2−kt − 2−kt + 2−dt(mt) = 2−dt(mt),

applying Lemma 3.3, we see that log2(1− σ(dt+1)) is effective.
We define d(n) = mint dt(n). Since kt is non-decreasing and kt −→ ∞, d is effective. Since each dt is

monotone, so is d. Clearly σ(d) ≥ σ(dt), hence 1 − σ(dt) −→ 0 implies that σ(d) ≥ 1. On the other hand,
each prefix of d is a prefix of dt for all sufficiently large t. Since each dt is a precode, we deduce that for all
m ∈ N,

∑m
n=0 2−d(m) < 1, and so σ(d) ≤ 1. Put together, σ(d) is a code.

We are now ready to prove the main theorem.

Proof of Theorem 3.1. Lemma 3.2 shows that there is a proper precode e satisfying e � cn for all n ∈ N
which is effective relative to c, and furthermore σ(e) ≤ 1/2 is also effective relative to c. Lemma 3.3 implies
that log2(1 − σ(e)) is effective relative to c, and so we can apply Lemma 3.4 to obtain a code d satisfying
d(m) ≤ e(m) for all m ∈ N which is effective relative to c. This clearly implies that d ≺ cn for all n ∈ N.

5

3.1 Elias’s construction

The proof of Theorem 3.1 is somewhat complicated, and one wonders whether there is any simpler con-
struction. In this section we explain Elias’s construction, and show that it doesn’t always produce a better
code.

Elias [7] defines a sequence of codes, starting with the trivial code α(n) = n+ 1. Successive codes in the
sequence are defined by applying the following operation.

Definition 3.1. Let c be a code. The successor code S(c) is defined by

S(c)(n) = blog2(n+ 1)c+ c(blog2(n+ 1)c).

Lemma 3.5. For any code c, S(c) is a code which is effective relative to c.

Proof. Clearly S(c) is monotone and effective relative to c. It also satisfies Kraft’s equality:

∞∑
n=0

2−S(c)(n) =

∞∑
m=0

2m+1−2∑
n=2m−1

2−m−c(m) =

∞∑
m=0

2−c(m) = 1.

If we start with α and apply the operation S successively, then we obtain progressively better codes.
However, this phenomenon isn’t universal.

Lemma 3.6. There exists an effective code c such that S(c) � c.

Proof. The construction proceeds in infinitely many stages. We start with the empty sequence. Suppose
that in stage n ∈ N, the sequence is of length `n (so `0 = 0). We add to the sequence 2`n+1 copies of the
number `n + n+ 2. The resulting sequence has the form 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 14, . . . and so on.

The sequence is clearly monotone, and the contribution of stage n to the sum in Kraft’s inequality is
2`n+1 · 2−`n−n−2 = 2−n−1. As

∑
n≥0 2−n−1 = 1, c is a code. To see that S(c) � c, notice that

S(c)(2`n+1) = c(`n + 1) + `n + 1 = c(`n + 2`n+1) + `n + 1 ≥ c(2`n+1) + `n + 1.

This lemma shows that Elias’s construction cannot be used in place of Lemma 3.2. In the same paper,
Elias also defines the ω-code, which is obtained through a diagonalization-like construction from the sequence
of codes S(t)(α). We do not know how to generalize this construction.

4 Existence of scale

In the preceding section, we have shown that there is no optimal sequence of codes. However, if we widen
our scope by allowing uncountable sequences, such an object could perhaps be found.

Definition 4.1. A scale of codes S is a set which is well-ordered with respect to ≺ (every non-empty subset
of S has a maximal element) and is cofinal in the poset of codes (for every code c there is a code d ≺ c in S).

Instead of insisting that the scale be well-ordered, we could instead ask for it to be a chain (any two
elements are comparable). Standard arguments show that if such an object exists then so does a scale.

Mimicking a result of Hausdorff [11], we show that a scale exists given that the continuum hypothesis
(CH) holds. This follows from Theorem 3.1 using a standard argument.

