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Abstract

During the last decade, an active line of research in proof complexity has been into the space
complexity of proofs and how space is related to other measures. By now these aspects of resolution
are fairly well understood, but many open problems remain for the related but stronger polynomial
calculus (PC/PCR) proof system. For instance, the space complexity of many standard “benchmark
formulas” is still open, as well as the relation of space to size and degree in PC/PCR.

We prove that if a formula requires large resolution width, then making XOR substitution yields
a formula requiring large PCR space, providing some circumstantial evidence that degree might be
a lower bound for space. More importantly, this immediately yields formulas that are very hard
for space but very easy for size, exhibiting a size-space separation similar to what is known for
resolution. Using related ideas, we show that if a graph has good expansion and in addition its edge
set can be partitioned into short cycles, then the Tseitin formula over this graph requires large PCR
space. In particular, Tseitin formulas over random 4-regular graphs almost surely require space at
least Q(/n).

Our proofs use techniques recently introduced in [Bonacina-Galesi *13]. Our final contribution,
however, is to show that these techniques provably cannot yield non-constant space lower bounds for
the functional pigeonhole principle, delineating the limitations of this framework and suggesting that
we are still far from characterizing PC/PCR space.

1 Introduction

Proof complexity studies how hard it is to provide succinct certificates for tautological formulas in propo-
sitional logic—i.e., proofs that formulas always evaluate to true under any truth value assignment, where
these proofs are verifiable in time polynomial in their size. It is widely believed that there is no proof
system where such efficiently verifiable proofs can always be found of size at most polynomial in the
size of the formulas they prove. Showing this would establish NP # co-NP, and hence P # NP, and
the study of proof complexity was initiated by Cook and Reckhow [CR79] as an approach towards this
(still very distant) goal.

A second prominent motivation for proof complexity is the connection to applied SAT solving. By a
standard transformation, any propositional logic formula F' can be transformed to another formula F” in
conjunctive normal form (CNF) such that F” has the same size up to constant factors and is unsatisfiable
if and only if F' is a tautology. Any algorithm for solving SAT defines a proof system in the sense that

*This is the full-length version of the paper [FLM ' 13] to appear in Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP ’13).
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the execution trace of the algorithm constitutes a polynomial-time verifiable witness of unsatisfiability
(such a witness is often referred to as a refutation rather than a proof, and we will use the two terms
interchangeably in this paper). In the other direction, most modern SAT solvers can in fact be seen to
search for proofs in systems studied in proof complexity, and upper and lower bounds for these proof
systems hence give information about the potential and limitations of such SAT solvers.

In addition to running time, a major concern in SAT solving is memory consumption. In proof
complexity, these two resources are modelled by proof size/length and proof space. 1t is thus interesting
to understand these complexity measures and how they are related to each other, and such a study reveals
intriguing connections that are also of intrinsic interest to proof complexity. In this context, it is natural to
focus on proof systems at comparatively low levels in the proof complexity hierarchy that are, or could
plausibly be, used as a basis for SAT solvers. Such proof systems include resolution and polynomial
calculus. This paper takes as its starting point the former system but focuses on the latter.

1.1 Previous Work

The resolution proof system was introduced in [Bla37], and is at the foundation of state-of-the-art SAT
solvers based on so-called conflict-driven clause learning (CDCL) [BS97, MS96]. In resolution, one
derives new disjunctive clauses from the clauses of the original CNF formula until contradiction is
reached. One of the early breakthroughs in proof complexity was the (sub)exponential lower bound
on proof length (measured as the number of clauses in a proof) obtained by Haken [Hak85]. Truly ex-
ponential lower bounds—i.e., bounds exp(€2(n)) in the size n of the formula—were later established
in [CS88, Urq87] and other papers.

Ben-Sasson and Wigderson [BWO01] identified width as a crucial resource, where the width is the size
of a largest clause in a resolution proof. They proved that strong lower bounds on width imply strong
lower bounds on length, and used this to rederive essentially all known length lower bounds in terms of
width.

The study of space in resolution was initiated by Esteban and Tordn [ET01], measuring the space
of a proof (informally) as the maximum number of clauses needed to be kept in memory during proof
verification. Alekhnovich et al. [ABRW02] later extended the concept of space to a more general setting,
including other proof systems. The (clause) space measure can be shown to be at most linear in the
formula size, and matching lower bounds were proven in [ABRWO02, BG03, ET01].

Atserias and Dalmau [ADO8] proved that space is in fact lower-bounded by width, which allowed to
rederive all hitherto known space lower bounds as corollaries of width lower bounds. A strong separation
of the two measures was obtained in [BNOS], exhibiting a formula family with constant width complexity
but almost linear space complexity. Also, dramatic space-width trade-offs have been shown in [Ben09],
with formulas refutable in constant width and constant space where optimizing one of the measures
causes essentially worst-case behaviour of the other.

Regarding the connections between length and space, it follows from [ADOS] that formulas of low
space complexity also have short proofs. For the subsystem of tree-like resolution, where each line in the
proof can only be used once, [ET01] showed that length upper bounds also imply space upper bounds,
but for general resolution [BNOS] established that this is false in the strongest possible sense. Strong
trade-offs between length and space were proven in [BN11, BBI12].

This paper focuses on the more powerful polynomial calculus (PC)" proof system introduced by
Clegg et al. [CEI96], which is not at all as well understood. In a PC proof, clauses are interpreted as
multilinear polynomials (expanded out to sums of monomials), and one derives contradiction by showing
that these polynomials have no common root. Intriguingly, while proof complexity-theoretic results seem
to hold out the promise that SAT solvers based on PC could be orders of magnitude faster than CDCL,
such algebraic solvers have so far failed to be truly competitive.

IStrictly speaking, to get a stronger proof system than resolution we need to look at the generalization PCR as defined in
[ABRWO02], but for simplicity we will be somewhat sloppy in this introduction in distinguishing between PC and PCR.



1 Introduction

Proof size” in PC is measured as the total number of monomials in a proof and the analogue of
resolution space is the number of monomials needed in memory during proof verification. Clause width
in resolution translates into polynomial degree in PC. While length, space and width in resolution are
fairly well understood as surveyed above, our understanding of the corresponding complexity measures
in PC is much more limited.

Impagliazzo et al. [IPS99] showed that strong degree lower bounds imply strong size lower bounds.
This is a parallel to the length-width relation in [BWO1], and in fact this latter paper can be seen as a
translation of the bound in [IPS99] from PC to resolution. This size-degree relation has been used to
prove exponential lower bounds on size in a number of papers, with [AR03] perhaps providing the most
general setting.

The first lower bounds on space were reported in [ABRWO02], but only sublinear bounds and only
for formulas of unbounded width. The first space lower bounds for k-CNF formulas were presented
in [FLNT12], and asymptotically optimal (linear) lower bounds were finally proven by Bonacina and
Galesi [BG13]. However, there are several formula families with high resolution space complexity for
which the PC space complexity has remained unknown, e.g., Tseitin formulas (encoding that the sum
of all vertex degrees in an undirected graph must be even), ordering principle formulas, and functional
pigeonhole principle (FPHP) formulas.

Regarding the relation between space and degree, it is open whether degree is a lower bound for space
(which would be the analogue of what holds in resolution) and also it has been unknown whether the two
measures can be separated in the sense that there are formulas of low degree complexity requiring high
space. However, [BNT13] recently proved a space-degree trade-off analogous to the resolution space-
width trade-off in [Ben09] (in fact for the very same formulas). This could be interpreted as indicating
that there should be a space-degree separation analogous to the space-width separation in resolution, and
the authors of [BG13] suggest that their techniques might be a step towards understanding degree and
proving that degree lower-bounds space, similar to how this was done for resolution width in [ADOS].

As to size versus space in PC, essentially nothing has been known. It is open whether small space
complexity implies small size complexity and/or the other way around. Some size-space trade-offs were
recently reported in [HN12, BNT13], but these trade-offs are weaker than the corresponding results for
resolution.

1.2 Our Results

We study the relation of size, space, and degree in PC (and the stronger system PCR) and present a
number of new results as briefly described below.

1. We prove that if the resolution width of refuting a CNF formula F' is w, then by substituting each
variable by an exclusive or of two new variables and expanding out we get a new CNF formula
F[®] requiring PCR space 2(w). In one sense, this is stronger than claiming that degree is a lower
bound for space, since high width complexity is a necessary but not sufficient condition for high
degree complexity. In another sense, however, this is (much) weaker in that XOR substitution can
amplify the hardness of formulas substantially. Nevertheless, to the best of our knowledge this is
the first result making any connection between width/degree and space for polynomial calculus.

2. More importantly, this result yields essentially optimal separations between length and degree on
the one hand and space on the other. Namely, taking expander graphs and making double copies
of all edges, we show that Tseitin formulas over such graphs have proofs in size O(nlogn) and
degree O(1) in PC but require space O(n) in PCR. (Furthermore, since these small-size proofs are
tree-like, this shows that there is no tight correlation between size and space in tree-like PC/PCR
in contrast to resolution.)

>The length of a proof is the number of lines, whereas size also considers the size of lines. In resolution the two measures
are essentially equivalent. In PC size and length can be very different, however, and so size is the right measure to study.
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3. Using related ideas, we also prove strong PCR space lower bounds for Tseitin formulas over
(simple or multi-)graphs where the edge set can be partitioned into small cycles. (The two copies
of every edge in the multi-graph above form such cycles, but this works in greater generality.) In
particular, for Tseitin formulas over random d-regular graphs for d > 4 we establish that an Q(1/n)
PCR space lower bound holds asymptotically almost surely.

4. On the negative side, we show that the techniques in [BG13] cannot prove any non-constant PCR
space lower bounds for functional pigeonhole principle (FPHP) formulas. That is, although these
formulas require high degree and it seems plausible that they are hard also with respect to space,
the machinery developed in [BG13] provably cannot establish such lower bounds. Unfortunately,
this seems to indicate that we are further from characterizing degree in PC/PCR than previously
hoped.

1.3 Organization of This Paper

The rest of this paper is organized as follows. We briefly review preliminaries in Section 2. Section 3
presents a overview of our results and provides some proof sketches outlining the main technical ideas
that go into the proofs.

In Section 4, we prove that resolution width lower bounds plus substitutions with XOR or other
suitable Boolean functions yields PCR space lower bounds. We use this in Section 5 to separate size and
degree from space in PC and PCR. In Section 6, we show PCR space lower bounds for Tseitin formulas
over graphs with edge sets decomposable into partitions of small cycles. The proof that random d-regular
graphs for d > 4 (almost) decompose into cycles of length O(y/n) is given in Section 7. The fact
that PCR space lower bounds cannot be obtained for the functional pigeonhole principle formulas with
current techniques is proven in Section 8, and in the same section we show that a larger class of formulas
containing FPHP formulas have essentially the same space complexity for PC and PCR (so that when
proving lower bounds, one can without loss of generality ignore the complementary formal variables for
negative literals in PCR and focus only on PC).

We make some concluding remarks and discuss some of the (many) open questions remaining in
Section 9. For completeness, in Appendix A we provide a full description of our version of the techniques
in [BG13] and provide proofs that the same claims still hold in this slightly different setting.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its negation —z
or T (a negative literal). It will also be convenient to use the alternative notation 2V =z, 2! = T, where
we identify 0 with true and 1 with false® (so that z® is true if z = b). A clause C = a; V ---V ayisa
disjunction of literals. We denote the empty clause by L. A clause containing at most k literals is called
a k-clause. A CNF formula F = C1 N\ - - - A Cpy, is a conjunction of clauses. A k-CNF formula is a CNF
formula consisting of k-clauses. We think of clauses and CNF formulas as sets so that order is irrelevant
and there is no repetitions.

Let F be a field and consider the polynomial ring F[z,Z,y,,...] (where  and T are viewed as
distinct formal variables). We employ the standard notation [n] = {1,...,n}.

Definition 2.1 (Polynomial calculus resolution (PCR)). A PCR configuration P is a set of polynomials
inF[x,Z,y,7,...]. A PCR refutation of a CNF formula F is a sequence of configurations {P,...,P,}
such that Py = (0, 1 € P, and for ¢ € [7] we obtain P; from P;_; by one of the following steps:

Axiom download P, = P,_; U {p}, where p is either a monomial m = [[;z? encoding a clause
c =YV, :1:? € F, or a Boolean axiom x> — x or complementarity axiom x + T — 1 for any
variable z (or T).

3Note that this notational convention is the opposite of what is found in many other papers, but as we will see shortly it is
the natural choice in the context of polynomial calculus.
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(a) Labelled triangle graph. (b) Corresponding Tseitin formula.

Figure 1: Example Tseitin formula.
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Inference P, = P,_; U {p}, where p is inferred by linear combination P

polynomials ¢, r € P;_; for , 8 € F and x a variable.

or multiplication L from
q

Erasure P, = P,_; \ {p}, where p is a polynomial in P;_;.

If we drop complementarity axioms and encode each negative literal T as the polynomial (1 — z), the
proof system is called polynomial calculus (PC).

