
Reckhow’s Theorem

Yuval Filmus

November 2010

1 Introduction

In §5.3.1 of his thesis [2], Reckhow showed that any two Frege systems p-simulate
each other. One of the difficulties involves translation of formulas with ⊕ into
formulas in the De Morgan basis ¬,∨,∧ without blowing up the formula size.
Naive translation using a representation such as A⊕B ↔ (A∧¬B)∨ (¬A∧B)
can result in exponentially long formulas. However, a simple argument at-
tributed to Spira, described in §5.3.1.3, shows how to do that with only a poly-
nomial blowup, O(n2) in case the only ‘problematic’ connective is ⊕. Reck-
how’s lemma 5.3.1.4.e shows how to ‘rebalance’ a formula, and is at the heart
of his intensional comprehension arguments, which are brought to full fruition
in §5.3.1.4.

In this note we will give an account of Reckhow’s elegant proof, rephrased as
an algorithm to transform an arbitrary proof (over the De Morgan basis) into
balanced form with only a polynomial blowup. We do so mainly because the
theorem, as such, is not mentioned in Reckhow’s thesis, and moreover his argu-
ments are somewhat difficult to follow. The theorem is mentioned and proved
in Kraj́ıček’s book [1] as Lemma 4.4.14. We offer an alternative exposition.

Before plunging into the details, let us state the desired result.

Theorem 1.1 (Reckhow). Given a Frege proof of size s proving some formula
ϕ of depth D, we can find another Frege proof of ϕ having size sO(1), where the
size S` and D` of each line ` of the proof satisfy D` ≤ D +O(logS`).

In other words, in the new proof, all lines are balanced to the best extent
possible given ϕ.

2 Terminology

Our formulas are expressed in terms of binary ∧ and ∨ and unary ¬. We also
allow the constants 0 and 1 (same as ⊥ and >). We think of formulas as trees.
In our diagrams, a wiggly line between nodes P and Q means that Q is a
descendant of P . Also, sometimes a node’s name will double as the name of the
subtree rooted at the node.

1

The logical depth of a formula is the largest number of alternations of con-
nectives from root to leaf. For example, (A ∧B) ∧ (C ∧D) has logical depth 1.

If Q is a descendant of P , we will use PQ=x to mean the subtree P , with its
subtree Q replaced by x. Also, |P | will denote the size of P (number of nodes).

We will consider Frege proof systems, which are Hilbert-style proof systems.
The exact proof system used is immaterial, as long as it’s complete, and its
rules are closed under substitution. We will use the phrase fixed proof to mean
a proof of some basic identity; the exact proof depends on the details of the
proof system being used.

3 Lifting

The following two easy lemmas are two basic proof techniques.
The first lemma shows how to lift a proof of ϕ(x1, . . . , xn), where the xi are

variables, to a proof of ϕ(X1, . . . , Xn), where the Xi are arbitrary expressions.

Lemma 3.1. Suppose one can prove a formula ϕ using l lines, each of size at
most s1 and logical depth at most d1. Let ψ be obtained from ϕ by substituting
some arbitrary formula for each leaf of ϕ, the maximum size of a substituted
formula being s2, and their maximum logical depth d2. Then one can prove ψ
using l lines, each of size at most s1s2 and logical depth at most d1 + d2.

Proof. Replace each instance of a variable with the formula substituted for
it. Since in Frege systems both axioms and inference rules are closed under
substitution, the result is a valid proof of ψ.

The second lemma shows how to lift a proof of X ↔ Y to a proof of ϕ(X)↔
ϕ(Y), where ϕ(◦) is an arbitrary formula with a singled occurrence of a variable.

The proof idea is to use structural induction. For example, suppose that
ϕ(◦) = (¬ ◦ ∧A) ∨B. The proof of ϕ(X)↔ ϕ(Y) uses the following steps:

• Start from the given X ↔ Y .

• Deduce (¬X)↔ (¬Y).

• Deduce (¬X ∧A)↔ (¬Y ∧A).

• Conclude ((¬X) ∧A) ∨B)↔ ((¬Y) ∧A) ∨B).

Each of the deduction steps requires only a fixed proof.

Lemma 3.2. Let ϕ, ψ be arbitrary formulas, each of size at most s1 and logical
depth at most d2. Let χ(◦) be an arbitrary formula of size s2 and logical depth
d2 with a distinguished input. Then one can deduce χ(ϕ) ↔ χ(ψ) from ϕ ↔ ψ
using O(s2) lines, each of size at most O(s1 + s2) and logical depth at most
d1 + d2 +O(1).

