
Witnessing and conditional independence results

(Chapter 24 of FRVPC, §24.1–§24.3)

Y. F.

August 29, 2013

1 The theories involved

This chapter discusses relations between the theories PV, S1, T 1 and computational complexity theory. The
theories mentioned are:

• PV , which is the theory of polynomial time computations. It has symbols for all polynomial time
functions, and axioms expressing relations among them. It also has open induction, which is induction
in which the inductive predicate is only allowed to have sharply bounded quantifiers (quantifiers in
which the variables are bounded by polynomials in the lengths of other variables). PV is a universal
theory, that is it is axiomatized by axioms using only universal quantifiers.

• T 1, confusingly denoted in the book as T 1
2 , adds to PV the induction axiom for Σb1 predicates, which

consist of a string of bounded existential quantifiers followed by a sharply bounded quantified formula.

• S1, confusingly denoted in the book as S1
2 , adds to PV instead the polynomial induction scheme (or

equivalently the length induction scheme) for Σb1 formulas. These schemes, which are weaker than
usual induction, are:

– Polynomial induction: given A(0) and ∀xA(bx/2c)→ A(x), deduce ∀xA(x).

– Length induction: given A(0) and ∀xA(x)→ A(x+ 1), deduce ∀xA(|x|).

2 The weak pigeonhole principle and S1

The first application is from Kraj́ıček and Pudlák’s Some consequences of cryptographical conjectures for S1
2

and EF , and it concerns the weak pigeonhole principle for polynomial time functions. This principle states
that if f : {0, 1}N+1 → {0, 1}N is given by a circuit, then there are two inputs x, y of length N such that
f(x) = f(y). Technically, the parameter N needs to be the length of some variable. The goal is to show
that S1 cannot prove this principle, assuming that RSA is secure.

RSA is a cryptosystem in which a message m is encrypted by calculating c = me (mod n), where
(e, ϕ(n)) = 1. Here c, n, e are public, and the goal is to recover m. The message can be recovered if we could
determine d = e−1 (mod ϕ(n)), since m = cd (mod n). We will assume that RSA is secure in the following
sense: given c, n, e, it is difficult to determine the LSB of m (this is a hard-core bit).

The idea is as follows: using the weak pigeonhole principle, we will find an exponent r such that cr = 1
(mod n). Let r′ = ordnc be the order of c modulo n, which divides both r and ϕ(n). Since (e, ϕ(n)) = 1,
we have (e, r′) = 1 and so r′|r/(e, r). Let s = r/(e, r). Then (s, e) = 1 and cs = 1 (mod n). Since (e, s) = 1,
we can find d satisfying ed = 1 (mod s) using the extended GCD algorithm. Given d, we can recover m:
cd = med = m (mod n).

The original proof proceeds as follows. The function t 7→ ct (mod n) is polynomial time, and so if the
weak pigeonhole principle were true in S1, then S1 would prove the existence of x 6= y of length |n|+ 1 such

1

that cx = cy (mod n). Buss’s witnessing theorem implies that we can find x, y in polynomial time. Given
x, y, notice that cx−y = 1 (mod n), and so we can recover m.

We can mimic this proof in the new framework. Let F be the set of polynomial time functions computable
given the inputs c, n. Since PV is a universal theory, K(F) satisfies PV . If S1 proved the weak pigeonhole
principle then PV would also, since S1 is ∀∃-conservative over PV . In that case, the principle would be valid
in K(F), which we assume for the rest of the proof. Let α ∈ F be the function which computes a circuit
C : {0, 1}|n|+1 → {0, 1} implementing the function t 7→ ct (mod n) considered above. The weak pigeonhole
principle implies that

J∃β, γ.cβ = cγ (mod n)K = 1.

Closure properties of F (see below) guarantee that for every ε > 0 there exist β, γ such that

µ(Jcβ = cγ (mod n)K) > 1− ε

and so, by the definition of µ, for every ε > 0 there exist β, γ such that

Pr[cβ(c,n) = cγ(c,n) (mod n)] > 1− ε.

In other words, there are algorithm enabling us to find x, y satisfying cx = cy (mod n) with probability 1−ε.
Therefore we can break a random RSA pair c, n with probability 1− ε for every ε > 0.