The size S(m) of a PC/PCR refutation 7 is the number of monomials (counted with repetitions) in
all downloaded or derived polynomials in 7, the (monomial) space Sp(r) is the maximal number of
monomials (counted with repetitions)* in any configuration in 7, and the degree Deg() is the maximal
degree of any monomial appearing in 7. Taking the minimum over all PCR refutations of a formula F’,
we define the size Sper(F L), space Spper (F' F L), and degree Deg,. (F' F L) of refuting F in
PCR (and analogously for PC).

We can also define resolution in this framework, where proof lines are always clauses (i.e., single
monomials) and new clauses can be derived by the resolution rule inferring C'V D from C'Vz and D VZ.
The length of a resolution refutation 7 is the number of downloaded and derived clauses, the space is the
maximal number of clauses in any configuration, and the width is the size of a largest clause appearing
in 7 (or equivalently the degree of such a monomial). Taking the minimum over all refutations as above
we get the measures L (F L), Spo(F 1), and Wr(F  _L). It is not hard to show that PCR can
simulate resolution efficiently with respect to all these measures.

We say that a refutation is tree-like if every line is used at most once as the premise of an inference
rule before being erased (though it can possibly be rederived later). All measures discussed above can
also be defined for restricted subsystems of resolution, PC and PCR admitting only tree-like refutations.

Let us now describe the family of CNF formulas which will be the main focus of our study.

Definition 2.2 (Tseitin formula). Let G = (V, E)) be an undirected graph and x: V' — {0,1} be a
function. Identify every edge e € E with a variable x. and let PARITY ,, , denote the CNF encoding
of the constraint that the number of true edges z. incident to a vertex v € V' is equal to x(v) (mod 2).
Then the Tseitin formula over G with respect to f is Ts(G, x) = \,cyy PARITY , .

When the degree of G is bounded by d, PARITY , , has at most 24-1 clauses, all of width at
most d, and hence Ts(G, x) is a d-CNF formula with at most 2¢!|V| clauses. Figure 1(b) gives an
example Tseitin formula generated from the graph in Figure 1(a). We say that a set of vertices U has
odd (even) charge if 3, ., x(u) is odd (even). By a simple counting argument one sees that T's(G, x)
is unsatisfiable if V(G) has odd charge. Lower bounds on the hardness of refuting such unsatisfiable
formulas T's(G, x) can be proven in terms of the expansion of G as defined next.

“We note that in [ABRWO02], space was defined without counting repetitions of monomials. All our lower bounds hold in
this more stringent setting as well.
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Definition 2.3 (Connectivity expansion [ABRWO02]). The connectivity expansion of G = (V, E) is the
largest ¢ such that for every E' C E, |E’| < ¢, the graph G’ = (V, E'\ E’) has a connected component
of size strictly greater than |V'|/2.

If F'is a CNF formula and f: {0,1}¢ — {0, 1} is a Boolean function, then we can obtain a new CNF
formula by substituting f(x1,...,z4) for every variable x and expanding out to conjunctive normal form.
We write F'[f] to denote the resulting substituted formula, where we will be interested in substitutions
with a particular kind of functions defined as follows.

Definition 2.4 (Non-authoritarian function [BN11]). We say that a Boolean function f(x1,...,x4) is
non-authoritarian if for every x; and for every assignment « to x; there exist g, oy extending « such
that f(cp) = bforb € {0,1}.

By way of example, exclusive or (XOR), denoted @, is clearly non-authoritarian, since regardless of
the value of one variable, the other one can be flipped to make the function true or false, but standard
non-exclusive or V is not.

Let us finally give a brief overview of the framework developed in [BG13], which we use to prove
our PCR space lower bounds.” A partial partition Q of a variable set V' is a collection of disjoint sets
Qi C V. We use the notation | Q@ = [J,c g Qi- For two sets of partial assignments H and H' to disjoint
domains, we denote by H x H' the set of assignments H x H' = {aUf |a € H and 5 € H'}. A set
of partial assignments H to the domain @ is flippable on () if for each variable z € @ and b € {0, 1}
there exists an assignment ay, € H such that oy (x) = b. We say that H satisfies a formula F if all « € H
satisfy F'.

A Q-structured assignment set is a pair (Q, 1) consisting of a partial partition @ = {Q1,...,Q:}
of V and a set of partial assignments H = ngl H;, where each H; assigns to and is flippable on Q;. We
write (Q,H) < (Q',H)if Q € Q" and H'[g = H, where H'[ g = HQieQ H!. A structured assignment
set (Q, H) respects a CNF formula F” if for every clause C' € F’ either Vars(C') N|J Q = 0 or there is
aset ) € Q such that Vars(C) C @ and H satisfies C.

Expressed in this language, the key technical definition in [BG13] is as follows.

Definition 2.5 (Extendible family). A non-empty family F of structured assignment sets (Q, H) is
r-extendible for a CNF formula F’ with respect to a satisfiable F’ C F if every (Q,H) € F satisfies the
following conditions.

Size |Q| <.
Respectfulness (Q, H) respects F”.
Restrictability For every Q' C Q the restriction (Q', H[ /) is in F.

Extendibility If |Q| < r then for every clause C € F' \ F’ there exists (Q',H') € F such that
1. (QH) < (Q,H),2. H satisfies C, and 3. |Q'| < |Q| + 1.

When F’ = (), we simply say that F is r-extendible for F'.
To prove PCR space lower bounds for a formula F/, it is sufficient to find an extendible family for F'.

Theorem 2.6 ([BG13]). Suppose that F' is a CNF formula which has an r-extendible family F with
respect to some F' C F. Then Sp . (F 1) > r/4.

All space lower bounds presented in this paper are obtained in this manner, where in addition we
always have F’ = ().

5The actual definitions that we use are slightly different but essentially equivalent. We provide the full details including
proofs in Section A for completeness.
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3 Overview of Results and Sketches of Some Proofs

In this section, we give a more detailed overview with formal statements of our results, and also provide
some proof sketches in order to convey the main technical ideas. As a general rule, the upper bounds we
state are for polynomial calculus (PC) whereas the lower bounds hold for the stronger system polynomial
calculus resolution (PCR). In fact, even more can be said: just as is the case in [ABRW02, FLN"12,
BG13], all our lower bounds hold also for functional calculus, where proof lines are arbitrary Boolean
functions over clauses/monomials and anything that follows semantically from the current configuration
can be derived in a single step. We do not discuss this further below but instead refer to Appendix A for
the details.

3.1 Relating PCR Space and Resolution Width

The starting point of our work is the question of how space and degree are related in polynomial calculus,
and in particular whether it is true that degree lower-bounds space. While this question remains wide
open, we make partial progress by showing that if the resolution width of refuting a CNF formula F' is
large (which in particular must be the case if F' requires high degree), then by making XOR substitution
we obtain a formula F'[@)] that requires large PCR space. In fact, this works not only for exclusive or but
for any non-authoritarian function (as defined in Definition 2.4). The formal statement is as follows.

Theorem 3.1. Let F' be a k-CNF formula and let f be any non-authoritarian function. Then it holds
over any field that Sppon (F[f]FL) > (Wr(FFL)—k+1)/4.

Proof sketch. In one sentence, the proof of Theorem 3.1 is by combining the concept of extendible
families in Definition 2.5 with the combinatorial characterization of resolution width in [ADO8]. We
show that the properties of F' implied by the width lower bound can be used to construct an extendible
family for F'[f]. To make this description easier to parse, let us start by describing in somewhat more
detail the width characterization in [ADOS].

Consider the following game played on F' by two players Spoiler and Duplicator. Spoiler asks
about assignments to variables in F' and Duplicator answers true or false. Spoiler can only remember
¢ assignments simultaneously, however, and has to forget some variable when this limit is reached. If
Duplicator is later asked about some forgotten variable, the new assignment need not be consistent with
the previous forgotten one. Spoiler wins the game by constructing a partial assignment that falsifies some
clause in F', and the game is a Duplicator win if there is a strategy to keep playing forever without Spoiler
ever reaching this goal. It was proven in [ADO8] that this game exactly captures resolution width in the
sense that Duplicator has a winning strategy if and only if ¢ < Wy (F - 1).

Letus fix r = Wx(F F L)—k+1 and use Duplicator’s winning strategy for ¢ = Wy (F F L) to build
an r-extendible family for F'[®] (the proof for general non-authoritarian functions is very similar and is
given in Section 4). Consider any assignment « reached during the game. We define a corresponding
structured assignment set (Q,, Ho) by adding a block Q; = {x1, 22} to Q, for every x € Dom(«),
and let H, contain all assignments «,, to {z1, z2} such that ai; (21 @ x2) = a(z).

Given these structured assignment sets (Q,,, H,, ), the family F is constructed inductively as follows.
The base case is that (Qy, Hy) = (0,0) is in F. To extend (Qq, Ho) to satisfy a clause in C[®], we
simulate a Spoiler with memory « who asks about all variables in C'. Since Duplicator does not falsify
C, when all variables have been queried some literal in C' must be satisfied by the assignment. Fix
one such variable assignment {z = b} and add (Qau{g::b}, Hau{gczb}) as defined above to F. All that
remains now is to verify that this yields an extendible family as described in Definition 2.5 and then
apply Theorem 2.6. 0

3.2 Separation of Size and Degree from Space

An almost immediate consequence of Theorem 3.1 is that there are formulas which have small PC refu-
tations in constant degree but nevertheless require maximal space in PCR.
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Theorem 3.2. For any field F of characteristic p there is a family of k-CNF formulas F,, (where k
depends on p) of size O(n) for which Spper(Fpn L) = Q(n) over any field but which have tree-like
PC refutations m, : Fy, = L over F of size S(m,) = O(nlogn) and degree Deg(m,) = O(1).

Proof sketch. Let us focus on p = 2, deferring the general proof to Section 5. Consider a Tseitin formula
Ts(G, x) for any constant-degree graph G over n vertices with connectivity expansion 2(n) and any
odd-charge function Y.

From [BWO01] we know that Wi (F 1) = Q(n). It is not hard to see that XOR substitution yields
another Tseitin formula 7T's(G’, x) for the multi-graph G’ obtained from G by adding double copies of all
edges. This formula requires large PCR space (over any field) by Theorem 3.1. The upper bound follows
by observing that the CNF encodes a linear system of equations, which is easily shown inconsistent in
PC by summing up all equations in a tree-like fashion. O

It follows from Theorem 3.2 that tree-like space in PC/PCR is not upper-bounded by tree-like size,
in contrast to resolution. This is the only example we are aware of where the relations between size,
degree, and space in PC/PCR differ from those between length, width, and space in resolution, so let us
state this as a formal corollary.

Corollary 3.3. It is not true in PC/PCR that tree-like space complexity is upper-bounded by the logarithm
of tree-like size complexity.

3.3 Space Complexity of Tseitin Formulas

A closer analysis of the proof of Theorem 3.2 reveals that it partitions the edge set of G’ into small edge-
disjoint cycles (namely, length-2 cycles corresponding to the two copies of each original edge) and uses
partial assignments that all maintain the same parities of the vertices on a given cycle. It turns out that
this approach can be made to work in greater generality as stated next.

Theorem 3.4. Let G = (V, E) be a connected graph of bounded degree d with connectivity expansion c
such that the edge set E can be partitioned into cycles of length at most b. Then it holds over any field
that Spper (Ts(G,x) FL) > ¢/4b—d/8.

Proof sketch. We build on the resolution space lower bound in [ABRWO02, ETO1], where the proof works
by inductively constructing an assignment « for each derived configuration C; (which corresponds to
removing edges from G and updating the vertex charges accordingly) such that (a) a; satisfies C;, and
(b) o does not create any odd-charge component in G of size less than n/2. The inductive update can
be performed as long as the space is not too large, which shows that contradiction cannot be derived in
small space (since C; is satisfiable).

To lift this proof to PCR, however, we must maintain not just one but an exponential number of such
good assignments, and in general we do not know how to do this. Nevertheless, some more thought
reveals that the only important aspect of our assignments are the resulting vertex parities. And if the
edge set is partitioned into cycles, we can always shift edge charges along the cycles so that for all the
exponentially many assignments, the vertex parities are all the same (meaning that on a higher level we
only have to maintain one good assignment after all). The full proof is presented in Section 6. O

Some graphs, such as rectangular grids, can be partitioned into cycles of size O(1), yielding tight
bounds on space. A bit more surprisingly, random d-regular graphs for d > 4 turn out to (sort of) admit
partitions into cycles of size O(y/n), which yields the following theorem.

Theorem 3.5. Let G be a random d-regular graph on n vertices, where d > 4. Then over any field it
holds almost surely that Spper (Ts(G, x) FL) = Q(V/n).

Proof sketch. As long as we are interested in properties holding asymptotically almost surely, we can
replace random 4-regular graphs with unions of two random Hamiltonian cycles [KWO01]. We show that
a graph distributed according to the latter model almost surely decomposes into cycles of length O(y/n),
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along with en additional edges (which are easily taken care of separately). Since random graphs are
also excellent expanders, we can apply Theorem 3.4. The argument extends straightforwardly to random
d-regular graphs for any d > 4. The full proof, which contains a bit more by way of technical details, is
given in Section 7. O

We believe that the true space bound should actually be ©(n), just as for resolution, but such a result
seems beyond the reach of our current techniques. Also, note that to make Theorem 3.4 go through we
need graph expansion plus partitions into small cycles. It seems plausible that expansion alone should be
enough to imply PCR space lower bounds, as for resolution, but again we are not able to prove this.