2

Proof. Since our proof system is complete, it can derive from P ↔ Q the for-
mulas (¬P) ↔ (¬Q) and (P♦R) ↔ (Q♦R), where ♦ is either ∧ or ∨ and R is
arbitrary, all with fixed proofs. The lemma follows by structural induction on
χ, as follows.

Let χi(◦) be the unique subformula of χ which contains ◦ at depth i; thus
χ0(◦) = ◦ and χD = χ, where D is the depth of χ. Our starting point is the
assumption χ0(ϕ) ↔ χ0(ψ). We then derive inductively χi(ϕ) ↔ χi(ψ) for
i ≤ D.

Since D ≤ s2, this requires O(s2) steps, each consisting of O(1) lines. Since
each step consists of a fixed proof, lemma 3.1 shows that the size of all the
formulas is O(|χi(ϕ)| + |χi(ψ)|) = O(s1 + s2), and that the logical depth is at
most d1 + d2 +O(1).

4 Balancing

We will balance formulas using Spira’s method. The method is based on the
following basic transformation.

Lemma 4.1. The formula on the left is equivalent to the formula on the right.

P

Q

∨

∧

PQ=0 ¬

Q

∧

PQ=1 Q

We would like to choose the node Q so that both PQ=0/1 and Q are small.

Lemma 4.2. Every formula P which is not a single node has a subformula Q
of size |P |/3 ≤ |Q| ≤ 2|P |/3.

Proof. Starting with P , descend through the tree by always picking a child
whose size is at least |P |/3, if possible. If not possible, the current node Q,
having at most two children, has size at most 2|P |/3.

Spira’s method applies the transformation 4.1 recursively, always choosing a
node according to lemma 4.2. The resulting formula blows up only polynomially,
and is balanced.

Definition 4.1. Spira’s transformation t, transforming formulas to formulas,
is defined recursively as follows:

• If P is an atom, then t(P) = P .

3

• Otherwise, choose a canonical subformula Q satisfying the requirements
of lemma 4.2, and then t(P) is given by the following formula:

∨

∧

t(PQ=0) ¬

t(Q)

∧

t(PQ=1) t(Q)

Lemma 4.3. Spira’s transformation satisfies the following properties, for every
formula P :

(a) P is equivalent to t(P).

(b) |t(P)| = O(|P |C) for some constant C.

(c) The depth of t(P) is O(log |P |).

Proof. Spira’s construction is applied recursively at most log3/2 |P | levels on a
formula P , and so the depth of t(P) is at most 3 log3/2 |P |. Since every node
has arity at most 2, the number of nodes in t(P) is less than 23 log3/2 |P |+1 =
O(|P |3/ log2

3
2).

5 Rebalancing

The main technical tool used to prove intensional comprehension is the operation
of rebalancing, which replaces the top level subtree used to balance the formula
in Spira’s construction. The two formulas are clearly equivalent. It is less clear
that we can prove this equivalence using a polynomial number of steps, all of
which are balanced.

The impatient reader who wants to see the motivation behind rebalancing
can peek at the rest of the proof, and return with fresh motivation.

Definition 5.1. Let P be a formula, and R one of its subformulas. The rebal-
ancing of P by R, denoted t(P/R), is

∨

∧

t(PR=0) ¬

t(R)

∧

t(PR=1) t(R)

4

Notice that if Q is the node given by lemma 4.2, then t(P/Q) = t(P).

Lemma 5.1. Let P be a formula, and R an arbitrary descendant of P . There
is a Frege proof of t(P) ↔ t(P/R) of size polynomial in |P |, all of whose lines
have depth O(log |P |).

Proof. The Frege proof is defined recursively. We first define the proof, and
then analyze its properties. Let Q denote the node such that t(P) = t(P/Q).
If Q = R then there is nothing to prove. Otherwise, Q and R can be related in
three different ways:

1. R is a descendant of Q.

2. Q is a descendant of R.

3. Q and R are disjoint as subtrees.

We will deal with these cases separately; the first two will turn out to be virtually
the same.

First case: R is a descendant of Q. Pictorially:

P

Q

R

Our starting point is the following three Frege proofs:

1. t(Q)↔ t(Q/R).

2. t(PR=0)↔ t(PR=0/QR=0).

3. t(PR=1)↔ t(PR=1/QR=1).

We obtain these proofs recursively. Using lemma 3.2, we conclude that t(P)
is equivalent to the left-hand diagram, and that t(P/R) is equivalent to the
right-hand diagram:

∨

∧

t(PQ=0) ¬

t(Q/R)

∧

t(PQ=1) t(Q/R)

∨

∧

t(PR=0/QR=0) ¬

t(R)

∧

t(PR=1/QR=1) t(R)

5

If we open up all the rebalanced terms, all the leaves will be labeled by one of
the following formulas:

t(PQ=0), t(PQ=1), t(QR=0), t(QR=1), t(R);

the only non-obvious case is t(PR=b/QR=b) = t(P/QR=b).
Notice that the formulas t(PQ=b), t(QR=b) and t(R) are completely inde-

pendent: the first pair defines the stretch between P and Q, the second pair
between Q and R, and the last defines R. Thus, the reason that the two formulas
pictured above are equivalent doesn’t have anything to do with any properties
of these five formulas.