Theorem 4.1. If CH holds then there exists a scale of codes.

Proof. We construct a scale S = {sα : α ∈ ω1} by transfinite induction on ω1, using the fact that the
cardinality of the set of codes is c = ℵ1. Fix an enumeration (cα)α<ω1 of all codes. At step α, use Theorem 3.1
to construct a code sα ≺ {sβ : β < α} ∪ {cα}, using the fact that α is countable. By construction, S is
well-ordered. Since sα ≺ cα for any code cα, S is a scale.

6

We can also construct a model in which no scale exists. To that end, following a suggestion by Stefan
Geschke [15], we add ω2 codes using Cohen’s forcing. Theorem 3.1 then implies, using standard arguments,
that the poset of codes has no scale. Similar arguments appear in Frankiewicz and Zbierski [9, II.5], Jech [12,
§24] and Scheepers [17].

The construction uses the concept of code prefix, which represents partial information regarding a code.

Definition 4.2. A code prefix is a finite non-decreasing sequence c(0), . . . , c(n) of natural numbers satisfying
Kraft’s inequality strictly, σ(c) < 1.

We say that a code (or code prefix) d extends a code prefix c if, as a sequence, c is a prefix of d.

The following lemma encapsulates all the information we need to know about codes, gleaned mainly from
Theorem 3.1.

Lemma 4.2. Let c be a code prefix.

(a) The code prefix c can be extended to a code in infinitely many ways.

(b) Given any code d and n ∈ N, the code prefix c can be extended to a code prefix b such that b(m) ≤ d(m)
for some m ≥ n.

Proof. For the first item, let c = c(0), . . . , c(n) be a code prefix. We can extend c to a code prefix
c(0), . . . , c(n + 1) in infinitely many ways. Any such extension can be extended to a code prefix c′ such
that σ(c′) = 1− 2−c(n+1). Finally, extend c′ to a code by affixing c(n+ 1) + 1, c(n+ 1) + 2, . . . at its end.

For the second item, let c = c(0), . . . , c(r) be a code prefix, and let d be a code. Since c is monotone,
σ(c) = A/2c(r) for some integer A, and so σ(c) ≤ 1 − 2−c(r). Use Theorem 3.1 (with cn = d for all n ∈ N)
to construct a code e ≺ d. Find a point m ≥ max(n, r + 1) such that e(m) ≤ d(m) − c(r). Extend c by
e(r+1)+c(r), . . . , e(m)+c(r) to form a new sequence b. Since σ(c) ≤ 1−2−c(r) and 2−e(r+1)+· · ·+2−e(m) < 1,
this results in a code prefix, which satisfies b(m) = e(m) + c(r) ≤ d(m).

We are now in a position to describe the forcing construction. The entire construction takes place inside
a countable transitive model M of ZFC.

Definition 4.3. A code prefix bundle is an ω2-sequence of code prefixes, only finitely many of which have
non-zero length. The forcing P consists of the set of code prefix bundles, ordered by c < d whenever for each
α < ω2, cα extends dα.

The support of a code prefix bundle c, denoted supp c, is the set of α < ω2 such that cα has non-zero
length. The support is always finite.

Lemma 4.3. The forcing P satisfies the countable chain condition: every antichain in P (a subset C ⊆ P in
which any two c, d ∈ C are incompatible: there is no e ∈ P satisfying e < c and e < d) is at most countable.

Proof. Suppose that C is an uncountable antichain in P. Since the support of any code prefix bundle is
finite, the ∆-system lemma shows that there is an uncountable subset D ⊆ C and a finite subset S ⊆ ω2

such that supp c ∩ supp d = S for all c, d ∈ D. For each α ∈ S there are only countably many possible code
prefixes, and so since S is finite, there is an uncountable subset E ⊆ D such that cα = dα for all α ∈ S and
c, d ∈ E. However, since supp c ∩ supp d = S and c, d agree on S for all c, d ∈ E, all code prefix bundles in
E are compatible, contradicting the assumption that C is an antichain.