3.4 Limitations of the PCR Space Lower Bound Technique

The framework in [BG13] can also be used to rederive all PCR space lower bounds shown previously
in [ABRW02, FLN'12], and in this sense [BG13] sums up what we know about PCR space lower
bounds. There are also intriguing similarities between [BG13] and the resolution width characterization
in [ADOS8] (as partly hinted in the proof sketch for Theorem 3.1), which raises the question whether
extendible families could perhaps be a step towards characterizing degree and showing that degree lower-
bounds space in PC/PCR.

Even more intriguingly, however, there are CNF formulas for which it seems reasonable to expect
that PCR space lower bounds should hold, but where extendible families seem very hard to construct.
Such formulas include ordering principle formulas, functional pigeonhole principle (FPHP) formulas,
and random 3-CNF formulas. In fact, no PCR space lower bounds are known for any 3-CNF formula—it
is consistent with current knowledge that all 3-CNF formulas could have constant space complexity in
PCR (!), though this seemingly absurd possibility can be ruled out for PC [FLNT12].

We show that the problems in applying [BG13] to the functional version of the pigeonhole principle
are inherent, in that these techniques provably cannot establish any nontrivial space lower bound. We
refer to Section 8 for the formal description of the formulas and the proof of the next theorem.

Theorem 3.6. There is no r-extendible family for FPHPZHfor r > 1

Since by [Raz98] these formulas® require PC refutation degree 2(n), one way of interpreting Theo-
rem 3.6 is that the concept of r-extendible families is very far from providing the hoped-for characteri-
zation of degree.

One step towards proving PCR space lower bounds could be to obtain a weaker PC space lower
bound—as noted above in the discussion of 3-CNF formulas, this can sometimes be easier. For FPHPZ“,
however, and for a slightly more general class of formulas described in Section 8, it turns out that such
PC space lower bounds would immediately imply also PCR space lower bounds.

Theorem 3.7. Sp,..(FPHP"™ 1) = O(Sp,.(FPHP" ' I 1)).

Proof sketch. In FPHP!'"™ we have variables z; ; for i € [n + 1], j € [n], encoding that pigeon i
goes into hole j. The clauses of the formula require that every pigeon is mapped to some hole and that
this mapping is one-to-one. Because of this, the negation of x; ; is equivalent to \/ 15 Ti,j and so the
literal Z; ; can be encoded as the monomial [] 5 i, in PC. Since this substitutes a monomial for a
monomial the space does not increase. Now we can take any PCR refutation of FPHP™ ! and apply
such substitutions line by line. The inferences remain sound (with some local auxiliary steps added) and
so this process gives a PC refutation of FPHP" ! in roughly the same space. 0

To be precise, the degree lower bound in [Raz98] is proven for the functional pigeonhole principle encoded as linear
equations—the standard CNF version has large initial width/degree and so there is nothing to prove. However, the linear-
equations encoding of FPHP has axioms of large space, and so for space lower bounds we want to study the CNF version.
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4 PCR Space Lower Bounds From Resolution Width

In the rest of this paper, we give formal proofs of the results described in Section 3. We start by con-
sidering the question of relating space and degree in PCR. Although we do not know how to prove (or
rule out) an analogue of the relation between space and width in resolution, we can use the combinatorial
game from [ADOS] to prove a weaker relation between PCR space and resolution width. Recall from the
informal description of the game in Section 3.1 that we have two players, Spoiler and Duplicator, and
that Duplicator needs to be able to provide an answer to any of Spoiler’s questions about assignments to
some bounded number of variables in order to win the game. Formally, a winning strategy for Duplicator
is defined as follows.

Definition 4.1 (Duplicator’s strategy [ADO08]). A Duplicator winning strategy for the Boolean existen-
tial /-pebble game on on a CNF formula £’ is a non-empty family D of partial truth value assignments to
Vars(F’) such that every a € D satisfies the following conditions:

1. No clause C € Fis falsified by «.
2. The domain of « has size at most |Dom ()| < £.
3. For every subassignment o/ C « it holds that o/ € D.

4. If |Dom(ex)| < £, then for every variable x there exists an o/ € D that and assigns a value to z and
extends « (i.e., o/ D a).

In [ADO8], Atserias and Dalmau proved the following tight connection between Duplicator winning
strategies and resolution refutation width.

Theorem 4.2 ([ADO08]). The CNF formula F' has a resolution refutation of width { if and only if Dupli-
cator has no winning strategy for the Boolean existential (¢ + 1)-pebble game on F..

The Duplicator strategy in Definition 4.1 has some similarities with the extendible family in Defini-
tion 2.5, which can be taken to suggest that there might be a relation between resolution width and PCR
space. The main difference is that extendible families consist of sets of assignments in which we must be
able to flip every variable, while Duplicator’s strategy is built on fixed individual assignments. However,
if we substitute every variable in F' with a non-authoritarian function as defined in Definition 2.4, then it
is straightforward to make the transition from fixed assignments to sets of flippable assignments.

Lemma 4.3. Let I be a k-CNF formula and let f be a non-authoritarian function. If Duplicator wins
the Boolean existential {-pebble game on F, then there exists an ({ — k + 1)-extendible family for F'[f].

Proof. Let D be a winning Duplicator strategy for F'. We will use D to construct an (¢ —k+1)-extendible
family F for the substituted formula F'[f]. In what follows, let us denote by Vars?(x) the set of variables
that we get when we substitute x by f(z1,...,x4) in F' for some non-authoritarian function f of arity d.

Forx € Vars(F), define Q, = Vars®(x) andlet H, ., = { | Dom(3) = Q, and f(8) = a(x)} be
the set of all assignments over (), for which f evaluates to the value that « assigns to x. For any partial
assignment € D we let the corresponding structured assignment set (Q,,, H,,) be the pair consisting
of Q4 = {Qz | * € Dom(c)} and H, = HIGDom(a) H, .. We define F to encompass all structured
assignment sets (Q,, H,,) corresponding to partial assignments & € D with [Dom(a)| < ¢ —k+ 1. We
need to prove that F constructed in this way is an (¢ — k + 1)-extendible family with respect to F’ = ).

By construction, for every (Qq, Ho) € F we have that Q,, is a partial partition and that the partial
assignments H, ., € H, assign to @, € Q. Furthermore, H,  is flippable on (). This is so since f is
a non-authoritarian function, which means that for very variable in z; € @, there exist assignments [y,
b € {0,1}, to Q. such that B,(x;) = band f(53,) = «a(zr). Hence, all (Q,,H,) € F are structured
assignment sets.

The size condition |Q,| < /—k+1 in Definition 2.5 is clearly satisfied for all (Q,, H,) € F, and re-
spectfulness is vacuously true. To see that the restriction property also holds, consider any (Q,,, Ho) € F

10
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obtained from o« € D. For any subset @' C Q,, let o/ be the subassignment of « restricted to
{z|Q: € Q}andlet H' = []g, co Hua = [lsepom(ar) Ha,ar- Then since o' € D by Definition 4.1,
it follows by the construction of F that (Q', H[o/) = (Q', H') € F as required.

It remains to prove that F has the extension property. Let (Q,, Ho) € F be such that |Q,,| < {—k+1
and let C' be a clause in F'[f]. We need to argue that (Q,,Hs) can be extended to satisfy C. Let
A € F be the clause such that C' € A[f], i.e., C is one of the clauses obtained when substituting
fin A. If a € D satisfies A4, it follows by construction that #,, satisfies all of A[f] and hence, in
particular, C, and we are done. Otherwise, it follows from the definition of a winning Duplicator strategy
and the fact that |«| < ¢ — k that « can be extended to an assignment o/ that queries all of the (at
most k) variables in A without falsifying the clause. Such an o/ must satisfy A. Fix some variable
z* € Dom(c’) \ Dom(«) such that o satisfies A by assigning to z*, and let o’* be the subassignment of
o/ with domain Dom(a) U {z*}. This o/ must be in D by Definition 4.1, and analogously to what was
argued above it must hold that H,,~ satisfies C' € A[f]. Itis clear that (Qqn, Ha) < (Qax, Hax), and that
|Qa+| < |Qal + 1. Hence, F satisfies extendibility, and the lemma follows. O

Combining Lemma 4.3 with the combinatorial characterization of width in Theorem 4.2 and the
lower bound on space in terms of extendible families in Theorem 2.6, we obtain the first theorem claimed
in Section 3.

Theorem 3.1 (restated). Let F' be a k-CNF formula and let f be any non-authoritarian function. Then

Sppen(F7] 1) > PRI Z AL

While it can be argued that this theorem might be interpreted as an indication that degree could be
a lower bound for space in PCR, a more immediate and concrete consequence is that it gives us a way
to prove the existence of formulas which have very small PCR refutations, but for which any refutation
must have essentially maximal space. For polynomial calculus over fields of characteristic 2, we already
have all the tools needed to argue this. In particular, the space lower bound needed follows immediately
from Theorem 3.1 as described next.

Corollary 4.4. Let G be an expander graph of bounded degree over n vertices, let | be an odd-charge
function on V(G), and let G' be the multi-graph obtained by adding two copies of each edge in G. Then

Spper(Ts(G', f)FL) =Q(n) .

Proof. As shown in [BWO1], refuting Tseitin formulas over expander graphs requires linear width in
resolution. It is not hard to see that substituting with XOR in a Tseitin formula over G is the same as
considering the formula over the multi-graph with two copies of every edge. Thus Ts(G’, f) requires
monomial space €2(n) by Theorem 3.1, which is linear in the formula size if G is a constant-degree
expander. 0

As briefly discussed in Section 3.2, it is not hard to show that Tseitin formulas have small refutations
in PCR (and even PC) over fields of characteristic 2, which yields Corollary 3.3 for this characteristic.
However, this upper bound does not hold for characteristics distinct from 2. Therefore, we need to work
with generalized version of Tseitin formulas and prove our results for such formulas instead. We do so
in the next section.

5 Formulas With Small Proofs May Require Large Space

In Section 2 we defined Tseitin formulas as the CNF encoding of particular linear systems over Fo. Here
we consider a generalization over fields of any positive characteristic. Any such formula essentially
defines an unsatisfiable linear system over [F,, for some prime p. In order to efficiently encode this linear
system as a CNF it is important that each equation mentions a small (for instance constant) number of
variables: any equation over d variables can be encoded as a set of at most 2¢ clauses with d literals each.
In particular, Tseitin formulas are defined on directed graph as follows.

11
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Definition 5.1. Let G = (V, E) be a directed graphand f: V' — {0, 1, ..., p—1} be a function. Identify
every directed edge (u,v) € E with a variable z, ) and let M od? v f denote the CNF encoding of the
constraint that the number of incoming edges x(, . incident to a vertex v € V' that are set to true, minus
the number of outgoing edges z, ) set to true is equal to f(v) (mod p). Then the Tseitin formula
over G with respect to f is Ts”(G, f) = \,ev Mod’;f.

This formula is unsatisfiable when ) f(v) # 0 (mod p). Compare Definition 2.2 with Defini-
tion 5.1: for p = 2 the definitions coincide because is such characteristic there is no difference between
the contribution of the incoming and the outgoing edges. For p = 2 it is natural to define the formula in
terms of undirected graphs, indeed. Not surprisingly, polynomial calculus over a field of characteristic p
efficiently refutes unsatisfiable Tseitin formulas defined on sums modulo p.

Lemma 5.2. Consider a directed graph G = (V, E) with n vertices and constant degree, and a function
[V —=1[0,p—1] with ), f(v) # 0 (mod p). The formula TsP(G, f) has a tree-like polynomial
calculus refutation of constant degree, size O(nlogn), and monomial space O(n).

Furthermore, given any boolean function h on a constant number of variables, the result holds for
the substituted formula TsP (G, f)[h].

Proof. Let us first consider the case without substitution. Recall that true value is encoded as 0 and false
as 1. In this encoding formula Mod” f is equivalent to

Y (A—zw)— >, (I-zw)=f(v) (modp) . (5.1)

u: (u,v)EE w: (v,w)EE

The proof is based on the natural intuition that summing the equations (5.1) for all vertices in the
graph results in a contradiction, since in the sum each variable appears twice: once with positive and
once with negative sign. Fix an enumeration of V' = {vy,...v,}, and fix the following notation for
partial sums:

b

Sap = Z Z (1 —zy,) — Z (1 — zy,w) Z f(vi) (mod p) . (5.2)

=a |u:(u,v;)€E w:(vi,w)eE

We fix t = 2M1°871 < 2p, and consider S;.i to be the equation “0 = 0” for all n < 7 < t. We set up
a tree of height [log n], where leaves are labeled by equations .S; ; and internal nodes are labeled by the
sum of the two children labels (i.e., a node at level k is labeled by the equation S; ; , 5« _; for some 7).

Each equation S, ; is derived from the encoding of Mod” i This equation mention only a constant
number of variables, so by implicational completeness of polynomlal calculus (see Lemma 5.3) we have
a derivation of constant space and size.