If we replace these five formulas by generic variables, we simply obtain two
fixed propositional formulas which are equivalent. Since our proof system is com-
plete, their equivalence can be proved using a fixed proof. Applying lemma 3.1,
we conclude that there is a Frege proof of the equivalence of the two formulas
pictured above using O(1) steps of size O(|P |). This concludes the description
of the Frege proof in the first case.

Second case: Q is a descendant of R. Pictorially:

P

R

Q

This case is very similar to the first case. We first prove the following equiva-
lences recursively:

1. t(R)↔ t(R/Q).

2. t(PQ=0)↔ t(PQ=0/RQ=0).

3. t(PQ=1)↔ t(PQ=1/RQ=1).

Using lemma 3.2, we lift these up to show that t(P) and t(P/R) are equivalent
to the following formulas:

∨

∧

t(PQ=0/RQ=0) ¬

t(Q)

∧

t(PQ=1/RQ=1) t(Q)

∨

∧

t(PR=0) ¬

t(R/Q)

∧

t(PR=1) t(R/Q)

6

If we open up all the rebalanced terms, all the leaves will be labeled by one of
the following formulas:

t(PQ=0), t(PQ=1), t(QR=0), t(QR=1), t(R).

Note that this list is the same as in the first case. As in the that case, since
these two formulas are equivalent, we can prove this with a constant number of
lines of size O(|P |).

Third case: Q and R are disjoint subtrees. Pictorially:

P

Q R

This time we have to prove four equivalences recursively:

1. t(PQ=0)↔ t(PQ=0/R).

2. t(PQ=1)↔ t(PQ=1/R).

3. t(PR=0)↔ t(PR=0/Q).

4. t(PR=1)↔ t(PR=1/Q).

Using lemma 3.2, we lift these rebalanced terms into the following equivalents
of t(P) and t(P/R):

∨

∧

t(PQ=0/R) ¬

t(Q)

∧

t(PQ=1/R) t(Q)

∨

∧

t(PR=0/Q) ¬

t(R)

∧

t(PR=1/Q) t(R)

If we open up all the rebalanced terms, all the leaves will be labeled by one of
the following formulas:

t(PQ=0,R=0), t(PQ=0,R=1), t(PQ=1,R=0), t(PQ=1,R=1), t(Q), t(R).

The derivation is completed as in the previous two cases.
Analysis of the resulting proof. A quick consideration of the proof shows

that at all points, all nodes beyond some constant depth are expressed in the
form t(·), and so all lines in the proof are balanced. Moreover, each such line
contains at most a constant number of terms of the form t(S), where S is always
a subformula of P . Thus all the lines have depth O(log |P |) and size polynomial
in |P |. It remains to show that the number of lines is also polynomial in |P |.

Let `(P,R) denote the number of lines required to prove that t(P)↔ t(P/R).
The three different cases correspond to the following recurrence relations:

7

1. `(P,R) = `(Q,R) + `(PR=0, QR=0) + `(PR=1, QR=1) +O(|P |).

2. `(P,R) = `(R,Q) + `(PQ=0, RQ=0) + `(PQ=1, RQ=1) +O(|P |).

3. `(P,R) = `(PQ=0, R) + `(PQ=1, R) + `(PR=0, Q) + `(PR=1, Q) +O(|P |).

The base case is `(P,Q) = 0 if Q is the node singled out by lemma 4.2.
In order to bound `(P,R), we consider the value L(n,m), which denotes

max `(P,R) over all formulas P and R satisfying |P | ≤ n and n−m ≤ |R| ≤ m.
Plugging in the previous inequalities, we get the following recurrence relation:

L(n,m) = O(n)+

max
[
L(2

3n,
2
3n) + 2L(m, 2

3n), L(m, 2
3n) + 2(2

3n,
2
3n), 2L(2

3n,
2
3n) + 2L(m, 2

3n)
]
.

If we substitute the recurrence relation into L(m, 2
3n), we find out that

L(n, n) = O(n) + 10L(2
3n,

2
3n),

The solution of this recurrence relation is L(n, n) = O(nlog3/2 10). We conclude
that the number of lines in the proof is polynomial in |P |.

6 Intensional comprehension

Using lemma 5.1, we can prove lemmas expressing intensional comprehension.
These lemmas show that we can express the meanings of connectives (compre-
hend them) using internal means, i.e. with balanced proofs.