Let G be a generic filter over P, and construct the model M [G], which contains G. Since P satisfies the
countable chain condition, the forcing preserves cardinals. In the remainder of the section, we show that
M [G] contains no scale of codes.

We start with some consequences of Lemma 4.2.

Lemma 4.4. Let c be the ω2-sequence defined by cα =
⋃
f∈G fα.

(a) For each α < ω2, cα is a code. Moreover, for α 6= β, cα 6= cβ.

7

(b) Every code in M [G] has a name in MP which depends on countably many coordinates of c.

(c) Let d ∈MP be a name of a code which does not depend on cα. Then val(d,G) ⊀ cα.

Proof. The first item follows directly from Lemma 4.2(a).
The second item follows from the countable chain condition. Indeed, every code c ∈ M [G] (represented

as a set of pairs (n, c(n))) has a nice name of the form {((n,m), a) : a ∈ An,m}, where each An,m ⊆ P is
an antichain. Lemma 4.3 shows that each An,m is countable, and so C =

⋃
n,m∈NAn,m is countable. Each

a ∈ C has finite support, and so altogether the name depends on countably many coordinates of c.
To prove the third item, we show that given n ∈ N, any code prefix bundle f can be extended to a code

prefix bundle g that forces cα(m) ≤ d(m) for some m ≥ n. Let D = val(d,G). Using Lemma 4.2(b), we can
extend fα to hα which satisfies hα(m) ≤ D(m) for some m ≥ n. The value of the prefix D(0), . . . , D(m)
is forced by some code prefix bundle k extending f . Since d doesn’t depend on the coordinate α, we can
assume that kα = fα. The code prefix bundle g extends k by gα = hα, and by construction it forces
cα(m) ≤ d(m).

Lemma 4.4 allows us to show that the bounding number of the poset of codes is ω1 while its dominating
number is ω2, implying that there is no scale of codes.

Theorem 4.5. In M [G] there is no scale of codes.

Proof. Let c be the ω2-sequence defined by cα =
⋃
f∈G fα. Suppose S is a scale of codes. For α < ω1, let

sα ∈ S satisfy sα ≺ cα. We claim that S′ = {sα : α < ω1} is cofinal in the poset of codes. Otherwise, there
exists a code s ∈ S such that s ≺ sα ≺ cα for all α < ω1. Yet according to Lemma 4.4(b), such a code has
a name which depends only on countably many coordinates of c. Considering any other coordinate α < ω1,
Lemma 4.4(c) shows that s ⊀ cα.

The fact that S′ is cofinal contradicts Lemma 4.4(c) in a different way: according to Lemma 4.4(b),
all codes in S′ have names depending (together) on at most ω1 coordinates of c. Considering any other
coordinate α < ω2, Lemma 4.4(c) shows that s ⊀ cα for all s ∈ S′, contradicting the fact that S′ is cofinal.
We conclude that S cannot have been a scale.

5 Discussion

Fast-growing hierarchies. Theorem 3.1 can be used to construct a fast-growing hierarchy of effective
codes. Let µ be a countable ordinal, and assign a computable fundamental sequence (α(i))i∈N to every limit
ordinal α < µ. The fast-growing hierarchy (cα)α<µ is defined according to the following rules. The base case
is c0(n) = n+ 1. For a successor ordinal α+ 1, use Theorem 3.1 to construct a code cα+1 ≺ cα. For a limit
ordinal α, use Theorem 3.1 to construct a code cα such that cα ≺ cα(i) for all i ∈ N.

Cardinal characteristics of the continuum. Section 4 shows that the existence of a scale of codes
is independent of ZFC. However, a more satisfying answer will explain how this phenomenon is related to
other cardinal characteristics of the continuum. Specifically, it is known that if we do not require our codes
to be monotone, then the resulting poset of codes is Tukey-equivalent to the ideal of measure-zero sets [2,
Lemma 4.12]. Todorčević [20] conjectures that our poset is also Tukey-equivalent to the same ideal.