Equations in internal nodes are derived by summing the equations of the children. We derive all the
equations on the tree in a bottom-up fashion. This concludes the refutation since the equation S ; at the
root is

Z (1 —2y,) — Z (1 —zp,w) Z f(v;) (mod p) (5.3)
=1 | ws(uv; :

u:(uv;)ER w:(vi,w)EE
Z (1 - wuv) - Z 1 - wi Z f Uz mOd p) (5.4)
(u,v)EE (vyw)EE
0=>) f(vi) (modp) (5.5)
=1

Which is the end of the refutation, since ) ;" ; f(v;) is non-zero.

12
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The size of the proof accounts O(1) for the deduction of each S; ;, and O(n) for the total number of
monomial at each level of the tree: at level k there are 2% equations with at most O(2*) monomials. So
the total size is as claimed.

Regarding the monomial space, notice that we need to keep simultaneously in memory only the
equations of two adjacent levels, which have at most O(n) monomials.

The degree of the refutation is O(1) for the inference of each equation .S; ;. The rest of the proof has
degree 1.

The case with substitution is similar: consider a substituting function i on a constant number of
variables. There is a multilinear polynomial p;, which evaluates exactly as h on all {0, 1} inputs, and
which mentions a constant number of monomials.

The substituted linear forms S; ;[h] are linear combinations of copies of pj, so they have a constant
number of variables each and their inference from M Odii, f [h] is doable in constant space, size and degree
because of Lemma 5.3.

Once the equations S; ;[h] are derived, the refutation goes exactly as shown for the case with no
substitution. From this point on the original refutation is linear; applying the trivial substitution to these
proof lines increases the space, degree and size only by constant factors. O

For the sake of self-containment, we give a proof of the implicational completeness of polynomial
calculus. This completes the proof of Lemma 5.2.

Lemma 5.3. Consider a polynomial implication p; . ..p; |= p which is valid over {0, 1} assignments.
Assume all involved polynomials collectively mention d variables and have degree O(d); then there is a
PC proof of this implication in degree O(d), space 2004 and length 20(d),

Proof. Without loss of generality we assume that all polynomials are in multilinear form. So each of
them has size at most 2¢ and degree d. Let o« = {z1 — v1,...,24 — v4} be an assignment; we define
Cq as [[;(viz; + (1 — v;)(1 — x;)), the polynomial which evaluates to 1 exactly on the assignment c.
We list some useful observations:

Observation (1) is that given the axioms {z; = vi}ie[d} and any polynomial g on variables x1, . . ., x4,
it is possible to efficiently infer ¢ — a(q) = 0. We prove this by induction on the number of variables.
If d = 0 then ¢ = «a(q). Now assume that ¢ — a(q) = s + at — a(q). If we have deduced g[,_, =
s — a(q) and we have the axiom x, we can easily infer ¢ and then s + zt — a(q). If we have deduced
qlz—1 (which is s + t — a(q)) and we have the axiom x — 1, we can easily infer (z — 1)¢ and then
s+t+ (x—1)t —a(q) = s+ xt — a(q). This derivation requires O(d) steps, one per variable, and both
size and space are proportional to the number of monomials in g. The degree is equal to the degree of ¢
plus d.

Observation (2) is that for any g on variables x1,..., x4, we can infer from Boolean axioms the
polynomial C(q — a(q)), for every assignment « on such variables. The inference is in degree O(d),
and length and space are 20(d) 1t is immediate for the simple case ¢ = x;: each C,(z; — v;) contains
the factor 22 — x; by construction. For any non-trivial ¢ we apply the inference in Observation (1), with
the caveat that each line is multiplied by C,,. The resulting polynomial is Cy, (¢ — a(q)).

Observation (3) is that Zae {0,134 C, = 1, and this is an easy induction over d (it also follows from
the semantic of polynomials Cy,).

We now see how to deduce C,,p for every assignment «v. For @ which satisfy p we derive C,,(p — 0)
using observation (2). For « which falsify p, pick any falsified p; and deduce both C,(p; — a(p;)) and
C.pi, using observations (2) and multiplication rule, respectively. The sum is C,a(p;), and since «(p;)

is a non-zero field element, we can multiply by aLp) to get Cyp.
Having deduced all C,p we can use observation (3) to infer p. Notice that we did 24 inferences (one
for each ), each of them of degree O(d) and each of them in space 2°(%). O

Now we have seen that (substituted) Tseitin formulas are easy to polynomial calculus under de-
termined conditions. Nevertheless we can use the tools from Section 4 to show that even under these
conditions, any such refutations require large space.
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Theorem 5.4 (restatement of Theorem 3.2). For IF any field of characteristic p there is a family of
k-CNF formulas F,, (where k depends on p) of size O(n) for which Spper(Fy L) = Q(n) over any
field but which have tree-like PC refutations ,, : F,, - L over I of size S(m,) = O(nlogn) and degree
Deg(my) = O(1).

Proof. The formula family we consider is based on Tseitin formulas over a family of Ramanujan graphs
of constant degree. This is a family of simple graphs with good expansion properties; a construction is
given in [Mor94]. Consider such a graph G on m vertices: set an arbitrary orientation on the edges, and
consider any f: [m] — {0,...,p— 1} with >, f(i) # 0 mod p.

In Corollary 4.5 of [ARO3], it is claimed that if G is a d-regular graph for d at least some constant
value dp, then T's?(G, f) requires refutations of degree (2(m) in polynomial calculus over any field of
characteristic different from p.

Polynomial calculus simulates resolution over any characteristic, and the degree of the simulation is
exactly the width of the simulated resolution proof. This implies that resolution requires width Q(m) to
refute the formula.

Fix k = 2d. We apply a XOR substitution on formula 7's”?(G, f), and we get a k-CNF formula
on n = dm variables. Theorem 3.1 implies that any polynomial calculus (or PCR) refutation requires
monomial space §2(n), under any characteristic.

If the characteristic of the underlying field is p the upper bound follows by Lemma 5.2. O

6 PCR Space Lower Bounds for Tseitin Formulas

In the following exposition we assume that G = (V| F) is a graph with connectivity expansion ¢ and
f:V — {0,1} is a Boolean function. We call a pair (G, f) a charged graph, and we say that a set of
vertices U is even (odd) charged if ZveU f(v) is even (odd). We denote the set of edges incident to a
vertex v by E(v) and extend the notation to sets of vertices. We write @ to denote the complementary
assignment of « obtained by flipping the value of all variables in the domain Dom(«).

Definition 6.1. The charged graph induced by a partial assignment o is ((V, E \ Dom(«)), g), where

9(v) = f(0) + 2z, (1 = ale)).

Observation 6.2. The formulas Ts((V, E \ Dom(«)), g) and Ts(G, f)I,, are equivalent. An assign-
ment o satisfies the clauses PARITY , 4 if and only if the vertex v is isolated and even (as a singleton
set) in the charged graph induced by «. In that case, we say that the assignment « satisfies the vertex v.

Definition 6.3 (non-splitting assignment). A charged graph is non-splitting if all its connected compo-
nents of size at most n/2 are even. A partial assignment « is non-splitting if the charged graph induced
by « is non-splitting .

Observation 6.4. The empty assignment is non-splitting for the charged graph (G, f) if and only if
(G, f) is non-splitting. A connected graph is always non-splitting.

Observation 6.5. Suppose « is a partial assignment extending a partial assignment [3 (or conversely,
B = a|p for some D C Dom(«)). If v is non-splitting, then so is 3. In other words, “unsubstituting”
an edge cannot result in an odd component that has size less than or equal to n/2 because component
sizes can only increase.

The key idea in the resolution space lower bound is that if a proof does not mention many edges,
then it is possible to maintain a satisfiable assignment to the edges the proof mentions. This satisfiable
assignment shifts the charged in the graph so that a contradiction only arises in vertices that the proof
does not mention and leaves enough freedom to keep adding edges to the assignment unless the proof
reaches a space threshold. Thus the proof is unable to derive a contradiction unless it mentions many
edges at once.

The following lemma implements the charge shifting idea.
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Lemma 6.6. Let o be a non-splitting assignment. Let e be an edge. Let D = Dom(a)) U{e}. If|D| < ¢
then we can extend o to some non-splitting assignment 3 such that Dom(3) = D.

Proof. Let (G', g) be the charged graph induced by «v. Lete = (u, v). Let C be the connected component
in G’ that contains the vertices u and v. Let ap = a«U{e — 0} and o = aU{e — 1}. Let (G”, hy) and
(G”, h1) be the charged graph induced by g and « respectively. Observe that ho(C') = hq(C) = ¢g(C).

If e is not a bridge, i.e., removing the edge e from G’ does not disconnect C, then we can extend «
to either g or ;. In this case there is no new component.

If e is a bridge, let C’ and C” be the components in G” that e disconnects C' into. If g(C') is even,
either both hg(C") and ho(C") are even, in which case we can extend « to ary, or both ho(C”) and ho(C")
are odd, in which case we can extend « to g reversing both parities. In this case all new components
are even.

Otherwise, since « is non-splitting, |C| > n/2. Since |D| < ¢, the graph G” has a connected
component larger than n/2. The graph G’ cannot have two disjoint components both larger than n/2, so
this large component is a subset of C; either C’' or C”. Assume it is C’ without loss of generality. Since
C is odd, either ho(C") is odd and ho(C") is even, in which case we can extend « to g, or ho(C’) is
even and ho(C") is odd, in which case we can extend « to « reversing both parities. In this case there
is one new odd component, but it is larger than n /2. O

Corollary 6.7. Let « be a non-splitting assignment. Let E be a set of edges. Let D = Dom(«) U E. If
|D| < c then we can extend o to some non-splitting assignment (3 such that Dom(8) = D.

To extend this idea to a PCR lower bound for space, and in particular to the framework of [BG13],
we need to use assignments that are not only non-splitting but also resilient to flips of the values of some
variables.

Observe that if all the edges along a cycle change their value, the graph induced by the cycle stays the
same. The following definition will let us formalize this property. Recall the cartesian product notation
for sets of assignments.

Definition 6.8 (Flipped assignments). Let o be a partial assignment and let Q be a (total) partition of
Dom(«). The set of flipped assignments of o with respect to Q is the set of assignments given by

Flip(Q,a) = H {alg,@lg} -
QeQ

Observation 6.9. If « is an assignment over a cycle C, then o and @ induce the same charged graph.
Therefore, if Q is a set of disjoint cycles, all the flipped assignments of some assignment « with respect
to Q induce the same charged graph.

Theorem 6.10 (Strengthening of Theorem 3.4). Let (G, f) be non-splitting charged graph of maximal
degree d with connectivity expansion c such that a partition M of E into edge-disjoint cycles of length
at most b exists. Then

Spper(Ts(G, f)FL) > c/4b—d/8 .

Note that this is a strengthening of Theorem 3.4 since if G is connected then (G, f) is trivially
non-splitting for every f.

Proof. By Theorem 2.6, it is sufficient to build an r-extendible family for r = ¢/b — d/2. Let F be the
set of all pairs (Q, H*) satisfying:

1. 9C Mand|Q| <.

2. H* = Flip(Q, o), where « is any non-splitting assignment over | Q.
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Note that Q is a collection of edge-disjoint cycles and every H® consists of the some non-splitting
assignment « and its flips over cycles. Each (Q,H*) € F has many different representations, since
H™ = H” whenever 3 € Flip(a, Q).

Let us show that F is an extendible family. First, pairs (Q, H®) are Q-structured by construction.

The empty assignment is non-splitting by Observation 6.4. So the family JF is not empty because
(0, 1°) € F, where 0 is the empty assignment.

Let us show that the family is closed under restriction. Consider any (Q,H) € F and Q' C Q.
Let @ € H, and let (3 be the restriction of « to | J Q'. By construction « is non-splitting, and restriction
preserves the property of being non-splitting as noted in Observation 6.5, so (Q',H?) € F. Finally
Hlg = Flip(Q, o)l o = Flip(Q', B) = HB.

Let us show that the family is closed under extension. Let (Q,H) € F with |Q| < r and let
p € PARITY ,  for some vertex v € V.

If H satisfies p we are done; otherwise we will extend a non-splitting assignment associated with .

Let « € H be a non-splitting assignment that does not satisfy p. Let Q, = {C € M | v € C} be
the cycles adjacent to v, and let Q1 = Q, \ Q; we will see that Q. is not empty, but we do not need
to assume it now. Let D = Dom(«) U |J Q4. By hypothesis |[Q U Q4| < r 4 d/2, and it follows that
|D| < c. Thus we can apply Corollary 6.7 on o and [ Q4 to extend « to a non-splitting assignment /3
over D.

The assignment /3 disconnects the component {v} and is non-splitting, so it makes the component
{v} even. By Observation 6.2, (3 satisfies the vertex v. Note that /3 falsifies p N | Q, the subclause of p
with variables | J Q. If for all C' € Q the assignment 3 supersatisfies or falsified the subclause p N C,
then there would be a non-splitting assignment in Flip(Q., 3) that falsified p.

Let C' € Q. be a cycle that contains one literal of p that § satisfies and one literal that 3 falsifies.
Let Q' = QU {C} and let H = H”. By construction (Q', H') € F, and assignments in ' restricted to
C satisfy p. O

Theorem 3.4 is somewhat restrictive, in that it requires us to partition al/l edges in the graph into short
cycles. However, as the following corollary shows, it is enough to partition most of the edges.