Comprehension of ¬ is easiest.

Lemma 6.1. For every formula Q, there is a Frege proof of t(¬Q) ↔ ¬t(Q)
consisting of |Q|O(1) lines, each of depth O(log |Q|).

Proof. Let P = ¬Q. Using lemma 5.1, we can prove t(P) ↔ t(P/Q). The
formula t(P/Q), written out, is

∨

∧

¬

0

¬

t(Q)

∧

¬

1

t(Q)

It is straightforward to prove that this is equivalent to ¬t(Q).

In order to prove comprehension of the binary operators, we must proceed
in two steps.

8

Lemma 6.2. For every two formulas Q,R, there is a Frege proof of t(Q∧R)↔
t(Q) ∧ t(R) consisting of (|Q|+ |R|)O(1) lines, each of depth O(log(|Q|+ |R|)).

Proof. Let P = Q ∧ R. Before we can prove the actual statement, we need to
prove two auxiliary results:

1. t(PQ=0)↔ 0.

2. t(PQ=1)↔ t(R).

These follow by rebalancing PQ=b on R, resulting in the following formulas:

∨

∧

t(b ∧ 0) ¬

t(R)

∧

t(b ∧ 1) t(R)

The two auxiliary results can be proved easily, since t(b∧0) and t(b∧1) are just
constant formulas.

Next, we rebalance the actual formula P on Q:

∨

∧

t(PQ=0) ¬

t(Q)

∧

t(PQ=1) t(Q)

Using lemma 3.2, we can substitute the auxiliary results to get

∨

∧

0 ¬

t(Q)

∧

t(R) t(Q)

The lemma now easily follows.

9

Comprehension of the other binary operator is very similar.

Lemma 6.3. For every two formulas Q,R, there is a Frege proof of t(Q∨R)↔
t(Q) ∨ t(R) consisting of (|Q|+ |R|)O(1) lines, each of depth O(log(|Q|+ |R|)).

Proof. Let P = Q ∨R. First, we prove two auxiliary results:

1. t(PQ=0)↔ t(R).

2. t(PQ=1)↔ 1.

These follow by rebalancing PQ=b on R:

∨

∧

t(b ∨ 0) ¬

t(R)

∧

t(b ∨ 1) t(R)

The auxiliary results follow easily.
Next, we rebalance the actual formula P on Q:

∨

∧

t(PQ=0) ¬

t(Q)

∧

t(PQ=1) t(Q)

Substituting the auxiliary results, this leads to

∨

∧

t(R) ¬

t(Q)

∧

1 t(Q)

The lemma now easily follows.

10

Combining the preceding lemmas, we obtain the following general form of
internal comprehension.

Lemma 6.4. Let P be an arbitrary formula of depth D with n parameters. For
every n formulas Qi, Frege proves t(P (Q1, . . . , Qn)) ↔ P (t(Q1), . . . , t(Qn))
with MO(1) steps, each of depth D +O(logM), where M = |P |+

∑
|Qi|.

Proof. By structural induction, using lemmas 6.1, 6.2 and 6.3.

7 Conclusion of the proof

The main idea of the proof of Theorem 1.1 is to replace each formula by its
balanced form. All the formulas become balanced, yet the proof is no longer
valid. Also, instead of proving the original formula, we prove its balanced form.
We address the former issue first.

Lemma 7.1. Consider a rule of the Frege proof system, which given the premises
Pj(x1, . . . , xn) concludes Q(x1, . . . , xn) (if there are no premises, then this is
an axiom). For every n formulas Ri, Frege concludes t(Q(R1, . . . , Rn)) from
t(Pj(R1, . . . , Rn)) with MO(1) steps, each of depth O(logM), where M =

∑
|Pj |+

|Q|+
∑
|Ri|.

Proof. Given each t(Pj(R1, . . . , Rn)), use lemma 6.4 to conclude Pj(t(R1), . . . , t(Rn)).
Then use the original rule to concludeQ(t(R1), . . . , t(Rn)). Finally, use lemma 6.4
again to conclude t(Q(R1), . . . , Q(Rn)).

We are almost done.

Proof of Theorem 1.1. Replace each axiom and each derivation rule of the orig-
inal proof with an application of lemma 7.1 to get a proof of t(ϕ). In order to
conclude ϕ, use lemma 6.4 with the variables of ϕ as Qi.

References

[1] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity the-
ory. Cambridge University Press, New York, NY, USA, 1995.

[2] Robert A. Reckhow. On the Lengths of Proofs in the Propositional Calculus.
PhD thesis, University of Toronto, Department of Computer Science, 1976.

11