References

[1] Rudolf Ahlswede, Te Sun Han, and Kingo Kobayashi. Universal coding of integers and unbounded
search trees. IEEE Trans. Inform. Theory, 43:669–682, March 1997.

[2] Tomek Bartoszynski. Invariants of measure and category. In Matthew Foreman and Akihiro Kanamori,
editors, Handbook of Set Theory, pages 491–555. Springer Netherlands, 2010.

8

[3] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded searching.
Inform. Processing Lett., 5(3):82–87, 1976.

[4] N. N. Cholshchevnikova. Unsolvability of several questions of convergence of series (in Russian). Math-
ematical Notes, 34(5):711–718, 1983.

[5] Yevgeniy Dodis, Mihai Pǎtraşcu, and Mikkel Thorup. Changing base without losing space. In Proc.
42nd ACM Symposium on Theory of Computing (STOC), pages 593–602, 2010.

[6] Paul du Bois-Reymond. Über asymptotische Werte, infinitäre Approximationen und infinitäre
Auflösungen von gleichungen. Mathematische Annalen, 8:363–414, 1875.

[7] Peter Elias. Universal codeword sets and representations of the integers. IEEE Trans. Information
Theory, 21(2):194–203, March 1975.

[8] Shimon Even and Michael Rodeh. Economical encoding of commas between strings. Commun. ACM,
21(4):315–317, 1978.

[9] Ryszard Frankiewicz and Pawel Zbierski. Hausdorff Gaps and Limits, volume 132 of Studies in logic
and the foundations of mathematics. Elsevier, 1994.

[10] Jacques Hadamard. Sur les caractères de convergence des séries à termes positifs et sur les fonctions
indéfiniment croissantes (avec note complémentaire). Acta Mathematica, 18:319–336, 1894.

[11] Felix Hausdorff. Untersuchungen über Ordnungstypen IV, V. Berichte über die Verhandlungen der
Königlich Sächsischen Gesellschaft der Wissenschafter zu Leipzig, Math.-Phys. Klasse, 59:84–159, 1907.

[12] Thomas Jech. Set Theory. Springer, third edition, 2006.

[13] Leon G. Kraft. A device for quantizing, grouping, and coding amplitude modulated pulses. Master’s
thesis, Electrical Engineering Department, MIT, 1949.

[14] Vladimir I. Levenshtein. On the redundancy and delay of separable codes for the natural numbers (in
Russian). Problems of Cybernetics, 20:173–179, 1968.

[15] Stefan Geschke (mathoverflow.net/users/7743). When do cofinal chains of universal codings of the
integers exist? MathOverflow. URL: http://mathoverflow.net/questions/32622 (version: 2010-07-20).

[16] Brockway McMillan. Two inequalities implied by unique decipherability. IEEE Trans. Information
Theory, 2(4):115–116, 1956.

[17] Marion Scheepers. Gaps in ωω. In Haim Judah, editor, Set theory of the reals, volume 6 of Israel Math.
Conf. Proc., pages 439–561. Bar-Ilan University, American Math. Society, 1993.

[18] Q. F. Stout. Improved prefix encodings of the natural numbers. IEEE Trans. Inform. Theory, IT-
26:607–609, 1980.

[19] Paul Tarau. Hereditarily finite representations of natural numbers and self-delimiting codes. In
MSFP’10, pages 11–17. ACM, 2010.

[20] Stevo Todorčević. Personal communication.

[21] Peter Vojtáš. Set-theoretic characteristics of summability of sequences and convergence of series. Comm.
Math. Univ. Carolinae, 28(1):173–183, 1987.

[22] Hirosuke Yamamoto. A new recursive universal code of the positive integers. IEEE Trans. Inform.
Theory, 46(2):717–723, March 2000.

9