Corollary 6.11. Let (G, f) be a non-splitting charged graph of maximal degree d with connectivity
expansion c such that a partition M of E into edge-disjoint cycles of length at most b and an additional
number of t < c edges exist. Then

Spper(Ts(G, f) FL) = (c—1t)/4b—d/8

Proof. Let H be the graph obtained by removing the ¢ extra edges. Note that the connectivity expan-
sion of H is at least ¢ — t. Corollary 6.7 on the preceding page shows that there exists a non-splitting
assignment o on G \ H. Observation 6.2 on page 14 implies that for some g, (H, g) is a non-splitting
charged graph. By a restriction argument, any PCR refutation of a non-splitting Tseitin formula on G in
space S can be translated to a PCR refutation of a non-splitting Tseitin formula on H in space at most
S. Theorem 3.4 shows that S > (¢ —t)/4b — d/8. O

6.1 Application: Grid Graphs

There are families of graphs where we actually get matching upper and lower bounds for PCR space. One
such family is square grids. For the following subsection let n be an even integer and denote Z,, = Z/nZ,
the integers modulo n. The following defines a grid over a torus.

Definition 6.12 (Grid graph). The grid graph (or discrete torus) 7'(n) is a 4-regular graph with vertices
V = Z, X Z, and edges

E={((i,7), G+ 1,5)), ((,5), G, g + V) [1,5 € V} .
We order the vertices of T'(n) lexicographically: (i,j) < (k,l)ifi < kori = kand j < [. The

)
predecessor of a vertex (i,7) # (1,1), denoted pred(i, j), is the vertex immediately preceding (i, j) in
this order.
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6 PCR Space Lower Bounds for Tseitin Formulas

We will explicitly refer to the edges we need to disconnect a set of vertices from a graph. This notion
is known as edge boundary.

Definition 6.13. Let G(V, E) be a graph and U C V be a subset of vertices. The edge boundary of U is
the set of edges 0.(U) = {(z,y) e E:x € U,y ¢ U}.

We can find an upper bound on PC space by mentioning all the vertices in lexicographical order.

Lemma 6.14. The space of refuting a Tseitin formula over the n x n grid graph for an odd charge
function f over characteristic 2 is Sp,.(Ts(T(n), f) FL) = O(n).

Proof sketch. Observe that for every set of vertices U it holds that 3 .. gy € = Y cep, () € (mod 2),
and that in PC over characteristic 2 this expression corresponds to the polynomial ) . De(U) € Thus,
we can express > .cpy€ = f(U) in space 0c(U). If we let Uy; = {(a,b) € V' | (a,b) < (4,4)},
the edge boundary of any U;; is at most 2n + 1, so the monomial space of each of the polynomials
Pij = 2eco.(uy;) € — F(Usy) is atmost 2n + 1 = O(n).

If we show how to derive the polynomials p;; in lexicographical order in O(n) space, we will be done.
And indeed, for any vertex (i, j) we can infer the polynomial g;; = .-, ; €— f(v) by downloading the
24=1 axioms PARI TY (;,j),r and adding all of them in constant space. To derive p;; from pjcq(;j) it is
enough to add the polynomials p,,,.q(;;) and ¢;;. The maximum space is Sp(Pprea(ij)) +Sp(pij) +O0(1) =
O(n). O

The connectivity expansion follows from the following isoperimetric inequality.

Theorem 6.15 ((BLI1]). Let U be a subset of vertices of T'(n) with |U| < n?/2. Then

0.(U)| > min{2n,4|U|*/?} .

Corollary 6.16. The connectivity expansion of T'(n) is 2n — 1.

Proof. If we erase 2n — 1 or less edges from 7'(n), then by Theorem 6.15 the largest region we can
disconnect has size |[U| < [(2n — 1)/4]? < n?/2, so ¢ > 2n — 1. If we erase the 2n edges
{((4,0), (i, 1)) | i € Z,} U{((i,n/2),(i,n/2 + 1)) | i € Z,,} we obtain two connected components of
size n?/2, s0 ¢ < 2n. O

The lower bound on PCR space follows.

Corollary 6.17. The space of refuting a Tseitin formula over the n. X n grid graph (over any character-
istic) is Spper(Ts(T'(n), f) FL) = Q(n).

Proof. Letus find a partition of the edges of T'(n). Let C(i, j) be the set of edges of the cycle ((7, j), (i+
1,5),(i+ 1,5+ 1),(i,j + 1)). Then the set M = {C(i,j) | i +j =0 (mod 2)} is a partition of the
edges of T'(n) into edge-disjoint cycles of length 4. By Theorem 2.6, Sp,.(Ts(T'(n), f) L) >
(2n — 9)/16. 0

Theorem 6.18. The space of refuting a Tseitin formula over the n X n grid graph for an odd charge
function f over characteristic 2 is Sp o (Ts(T(n), f) FL) = O(n).

6.2 Application: Triangulations

Given a graph with good expansion, we can add a few edges to it and obtain a new graph whose Tseitin
formula we can prove to be hard for PCR space. We already showed in Section 4 how to use a XOR
substitution to obtain such a multi-graph; the following subsection shows how to obtain a simple graph.
The proposed method is to convert every edge into a triangle, and a greedy strategy is enough as the
following lemma shows.
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TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

Lemma 6.19. Let G be a graph of order n, size m and maximal degree d. If T' is an integer such that
T(n—4d—4(T+1)) > m then there exists a simple graph H of maximal degree at most 2d+ 2T which
is a supergraph of G whose edges can be partitioned into disjoint triangles.

Proof. Consider the algorithm that iteratively chooses any edge (z, y) not yet handled, chooses a vertex
z not adjacent to any of the endpoints of minimal degree, and adds the two remaining edges (z, z) and
(y, z) from the endpoints to the vertex.

We consider the new edges to be directed (from x and y to 2) and the indegree and outdegree to
refer to new edges only. The degree of a vertex is thus the sum of its initial degree, its indegree and its
outdegree. Observe that at every step the outdegree of every vertex is at most its initial degree, which is
at most d. When choosing the vertex z, we will choose the vertex of minimal indegree.

Assume that at some state S of the execution of the algorithm the maximal indegree is 2¢. We claim
that the algorithm handles at least the next n — 4d — 4(¢ + 1) edges without the indegree exceeding
2(t+1).

Indeed, consider the k-th edge (z, y) the algorithm visits after state S. Its endpoints are connected to
at most d + 2(t + 1) + d vertices each, which we discard as candidates for z, and at most k — 1 vertexes
increased their indegree to 2(¢ + 1). There remain at least n — 4d — 4(¢t + 1) — k + 1 > 1 potential
vertexes of indegree at most 2¢, and the greedy algorithm chooses one of these.

The initial indegree of all vertexes is 0. After handling all m edges, the maximal indegree increases
at most 1" times, where 7T is such that

T-1
m<Yy n—4d—4(t+1)=T(n—4d - 4T +1)) . (6.1)
t=0

O]

In particular, if d < n/4 — /m — 1 such a T exists, and if d = o(n) the inequality (6.1) holds
asymptotically for T' = [%] The lower bound on space follows by applying theorem Theorem 2.6 to
the resulting supergraph and noting that the connectivity expansion cannot decrease.

Theorem 6.20. Let G be a graph of maximal degree d = o(n) and connectivity expansion c. There exists
a simple graph H of maximal degree at most 3d + 2 which is a supergraph of G such that the space of
refuting a Tseitin formula over H is at least Sppq(Ts(H, f) FL1) > ¢/12 — (3d + 2) /8.

7 Cycle Partitions of Random Regular Graphs
7.1 Models of Random Regular Graphs

Let P, be a sequence of probability spaces. A sequence of events F,, on P, holds asymptotically almost
surely if Pr[E,,] — 1. In the sequel, we often abuse notation and say that an event is true asymptotically
almost surely in a probability space, when we actually mean sequences of both. The probability space
will depend on a parameter n.

Two probability spaces are contiguous if every event which holds asymptotically almost surely in one
also holds asymptotically almost surely in the other; we will use the notation A ~ B to denote that A and
B are contiguous. Let D, be the probability space of random d-regular graphs on n vertices, H + H be
the probability space of unions of (not necessarily disjoint) random Hamilton cycles on n vertices, and
‘H @ H be the probability space of unions of disjoint random Hamilton cycles on n vertices; H & H is
obtained by conditioning H + H upon the event that the two random Hamilton cycles are disjoint. Note
that H + H is a probability space on multi-graphs. Kim and Wormald [KWO01] proved the following
theorem (see also Wormald’s survey [Wor99] and [JL.R00, §9.3-9.6]).

Theorem 7.1. We have Dy ~ H & H.

We will need one more fact from [KWO01], whose proof we only sketch.
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7 Cycle Partitions of Random Regular Graphs

Lemma 7.2. If G ~ H + H then Pr[G is simple] — e~2.

sketch. Fix the first Hamilton cycle H;. Let e; be the (random) ¢th edge of the second Hamilton cycle
H,. Tt is easy to see that Pr[e; € H;] = 2/(n — 1), hence E[|H; N Ha|] — 2. Moreover, one
can show using Brun’s sieve (for example [AS00, Theorem 8.3.1]) that the distribution of |H; N Ha| is
asymptotically Poisson; the required calculations are sketched in [KWO1, §2(iii)]. Hence Pr|[|HiNHs| =
0] — e 2. O

Putting both facts together, we get the following result which will serve as our vantage point over
random 4-regular graphs.

Lemma 7.3. Suppose E is an event which holds asymptotically almost surely in H + H. Then E also
holds asymptotically almost surely for random 4-regular graphs.

Proof. Lemma 7.2 shows that £ holds asymptotically almost surely in H & 7, and so in D4 by Theo-
rem 7.1. O

Corollary 7.4. A random 4-regular graph is connected asymptotically almost surely.

7.2 Some Properties of Random Regular Graphs

For a graph G = (V, E) and a subset U of the vertices, recall that N (U) is the set of edges connecting
U and V \ U. We say that the graph G is a d-expander if for every set U of at most |V|/2 vertices,
|IN(U)| > 6|U|. Note that our definition involves edge expansion. Bollobds [Bol88] proved the following
fundamental result.

Theorem 7.5. There is a constant cy such that asymptotically almost surely, a random 4-regular graph
is a cy-expander.

In fact, we can choose any ¢; < 2(1 —n) ~ 0.4401, where 7 is the unique positive solution of
(1 —n)t="(1 + n)'*" = 2. In particular, asymptotically almost surely a random 4-regular graph is a
0.44-expander.

The following lemma gives a lower bound on the connectivity expansion of a random 4-regular graph,
defined in Definition 2.3.

Lemma 7.6. There is a constant ca such that asymptotically almost surely, the connectivity expansion of
a random 4-regular graph on n vertices is at least can.

Proof. Let GG be a random 4-regular graph. Theorem 7.5 shows that asymptotically almost surely, G
is a cy-expander. Suppose G has connectivity expansion s. There is a set W of s edges and an edge
e such that G \ W has a component of size larger than n/2, but G \ (W U {e}) has no component of
size larger than n/2. Since e breaks the giant component into two components, G \ (W U {e}) must
have a component U of size larger than n/4. Expansion shows that |[N(U)| > ¢1|U| > (¢1/4)n, and so
s = |W| > (¢1/4)n. This shows that we can choose c2 = ¢ /4. O

7.3 Simple Lower Bound

In this section we prove that refuting a non-splitting Tseitin formula on a random 4-regular graph on n
vertices requires space §2(1/n/log n), asymptotically almost surely over the choice of the graph.

The idea is to prove that asymptotically almost surely, a random 4-regular graph on n vertices can
be partitioned into cycles of length O(y/nlogn). In order to prove that, it will be useful to consider a
model related to H + H.

Let [n] = {1,...,n}, and let S,, be the set of all permutations on [n]. Every permutation 7 € .S,
determines a Hamilton cycle

H(m) = (7(1),7(2)), (7(2), 7(3)), ..., (w(n = 1),7(n)), (w(n), 7(1)) -
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TOWARDS AN UNDERSTANDING OF POLYNOMIAL CALCULUS

(The cycle is undirected.) Let ¢ denote the identity permutation. We will consider the probability space
H(t) + H(w) formed by taking the union of H(:) and H(7), where 7 is chosen uniformly at random
from S,,.

The idea of the proof is to divide [n] into \/n/logn blocks of length \/nlogn. We will show that
asymptotically almost surely, each block I contains a point ¢ such that s = 7(tx) € I. For any two
adjacent blocks Iy, It 1, we can form a cycle of length O(y/nlogn) by pasting together the path from
Sk t0 Sg+1 in H(¢) and the path from 7(¢x) to m(tx41) in H (7). As a result, the graph decomposes into
\/n/logn cycles of length O(y/nlogn).

Let m be a parameter depending on n; in this section, we choose m = y/nlogn, while in the next
section, we choose m = Cy/n. For simplicity, we assume that m and n/m are both integers. We
partition [n] into n/m blocks I, ..., Iy, of size m: I, = {(k — 1)m + 1,...,(k — 1)m + m}. Let
By, be the event that 7(I) N I, = (. We think of By, as a bad event, and our goal in this section is to
show that asymptotically almost surely, none of the Bj happen. In order to show this, we estimate the
probability that By happens.