There is a small deterioration in the result going from the original proof to the new one: the original
proof relied only on the worst-case hardness of RSA, whereas the new proof relies on average-case hardness.
The same deterioration also occurs in the other examples in this chapter.

We needed a certain closure property of the family F , its being closed under definition by cases by open
formulas: if α, β ∈ F and B is an open formula, then we need the following function to be in F :

δ(ω) =

{
α(ω) if B(α(ω)),

β(ω) otherwise.

This is clearly the case for our family F , since polynomial time algorithms can implement conditionals.
Given this, let us follow the argument. We started by assuming (after substituting a universal quantifier)

J∃β, γ.cβ = cγ (mod n)K = 1.

Therefore there is a sequence (βi, γi) satisfying∨
i

Jcβi = cγi (mod n)K = 1.

For every i, define

δi, εi =

β0, γ0 if cβ0 = cγ0 (mod n),

β1, γ1 if cβ0 6= cγ0 (mod n), cβ1 = cγ1 (mod n),

.

βi, γi otherwise.

Note that δi, εi ∈ F since F is closed under definition by cases by open formulas. Also,

Jcδi = cεi (mod n)K =
∨
j≤i

Jcβj = cγj (mod n)K.

The σ-additivity of µ then implies that

µ(Jcδi = cεi (mod n)K)→ 1,

and so, since Pr[B] is the standard part of µ(B),

Pr[cδi = cεi (mod n)]→ 1.

2

3 Restricted oracle classes and S1 vs. T 1

The second application, from Kraj́ıček’s Fragments of bounded arithmetic and bounded query classes (see
also Red Book §6.3,10.3) aims at a complexity-theoretic condition for separating S1 and T 1.

A predicate is Σb2-definable in T 1 if and only if it is in PNP . What about the weaker theory S1? It turns
out that a predicate is Σb2-definable in S1 if and only if it is in the restricted oracle class PNP [O(log n)], which
consists of those predicates computable using O(log n) queries to an NP -complete oracle, queries which in
addition to a Boolean answer also return a witness in the positive case. (The class is also equal to LNP .) It
follows that S1 6= T 1 given PNP 6= PNP [O(log n)]. One can come up with an oracle relative to which the
latter statement holds, and so S1(α) 6= T 1(α) (theories including an additional uninterpreted predicate α
which is subject to the induction axioms), that is there is a relativized separation between S1 and T 1.

It is straightforward to see that all predicates in PNP [O(log n)] are Σb2-definable in S1. The difficult part
is showing the converse. The original proof uses cut elimination followed by case-by-case analysis of all the
derivation rules, in the spirit of Buss’s witnessing theorem and other witnessing arguments.

The new proof considers the set F of all functions in PNP [O(log n)], where n is a fixed non-standard
integer. That is, each function in F depends on n inputs ω and is computed by a PNP [c log n] machine
for some standard c > 0. As in the preceding section, PV is automatically valid in K(F). To show that
moreover S1 is valid in F , we prove the bounded function minimization scheme, which is equivalent to
polynomial induction.

The bounded function minimization scheme states that every function computed by some circuit C on
|a| inputs and log |a| outputs attains a minimal value at some point u. The minimal value itself can be found
using binary search, which only requires log |a| = O(log n) oracle queries (since |a| is polynomial in n), and
the point u can be recovered from the corresponding witness. This construction shows that K(F) is a model
of S1.

Every function in PNP is Σb2-definable in T 1. If T 1 were valid in K(F) then every function f ∈ PNP would
be Σb2-definable in K(F), that is for some Σb2-formula Af , ∀x∃yAf (x, y) would be valid, where Af (x, y) =
∃z∀tA(x, y, z, t) formalizes f(x) = y. A witnessing argument, relying on the same property of F as in the
previous section but more complicated, shows that for every ε > 0 we can find β, γ such that

µ(J∀tA(ω, β, γ, t)K) ≥ 1− ε.

(Recall ω is the input to each function in F .) A simple argument now allows us to deduce that for every
ε > 0 we can find β, γ such that

Pr[∀tA(ω, β(ω), γ(ω), t)] ≥ 1− ε.
The function β(ω) ∈ PNP (O(log n)) thus computes f with probability 1− ε, implying that every function in
PNP can be calculated (with arbitrarily small error) in PNP [O(log n)]. (Notice that again the new framework
produced a weaker result.)