Lemma 7.7. For k € [n/m], Pr[B] < e=™"/™,
Proof. Using1 —z < e™”, we calculate

Pr[By] = ni'[l (1 L ) < (1 _ T)m < e min 0

. n—1
=0

If By holds, we define t;, to be the first point in I such that (1) € Iy, and let s, = ().

Lemma 7.8. Suppose By, and By 1 both hold (indices taken modulo n/m). Define a cycle Cy by taking
two paths P}, P[’ from sj, = m(ty) to sp41 = 7(tg41), one from each of the two Hamilton cycles:

P = (sg, s+ 1), (sk+ 1,8 +2),...,(Sk+1 — 1, Sky1)
Plgr = (ﬂ-(tk)a 7r(tk =+ 1))? (ﬂ-(tk + 1)77T(tk + 2))’ SRR (W(tk—I—l - 1)a ﬂ-(tk—l—l)) .

The length of CY, is at most 4m.

Proof. Assume for simplicity that k& # n/m. Then sy, t; > (k — 1)m + 1 and Sgy1,tk11 < km + m.
The length of Cy is (sg4+1 — k) + (tgr1 — i) < 4m — 2. O

If none of the bad events happen, then the cycles C1, ..., Cy,/p, cover all of the graph. Choosing m
accordingly, we can ensure that this happens asymptotically almost surely.

Lemma 7.9. Let m = \/nlog n. Asymptotically almost surely, a graph chosen according to H(v)+H ()
decomposes into n/m cycles of size at most 4m.

Proof. According to Lemma 7.7, for each k € [n/m], Pr[Bg] < e~!°6™ = 1/n. A union bound shows
that asymptotically almost surely, none of the B happen. Lemma 7.8 shows that the graph decomposes
into n/m cycles of size at most 4m. O

The lemma easily implies the lower bound.

Theorem 7.10. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula
on a random 4-regular graph on n vertices is Q(y/n/logn).

Proof. For reasons of symmetry, Lemma 7.9 implies that asymptotically almost surely, a graph chosen
according to ‘H + H decomposes into cycles of size at most 41/n logn. Lemma 7.6 shows that asymp-
totically almost surely, the connectivity expansion of the graph is at least 2(n). Corollary 7.4 shows that
asymptotically almost surely, the graph is connected, and so the Tseitin formula is non-splitting. Hence
Theorem 3.4 gives a lower bound of 2(1/n/logn). O
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7 Cycle Partitions of Random Regular Graphs

7.4 Improved Lower Bound

In this section we improve the results of Section 7.3 by showing that refuting a non-splitting Tseitin
formula on a random 4-regular graph on n vertices requires space {2(1/n), asymptotically almost surely
over the choice of the graph.

We use the general method of Section 7.3, with a different choice of m, namely m = C/n for

some constant C' to be determined later. Thinking of Bj, as an indicator variable, let B = ZZL T By.

Lemma 7.7 shows that E[B] < e~ (n/m). We will show that asymptotically almost surely, B <
Qe*CQ(n /m). This implies that the cycles Cj, together cover most of the graph, and therefore Corol-
lary 6.11 applies. The difficult part of the proof is showing that B is concentrated around its mean.

Let p = Pr[By] (all the probabilities are the same). We need the following strengthening of
Lemma 7.7.

Lemma 7.11. Let p = Pr[By], where By, is the event that I, N 7t(I,) = (). Asn — oo, we have that
—C?
p— e .

In order to show that B is concentrated around its mean, we show that for & # [, the events By and
B; are asymptotically negatively correlated.

Lemma 7.12. For every k # 1 € [n/m], Pr[By, A By] < p? + o(1).

We prove both lemmas below, but first, let us see how they imply the desired result. The idea is that
since any two bad events are asymptotically negatively correlated, the variance of B is small, and so
Chebyshev’s inequality shows that B is concentrated around its mean.

Lemma 7.13. Asymptotically almost surely, B < 2e=C* (n/m).
Proof. We have E[B] = (n/m)p and
Var(B) = B[B?] — (B[B))?

= (n/m)p + (n/m)(n/m —1)(p* + o(1)) — (n/m)*p?
= (n/m)p(1 —p) +o((n/m)?) ,

using Lemma 7.12. Chebyshev’s inequality shows that

Var(B) _ (n/m)p+ o((n/m)?)

Pr|B — E[B]| > E[B]] < < —o(1) ,
B~ E[B]| > BIB]) < ) < SRR o)
since p = (1) by Lemma 7.11. Therefore asymptotically almost surely, B < 2E[B] = 2(n/m)p <
2¢=C%(n/m), using Lemma 7.7. O

The preceding lemma shows that the fraction of bad indices (indices & such that Bj holds) is small.
Say that a block I}, is good if By, and m both hold, and say that it is supergood if both I, and I}
are good. Lemma 7.8 associates a cycle Cj, with each good block Ij. If I is supergood, then the cycles
Cy_1 and C}, together cover the entire stretch of i, as the following lemma shows.

Lemma 7.14. Suppose that block I is supergood. Then the union of the cycles Cy_1,Cy given by
Lemma 7.8 contains the path of length m from min Iy, to min I, 11 in H(v), as well as the path of length
m from w(min Iy,) to w(min Iy 1) in H(7).

Proof. The cycle Cj_1 contains the path from s;_; < min I}, to s in H(¢). The cycle C}, contains the
path from sy, to si1 > min Iy in H(:). Both paths together cover the path from min I; to min ;1
in H(¢). The argument for H () is identical. O

We can now prove an analogue of Lemma 7.9.
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Lemma 7.15. Let m = C+/n. Asymptotically almost surely, a graph chosen according to H (1) + H(r)
decomposes into cycles of size at most 4m and t additional edges, where t < 12e=%n.

Proof. Lemma 7.13 shows that asymptotically almost surely, all but 6e~C*(n/m) of the n/m blocks
L, ... I,y are supergood. Let C be the (disjoint) union of all cycles Cj, constructed using Lemma 7.8
for all good blocks Ij,. The lemma shows that each cycle has size at most 4m. Lemma 7.14 shows that C
contains all but at most 12¢=C“n edges of the graph. 0

Replacing Theorem 3.4 with its corollary, Lemma 7.15 easily implies the lower bound.

Theorem 7.16. Asymptotically almost surely, the space required to refute in PCR any Tseitin formula
on a random 4-regular graph on n vertices is 2(\/n).

Proof. For reasons of symmetry, Lemma 7.15 implies that asymptotically almost surely, a graph chosen
according to H + H decomposes into cycles of size at most 4C'\/n and ¢ additional edges, where ¢ <
12¢=C*n. For an appropriate choice of C, t < (c2/2)n. Lemma 7.6 shows that asymptotically almost
surely, the connectivity expansion of the graph is at least con. Corollary 7.4 shows that asymptotically
almost surely, the graph is connected, and so the Tseitin formula is non-splitting. Hence Corollary 6.11
gives a lower bound of Q(y/n). O

7.4.1 Technical Lemmas
We now turn to the proofs of Lemma 7.11 and Lemma 7.12. We start with the former.
of Lemma 7.11. Itis easy to check that for0 <z <1/2,1 -z > e~=% Therefore for large enough

n,
m! m m \" m? m?>
= 1-— > (1 - > — —
p H( n—z>< n—m) exp{ n—m (n—m)Q}

=0

For large enough n, m < n/2, and so m?/(n — m) = m?/n +m3/(n(n — m)) < m?/n + 2m3/n?.
Similarly, m3/(n —m)? < 4m3/n?. Therefore, using e =% > 1 — =,

2 3 3 3
m m>| 5 6C _c2 6C
e R e I R U
Hence liminf p > e~C”. Lemma 7.7 shows that also lim supp < e %, O

The proof of Lemma 7.12 is more involved. Recall that the lemma claims that the events By and B;
are asymptotically negatively correlated. In fact, they are asymptotically uncorrelated. Recall that Pr[By]
is roughly equal to e, Given the value of 7 on I}, the probability Pr[B;] depends on |x(I}) N I;.
Typically, this intersection will be very small, and so Pr[B;] is also roughly equal to e~ ’

We will show that |7(I}) N I;| is typically small using an extension of the well-known Chernoff
bound due to Kabanets and Impagliazzo [IK10, Theorem 1.1], attributed there to Panconesi and Srini-
vasan [PS97].

Theorem 7.17. Let X1, ..., X, be Boolean random variables such that for any set S C [r], Pr[/
8181, Then for v > 6,

i€es Xi] <

Pr [Z X; > 71"] < e (=92

i=1
The following lemma applies this bound to our situation (in an abstracted version).

Lemma 7.18. Let a, b, c be integers such that a > b, ¢, and let T be a random subset of [a] of size b. For
allp > 1, ) 2
PrHTﬂ [c]‘ > p(bc/a)} < 6*26(/3*1) (b/a)®
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7 Cycle Partitions of Random Regular Graphs

Proof. Fori € [c], let X; be the event that i € T. For S C [c] such that |S| < b,

B (Z:llgll) B S, b\ 18I
piser ==t = 11 o= < (2)

b k=0

Therefore we can apply Theorem 7.17 with r = ¢, § = b/a and v = p(b/a). O
We can now prove Lemma 7.12.

of Lemma 7.12. We will show that Pr[B; | By] < p + o(1). This implies that Pr[By, A B)] =
Pr(By] Pr[B; | By] < p(p + o(1)) = p + o(1).
Assuming the event By, happens, 7(1j) is a random subset of [n] \ I;, of size m. Plugginga = n—m
and b = ¢ = m in Lemma 7.18, we deduce that for all p > 1,
Prl|n(Iy) N L] > pC? | By] < e~ 2= DPmm/(n=m)

< o 2p=1)?m?/n? _ —2C%(p-1)*/v/n

2

Hence with probability 1 — o(1) given By, D = |7(I) N ;| < v/mlogm. Now

m—1 m
Pr(B;| D =d = [] <1—TZ:§Z> < <1_mn_d> < emmlm=d)/n
=0

For 0 < x < 1, one can check that e® < 1 + 2z. Hence
Pr[B; | D < \/m] < e—m(m—y/mlogm)/n

— o~ C*+mymlogm/n o ,—C? <1 + W)
n

Using Lemma 7.11, we deduce that Pr[B; | D < v/mlogm] < e~ + o(1) = p + o(1). We conclude
that Pr[B; | Br] = p + o(1) and so Pr[By, A B} = p? + o(1). O

7.5 Regular Graphs of Degree Larger Than Four

Wormald [Wor99, Corollary 4.17] showed that when d > 4, a random d-regular graph can be obtained
(up to contiguity) by taking the disjoint union of a random 4-regular graph and a random (d — 4)-regular
graph, a result summarized in the following theorem (see also [JL.LR0O, Corollary 9.44]).

Theorem 7.19. For d > 4 we have Dy ~ D4 & Dy_4. Furthermore, the probability that a uniformly
random 4-regular graph and a uniformly random (d — 4)-regular graph do not intersect tends to a
positive constant.

A Tseitin formula on a random d-regular graph generated according to Dy ¢ Dy_4 is harder to refute
than a Tseitin formula on a random 4-regular graph, and so we can generalize Theorem 7.16 to random
d-regular graphs for arbitrary d > 4.

Theorem 7.20 (restatement of Theorem 3.5). Let d > 4. Asymptotically almost surely, the space
required to refute in PCR any Tseitin formula on a random d-regular graph on n vertices is Q(y/n).

Proof. If d = 4 then Theorem 7.16 already applies, so assume d > 4. Let (G; be a random 4-regular
graph, and let G2 be a random (d — 4)-regular graph. The graph G = G + G2 is distributed according
to Dy + Dy_4. We show below that asymptotically almost surely, the space required to refute in PCR
any Tseitin formula on G is Q(y/n). Since G; and G are disjoint with constant probability according
to Theorem 7.19, the theorem follows.

Let « be an arbitrary assignment to the edges of G2. Observation 6.2 on page 14 shows that for
every function f, T's(G, f)I,, = Ts(G1,g) for some other function g. By a restriction argument, any
PCR refutation of T's(G, f) in space S can be translated to a PCR refutation of Ts(G1,¢) in space at
most S. Theorem 7.16 on the preceding page shows that asymptotically almost surely, we must have

S = Q(y/n). O
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8 Current Techniques and the Functional Pigeonhole Principle

We now discuss the intrinsic limitations of the techniques employed so far. In Section 8.1 we show that
Bonacina-Galesi framework does not allow to prove PCR space lower bounds for an interesting formula
like functional pigeonhole principle. In Section 8.2 we show that restricting to PC does not make the
problem easier.

8.1 FPHP Formulas Do Not Have Extendible Families

One of the limits of the Bonacina-Galesi framework is that we cannot apply it to formulas for which
fixing a small set of variables causes a lot of unit clauses propagation. Indeed, most of the lower bound
strategies in this paper aim to control this phenomenon (see for example Lemma 4.3). For the functional
pigeonhole principle these strategies do not work, as we now prove.

Definition 8.1. The functional pigeonhole principle on m pigeons and n holes is the formula defined on
variables x;; for i € [m] and j € [n], made of the following clauses:

\/ i for all i € [m]; (pigeon axioms)
j€lmn]
Sz V Ty forany i # i’ € [m] and j € [n]; (hole axioms)
i V forany i € [m] and j # j' € [n]. (functional axioms)

It is already known that this formula requires large space in resolution [BWO1, ADO8]. It is natural
to suspect that this formula is hard in terms of monomial space as well. However, the Bonacina-Galesi
framework is not strong enough to prove it.

Theorem 8.2 (restatement of Theorem 3.6). There is no r-extendible family for FPHP) for r > 1.

Proof. Assume that there is an r-extendible family F for the formula FFPHP!" which respects some
satisfiable F/ C FPHP)", forr > 1.

Let C be any clause in FPHP]" \ F’; such clause exists because FPHP]" is a contradiction. The
extension property of F implies that there is a pair ({Q1}, H1) € F, where H; satisfies C.

Recall that 0 encodes true, and 1 encodes false. Pick a variable x;; in Q1. In H; there is at least one
partial assignment for which z;; = 0, and for any such assignment it holds that z;;; = 1 and x;;» = 1 for
all i’ # i and j' # j, otherwise an initial clause would be false.

Indeed, fix v to be any of these variables (either x;; or x;;/); the clause —z;; V —wv is an axiom.
If v € @ then this clause is not in F’ because of the respectfulness of F, and furthermore there is at
least one assignment in f{; which does not satisfy it (i.e., any assignment with z;; = 0). The extension
property of F guarantees that there is ({Q1, @2}, H1 x Ha) € F with v € Qo, such that H; x Ho
satisfies —;; V —w. But this contradicts the fact that H; x H; contains the assignment {z;; = 1,v = 1},
which falsifies —x;; V —w.

It follows that {z/;, x;; | ¢ # i and j' # j} C @1, and that H; satisfies all axioms involving either
pigeon i or hole j. We have just shown that assuming some z;; € Q1, we get {z/;, x;; | ' € [m], j' € [n]} C Q.
This choice was arbitrary, so it follows that for any ¢ € [m], j € [n], the variable z;; is in Q1. In other
words, Q1 contains all the variables. Since FPHP]" \ F' is contradictory, every assignment in H; falsi-
fies some clause, and so the extension property fails for any such clause. We conclude that FPHP]" has
no 2-extendible family. O

8.2 Formulas with Equal PC and PCR Space Complexities

Although finding an r-extendible family for the functional pigeonhole principle (and hence proving a
space lower bound) is not feasible, we might try and prove a weaker PC space lower bound. However,
as we have pointed out in Section 3.4, in the case of functional pigeonhole principle this makes no
difference. In this section, we prove formally this result for a broader class of formulas that is captured
by the following definition.
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8 Current Techniques and the Functional Pigeonhole Principle

Definition 8.3. We say that a CNF formula F' is fotally weight constrained if for every variable x ap-
pearing in F’ there exists a clause C; € F' with the following properties:

1. All literals in C;, are positive;
2. x is one of the variables appearing in Cy;

3. For every two distinct variables y, z appearing in C,, clause 7 V Z is in F'.
For each variable x we refer to C,, as the z-neighborhood clause.

In such formulas each negative literal can be replaced with a clause/monomial consisting of only
positive literals that has the same semantic meaning. Thus, we can turn a PCR refutation into a PC
refutation without any substantial loss of space. In order for us to be able to show that such a refutation
is a valid PC refutation we need to show that there are PC derivations of these monomials that use small
space.

Theorem 8.4. For a totally weight constrained CNF formula F', where each clause has a costant number
of negative literals, it holds that Sppo(F F 1) = ©(Sppcor(F FL1)).

Proof. We can easily see that PCR simulates PC with only a constant loss in space. The only problem in
the simulation could arise when downloading an axiom that has negative literals. Nevertheless, it is not
hard to prove that PCR can expand every axiom to its PC form while respecting the stated space bound.

In the other direction, we prove that PC can simulate a PCR refutation of F. Let m be a PCR
refutation of F' in space at most s. As F' is a totally weight constrained formula, for every variable x we
can fix its z-neighborhood clause C;. Let us denote by N (x) the set of variables from C,, excluding z.
We transform the PCR refutation 7 into a PC refutation by replacing each negative literal = with the
monomial Hye N(z) Y- Obviously this transformation preserves space and we need to show that the
transformed configurations form a backbone of a valid PC refutation.

If the PCR refutation deletes a polynomial, we delete the appropriate transformed polynomial from
the configuration in the PC refutation. Similarly, in the case of linear combination steps we just deduce
the linear combination of the transformed polynomials. Hence, these two types of steps can be done
without any loss in space. In the case of multiplication with a literal, if the literal is positive we multiply
the appropriate transformed polynomial with the same literal. Otherwise, the literal is negative and we
multiply the polynomial with all the variables in N (x), where 7 is the literal, while making sure to delete
the intermediate polynomials when they are no longer needed. In this way we derive the transformed
polynomial in at most O(s) space.

The axiom download steps are the only ones that remain. In the case of Boolean axiom download,
if we downloaded an axiom for a positive literal, we just download the appropriate axiom in the PC
refutation. Otherwise, the Boolean axiom corresponds to some negative literal * and we need to derive
the polynomial Hye N(@) y?— HyE N(z) Y- This is done by downloading the Boolean axioms for each y €
N (x) and combining them to get the transformed polynomial. Let B?> — B be one of the intermediate
polynomials in the derivation of the transformed Boolean axiom, where B is a monomial formed by
multiplying the variables in some subset of N(z). Then, for some variable y not mentioned in B, we
derive (By)?— By by downloading 32—y and taking the linear combination of y(B2—B) and B?(y?—y).
This PC derivation uses O(1) more monomials than the PCR axiom download.

When the PCR proof downloads the complementarity axiom 1 — =z — 7, the corresponding PC proof
needs to derive the polynomial 1 —z — [, N(z) Y- Let N () ={y1,...,y}. We derive the transformed
polynomial by successively deriving polynomials

l l
7G@) = [[ we—= [T we— Lo - (8.1)

k=i+1 k=i+1 k

fori = 1,...,l. Note that T'({) is our transformed polynomial. The first 7(1) in the PC proof can be
derived by downloading the axiom (1 — z)(1 — y;) and multiplying it with variables yo, ..., y; in order
to get T'(1) + = [ [, yx. Subtracting from it the z-neighborhood clause C, = = [ [, yx we get T'(1).
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We proceed to derive T'(i + 1) from 7'(¢) for all ¢. Similarly as before, we start by downloading the
axiom (1 — x)(1 — y;+1) and multiplying it with variables y; 2, ...,y in order to get T'(i + 1) — T'(4).
Adding this polynomial to 7'(z) we derive the (i + 1)st polynomial 7'(¢ + 1) in our derivation of the
transformed complementarity axiom. This PC derivation uses O(1) more monomials than the PCR
proof and all axioms of the form (1 — z)(1 — y;) exist because I is totally weight constrained.

In the case of axiom download step for a clause axiom, we again have two cases. If all literals of the
axiom are positive we download the corresponding axiom in the PC proof. Otherwise, we can write the

axiom as x - - Tg+1 - Ty, where s is the number of its negative literals. Let us denote by A(7) the
polynomial
A@y= JI w- ] wl-zi) (0 —zdze-a, (8.2)
y1EN(z1) i €N (z;)
where ¢ ranges over 0, ...,s. Note that A(0) is the original PC axiom, while A(s) is the transformed

axiom that we want to derive. Also, let us denote by R(i) the polynomial

Riy= ][] w- ] wi1-Q=mip) - (Q=z)og--a, (8.3)

y1€N(x1) Yi—1€EN (x;-1)

for i ranging from 1 to s, thatis A(i) = R(i) [ [,.e n () i = R(E + 1)(1 — @iq1).

We first derive A(1) by deriving the transformed complementarity axiom 1 — 27 — Hyle N(z1) Y1
for the variable x; and multiplying it with R(1) in order to get A(0) — A(1). Now we can get A(1) by
subtracting the derived polynomial from the PC axiom A(0).

We proceed to derive A(s) by deriving A(i+1) from A(¢) for all ¢ from 1 to s — 1. This is again done
by first deriving the appropriate complementarity axiom 1 — x;41 — Hyi+1 EN(ziyy) Yit1 and multiplying
it by R(i + 1) in order to get A(i) — A(i + 1). Subtracting the derived polynomial from previously
derived A(7), we get the (i + 1)st polynomial in our derivation. These steps use O(2%) monomials,
which is constant by the theorem hypothesis, and the PC derivation of the transformed axiom uses at
most O(1) monomials more than the PCR axiom download step.

Hence, the theorem follows. Also, although we have ignored the constants involved in the simulation,
these constants can be computed explicitly and are small. The only possible exception is the additive
constant O(2°"), where s* is the largest number of negative literals in a clause of F. O

An obvious example of the totally weight constrained formula is the functional pigeonhole principle.

Corollary 8.5 (Restatement of Theorem 3.7). It holds that
Spper(FPHP)' 1) = O(Sppc(FPHP! 1)) .

Proof. 1t is easy to see that FPHP]' formula is totally weight constrained, as every variable appears in
some pigeon axiom that is constrained by the functional axioms. Also, FPHP]" has at most 2 negative
literals in each clause and hence we have that Sp pop(FPHP)' 1) = O(Sppo(FPHP' -1)). O

Actually, we can say even more about the space complexity of the functional pigeonhole principle
formulas. In [FLNT12], the authors prove that the PCR space complex1ty of FPHP]" is equal (up
to constant factors) to the PCR space complex1ty of the extended formula FPHP , Where FPHPm
is the canonical equivalent 3-CNF version’ of the formula FPHP™. Hence, we have that the PC space
complexity lower bound for FPHP]" would actually lower bound the PCR space complexity of ]@\IHD,T
and give us the first PCR space lower bound for some family of 3-CNF formulas.

This holds in greater generality for totally weight constrained formulas that also fulfill the following
technical condition: F'is a weight-constrained CNF formula if for each clause [; VIo V...V, of F' with

"We substitute every clause I1 V 12 V ... V Iy, which has more than three literals, with the formula (I1 V y1) A (-y1 V Iz V
Y2) Ao A(yica VIV y) Ao A (—yk—1 V i) where for each substituted clause all variables y; are new. The substituted
formula is a 3-CNF and it is satisfiable if and only if the original one is. It is also easy to deduce the original clause from the
substituting formula.
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9 Concluding Remarks

more than three literals, the formula also contains clauses —/; V =[; forall 1 <14 < j7 < m. We stress the
fact that the conditions of being weight-constrained and totally weight constrained are incomparable.

Corollary 8.6. For a simultaneously weight-constrained and a totally weight constrained formula F,
where each clause has a costant number of negative literals, it holds that

Spper(F L) = O(Spper(F F L)) =O(Sppa(F 1)) .

9 Concluding Remarks

In this paper, following up on recent work in [BNT13, BG13, FLNT12, HN12], we report further
progress on understanding space complexity in polynomial calculus and how the space measure is related
to size and degree. Specifically, we separate size and degree from space, and provide some circumstantial
evidence for the conjecture that degree might be a lower bound on space in PC/PCR. We also prove space
lower bounds for a large class of Tseitin formulas, a well-studied formula family for which nothing was
previously known regarding PCR space.

We believe that our lower bounds for Tseitin formulas over random graphs are not optimal, however.
And for the functional pigeonhole principle, we show that the technical tools developed in [BG13] cannot
prove any non-constant PCR space lower bounds. Although we have not been able to prove this, we
believe that similar impossibility results should hold also for ordering principle formulas and for the
canonical 3-CNF version of the pigeonhole principle. Since all of these formulas require large degree
in PCR and large space in resolution, it is natural to suspect that they should be hard for PCR space as
well. The fact that arguments along the lines of [BG13] do not seem to be able to establish this suggests
that we are still far from a combinatorial characterization of degree analogous to the characterization of
resolution width in [ADOS].

It thus remains a major open problem to understand the relation between degree and space in PC/PCR,
and in particular whether degree is a lower bound on space or not (or whether it even holds that resolution
width provides a lower bound on PCR space).

Also, our separations of size and degree on the one hand and space on the other depend on the
characteristic of the underlying field, in that that the characteristic must be chosen first and the formula
family exhibiting the separation works only for this specific characteristic. It would be satisfying to
find formulas that provide such separations regardless of characteristic. Natural candidates are (various
flavours of) ordering principle formulas or onto function pigeon principle formulas, or, for potentially
even stronger separations, pebbling formulas.

Finally, an intriguing question is how (monomial) space in PC/PCR is related to (clause) space in
resolution. There are separations known for size versus length and degree versus width, and it would
seem reasonable to expect that PCR should be strictly stronger than resolution also with respect to space,
but this is completely open.® The flipside of this question is to what extent space lower bound techniques
for resolution carry over to PC/PCR. Since so far we do not know of any counter-examples, it is natural to
ask, for instance, whether semiwide CNF formulas as defined in [ABRWO02] have high space complexity
not only in resolution but also in PCR.
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A PCR Space Lower Bounds from Extendible Families

For the sake of self-containment, in this appendix we give an exposition of the Bonacina-Galesi frame-
work [BG13] for proving space lower bounds in Polynomial Calculus. We show how the existence of a
r-extendible family for a large value of r implies such bounds. This framework can actually prove space
lower bounds for a proof system that it stronger than PC or PCR.

Definition A.1 (Functional Calculus (FC)). A functional calculus configuration is a set of arbitrary
Boolean functions over Boolean variables. There is a single derivation rule, semantic implication, where
g can be inferred from f1, ..., f, if every assignment that satisfies f; A - - - A f,, also satisfies g.

Verifying a proof in FC is co-NP-complete, and so FC is not a proof system in the sense of Cook
and Reckhow [CR79] unless co-NP = NP.

There are many different circuit representations of the same Boolean function, so we need to choose
a minimal representation in order to define clause space.

Definition A.2. Let P be a FC configuration. A set of monomials U = {my,..., ms} defines PP if for
every function f € P there is a function g such that g(m;,...,ms) = f(z1,...,2,). The monomial
space of P is the minimum size of a defining set of monomials.

We can interpret polynomials in PCR as Boolean functions if we project them to the Boolean ring
Flz,=,y,7,...]/ Span (x2 —z,1l—z—-7Z,22-T,9° —v,.. ) Furthermore, the set of monomials in
a PCR configuration counted without repetitions is a defining set of monomials for a FC configuration.
Therefore we can view every proof in PCR as a proof in FC that uses at most the same space. In particular,
Spre(FEL) < Sppep(F 1),

We now prove Theorem 2.6, following Bonacina and Galesi [BG13]. The general plan of the proof
is to consider a FC derivation of a formula F' in small space, and show that every configuration arising
in the derivation is satisfiable. Since a refutation ends with an unsatisfiable configuration, the derivation
is not a refutation.

In order to show that every configuration arising in the derivation is satisfiable, we maintain a satisfia-
bility witness, in the form of a structured set of assignments together with a CNF formula. The following
definition captures the sense in which a satisfiability witness guarantees that a board configuration is
satisfiable. Fix a set of variables V' and consider partitions and total assignments with respect to this set.
Recall that a total assignment assigns a value to each variable in V.

Definition A.3. Let (Q, ) be a structured set of assignments, G be a CNF formula, and P be a set of
Boolean functions. We write G' |=(g ) P if every total assignment that extends some partial assignment
in H and satisfies GG also satisfies IP.

In the proof, PP is the contents of the board at a given point in the FC refutation, and (Q,H),G
together form a satisfiability witness. The CNF G is composed of two parts: a satisfiable subset F/ C F,
which could be empty, and a 2-CNF M with a very specific form given by the following definition.

Definition A.4. Let M be a 2-CNF formula over the variables V. We say that M is a transversal of
a partial partition Q defined on V' if M mentions exactly one variable from each block Q; € Q. (In
particular, | Q| must be even and the number of clauses in M is |Q|/2.)

A transversal CNF formula is always satisfiable, and so for I/ = (), any board configuration [P that
has a satisfiability witness of this form must in fact be satisfiable. To handle an arbitrary F”, we add the
requirement that (Q, H) respect F”. Finally, we can formally define the concept of satisfiability witness.
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Definition A.5. Let P be a set of Boolean functions. A tuple (F’; Q, H, M) is a satisfiability witness for
P if:

1. F’is a satisfiable CNF formula.
2. (Q,H) is a structured assignment set which respects F”.
3. M is a 2-CNF formula which is a transversal of O.
4. F'AM o P.
The size of a satisfiability witness (F’; Q, H, M) is |M]|.

We single F” out since its value is fixed while Q,H, M are dynamic and change throughout the FC
refutation.

A FC refutation is composed of three kinds of steps: axiom download, inference and erasure. It turns
out that the first two steps are relatively easy to handle, as long as we maintain the invariant that the
size of the satisfiability witness is O(Sp(P)). This invariant allows us to expand the witness in order to
accommodate new axioms as long as the monomial space is small enough, using the extension property
of extendible families.

Erasure is more difficult, since the monomial space of the configuration could shrink, and in order
to maintain the invariant, we need to shrink the witness as well. This is accomplished by the following
crucial lemma, which shows that if a configuration has any satisfiability witness, then we can find another
satisfiability witness for the configuration whose size is bounded in terms of the monomial space of the
configuration.

Because of the multiple representations technical issue we also need to use the locality lemma in
axiom download steps, but we could omit it in a proof of a space lower bound for PCR. It is however a
key piece in erasure steps.

Lemma A.6 (Locality lemma). Suppose (F'; Q, H, M) is a satisfiability witness for some set of Boolean
functions P. There is another satisfiability witness (F'; Q',H', M") for P such that Q' C Q, H' = Hl o
and |M'| < 25p(P).

Proof. In this proof Q[z] denotes the (unique) class in Q that contains variable x.

The starting point of the proof is understanding the relation between monomials in a defining set of
monomials U of [P and clauses in M which underlies the property I/ A M =g 3) P. A clause C € M
affects a monomial m € U whenever the two mention variables belonging to the same partition in Q. If
a clause C does not affect a monomial m, then the clause C' puts no constraints on the value of m.

Formally, we construct a bipartite graph between a minimal defining set of monomials U and the
set of clauses in M (which we identify with M itself). We draw an edge between m € U and C € M
whenever for some () € Q, both m and C' mention some variable in Q).

We break U into two parts: one part which is collectively affected by a small number of clauses, and
another part in which we can associate with each monomial two clauses affecting it. To this end, let U3
be an inclusion-maximal set under the constraint | N (U;)| < 2|Uy|, and let Uy = U \ U;. We partition M
accordingly into My = N(Uy) and My = M \ M;. As a slight modification of Hall’s marriage theorem
shows, the maximality of U; implies that we can associate with each monomial in Us two unique clauses
in M5 (that is, each clause in Ms is associated with at most one monomial). In other words, there is a
double matching from Us to Ms. (For more details on this step, see [ABRW02, FLN"12, BG13].)

We construct the new 2-CNF M’ out of two parts: M’ = M; U Mﬁ The first part M7, taken verbatim
from M, takes care of U;. The other part Mé, which we construct from the double matching, takes care
of UQ.

The 2-CNF M, consists of one clause C,, for every monomial m € Us. In order to define C,, let
%V yb and 2¢ V w® be the two clauses in Ms that are matched to m in the double matching. Assume
without loss of generality that m = r¢s/m’, where r € Q[x] and s € Q[z]. The clause C,, is defined as
C,, =1V s,
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By construction, |[M'| < 2|U;| + |Uz| < 2|U| = 2Sp(PP). Having defined M’, we complete the
definition of the new satisfiability witness as follows. First, let Q" = {Q[z]| | x € Vars(M')}; this
guarantees that M/’ is a transversal of Q’. Observe that Q" C Q. Second, let H' = H| /. Itis easy to
check that (F’; @', H', M")) satisfies the first three properties of a satisfiability witness. It remains to
prove that F' A M |= g1 34y P.

In order to show that F’ A M’ =(o’,nr) P, we consider an arbitrary total assignment o extending
some partial assignment in ' and satisfying F’ A M’. We will modify « to another total assignment
(3 that extends some partial assignment in A and satisfies F’ A M, and furthermore has the property
that 3(m) = a(m) for every m € U. By assumption, F' A M =gy P, and so B(P) = 0. Since
B(m) = a(m) for every m € U, we conclude that o(P) = 0 as well.

We proceed to define 3. For each clause 2 V g in Mo, we will define 3 on Q[z], Q[y] using partial
assignments from 7{, distinguishing two cases: the clause is matched to some monomial in Us, or it is
unmatched. The values of all the other variables are taken directly from a.

Suppose m € Us is matched to the clauses 2%Vy? and 2¢Vw? and C,,, = r®V s/, where Q[z] = Q|[r]
and Q[z] = QJs]. (In other words, we are in exactly the same situation described above while construct-
ing M'.) Define 3 on Q[z], Q[y], Q[z], Q[w] using partial assignments from # satisfying ¢, 3°, s/, w.
As a result, /3 satisfies the clauses 2% V y® and 2¢ V w? and the monomial m.

For each unmatched clause z¢ V y° in My, we define 3 on Q[x] and Q[y] using partial assignments
from H satisfying 2% and 4. As a result, 3 satisfies the clause 2 V 3°. Finally, complete the definition
of 3 by defining 5(z) = a(z) for any hitherto undefined variable . From the construction it is clear
that 3 extends some partial assignment in H.

In order to complete the proof, we need to show that 3 satisfies I/ A M, and that 3 agrees with «
on all the monomials in U. We start by showing that /3 satisfies F’ A M. By construction, 3 satisfies the
clauses in Ms. Since 3 agrees with « on variables mentioned in M, (3 satisfies M;. Finally, let C € F".
Since (Q, H ) respects F”, either the variables in C are disjoint from [ J Q, or the variables in C' all belong
to some (); € Q, and all assignments in the respective H; € H satisfy C'. In the former case, 5 agrees
with « on variables mentioned in C, and so 3 satisfies C'. In the latter case, 3 satisfies C since 3 extends
some partial assignment in H.

It remains to show that 3(m) = «(m) for all monomials m € U. In short, this is true for monomials
in U7 since « and (3 agree on all the relevant variables, and for monomials in Us since in both assignments
they are reduced to zero. We proceed to show this formally.

Suppose first that m € U;. We claim that a(v) = B(v) for all variables v mentioned in m. Indeed,
if a(v) # B(v) then v € Q[x] for some clause C = %V y® in M,. Yet this implies that m is connected
to C, contradicting the definition of M. We conclude that o and (8 agree on all variables mentioned in
m, and so a(m) = B(m) in this case.

Suppose next that m € Us. We claim that o(m) = B(m) = 0. Let C,,, = r° V s/, and recall that m
is of the form m = r¢s/m’. Thus a(m) = 0 since « satisfies C,,, and 3(m) = 0 since it satisfies 7* and
sf by construction. O

Theorem A.7 (restatement of Theorem 2.6 [BG13]). Let F' be a CNF formula with an r-extendible
family F with respect to some F' C F. Then Sp -.(F +1) > r/4.

Proof. Let F be an r-extendible family with respect to some satisfiable F' C F. Let 7 be a derivation
from F in space Sp(m) < r/4. We will show that 1 ¢ 7 or, even stronger, that every configuration P,
appearing in 7 is satisfiable.

We will maintain a satisfiability witness (F”; Q;, Hy, M) for every configuration P;. Our satisfia-
bility witnesses will satisfy two conditions: (Q;, H;) € F, and the size bound |M;| < 2Sp(P;). The
existence of a satisfiability witness implies that IP; is satisfiable. Indeed, let « € H; be some partial
assignment that satisfies all the literals in M;. Since (Qy, H;) respects F’, each clause in F’ is either
already satisfied by « or is completely disjoint from the domain of «. As F” is satisfiable, we can extend
« to a total assignment 3 which satisfies F'. Hence, from F' A M; |=(q, 7,y P+ we have that /3 satisfies
P;, and so IP; is satisfiable.
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We construct the satisfiability witnesses by induction. For ¢ = 0, the satisfiability witness is (EF”; (), (), 0).
For the induction step, suppose we are given a satisfiability witness (F”'; Q, H, M) for P;. We will
construct a satisfiability witness (F’; Q', H', M") for Pr;1. To simplify the notation, let P = P; and
P’ = P;.1. We distinguish three cases, which correspond to the three possible steps in the proof.

Axiom download. Let C be the downloaded clause, which we also regard as a monomial. If C' € F”
or every extension « of a partial assignment in # satisfies C, then in particular F"AM |=(g 3) PU{C} =
P,and M' = M, Q' = Q, H' = H form a satisfiability witness.

Otherwise, by hypothesis Sp(P’) < r/4 and so Sp(P) < r/4 — 1. Indeed, if U is a defining set
of monomials of P, then U U {C'} is a defining set of monomials of . By the induction hypothesis,
|Q| < r — 1. By the extension property of extendible, there exists a structured set of assignments
(Q,?E{) € Fsuch that |Q| < 7, (Q,H) < (Q,H) and H = C. By assumption # F~ C and so Q # Q.
Let Q = QU {Q}.

The assignments corresponding to @) in # will ensure that the clause C' is satisfied. Since we are
going to add a new clause to M’, we need to come up with two new parts in Q’, and so we repeat the
process. Let D be any axiom in '\ F” such that H ¥~ D; if no such axiom exists then F' is satisfiable
and the theorem follows vacuously. Repeat the argument above and obtain a new disjoint set @’ and a
structured set of assignments (Q', H') € F.

Choose arbitrary variables z € Q and y € @', and let M’ = M U {z V y}. By construction,
(F'; @', H', M') is a satisfiability witness for .

In both cases, by Lemma A..6 there is another satisfiability witness (F”; Q" H" M") for P’ satisfying
the size bound and with Q" C Q', H"” = H'[ .. By the restriction property of the extendible family, we
have (Q",H") € F.

Inference. 1t is enough to pick M’ = M, Q" = Q, H' = H. The first three properties in the
definition of satisfiability witness continue to hold, while the last property follows from the soundness of
FC. Finally, the size bound trivially holds since |P'| > |P).

Erasure. Since FCissound, (F'; Q,H, M) is a satisfiability witness for P’ as well. Hence Lemma A.6
furnishes us with a satisfiability witness (F”; @', H', M) for P’ satisfying the size bound and with Q" C
Q, "' = H| . By the restriction property of extendible, (Q',H’) € F.
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