4 Polynomial size circuits for SAT and S1 vs. PV

The final application, taken from Kraj́ıček, Pudlák and Takeuti’s Bounded arithmetic and the polynomial
hierarchy (see also Red Book §10.2), concerns a condition for separating PV from S1. This paper proved the
celebrated KPT theorem, which was uses to show that if SAT has no polynomial size circuits then PV 6= S1.

The idea of the original proof is as follows. Suppose that S1 = PV . Let R(〈v1, . . . , vr〉, 〈w1, . . . , ws〉),
where v1, . . . , vr are formulas, w1, . . . , ws are truth assignments, and r ≤ s, be the polynomial time predicate
stating that wi is a satisfying assignment for vi for all 1 ≤ i ≤ s. Since R(〈v1, . . . , vr〉, 〈〉) holds, S1 proves
that there is a maximal s such that R(〈v1, . . . , vr〉, 〈w1, . . . , ws〉) for some w1, . . . , ws; we call such w1, . . . , ws
a maximal satisfying assignment for v1, . . . , vr. If S1 = PV then PV also proves this, and we can apply the
KPT theorem to conclude that there are functions f1, . . . , fk ∈ FP always outputting satisfying assignments
for their inputs such that one of the following holds:

• f1(v1, . . . , vr) is a maximal satisfying assignment for v1, . . . , vr.

3

• f2(v1, . . . , vr; b1) is a maximal satisfying assignment for v1, . . . , vr, where b1 is a counterexample to
f1(v1, . . . , vr) being maximal.

• f3(v1, . . . , vr; b1, b2) is a maximal satisfying assignment for v1, . . . , vr, where b1 is the counterexample
for f1, and b2 is a counterexample for f2.

• . . .

• fk(v1, . . . , vr; b1, . . . , bk−1) is a maximal satisfying assignment for v1, . . . , vr.

Let V1 be the set of satisfiable formulas of size n and X the set of satisfying assignments, where v ∈ V1
has a satisfying assignment w(v) ∈ X. We define a function F : V k1 → [k]×X as follows: given k satisfiable
formulas v1, . . . , vk ∈ V1, let ` be the minimal index such that |f`(v1, . . . , vk;w(v1), . . . , w(v`−1))| ≥ `, and
let w be the satisfying assignment produced by the algorithm f` for v`. Then F (v1, . . . , vk) = (`, w).

For Q ∈
(
Q1

k−1
)

and v ∈ V1\Q, we say that Q helps v if for some order of Q∪{v}, F (Q∪{v}) = (`, w), where

` is the index of v. On the one hand, the number of pairs (Q, v) such that Q helps v is
(|V1|
k

)
, and on the other

hand there are only
(|V1|
k−1
)

different subsets Q. Therefore some Q1 helps at least
(|V1|
k

)
/
(|V1|
k−1
)

= (|V1|−k+1)/k
different v ∈ V1. Remove those to form a new set V2, and repeat the construction to obtain Q2 which helps
at least (|V2| − k + 1)/k different v ∈ V2. Remove those to form a new set V3, and repeat. It is not difficult
to calculate that |Vt| < (1− 1/k)t|V1|+ k, and so |Vt| ≤ k for t = O(n).

For a given input length n, let a(n) consist of the satisfying assignments for all formulas in Q1, . . . , Qt, Vt
for t = O(n) considered above. Given an arbitrary v ∈ Q1, we can find a satisfying assignment for it given
a(n) by first checking whether v has a satisfying assignment in a(n), and otherwise trying all possible Qi
(and all possible permutations) in order to see if any of them helps v. Therefore we can determine whether
an arbitrary v has a satisfying assignment in polynomial time given the polynomial advice a(n). In other
words, NP ⊆ P/poly.

The proof in the new framework is similar. Fix a non-standard integer n. The sample space Ω of
the new structure consists of n-tuples ω = (ω1, . . . , ωn) of different satisfiable formulas of length n. The
collection F is the smallest collection of functions defined on Ω which is closed under composition and
contains PV and the function h(ψ1, . . . , ψn) defined on n-tuples of satisfying assignments as follows: if
ψ1, . . . , ψi−1 are satisfying assignments for ω1, . . . , ωi−1 but ψi is not a satisfying assignment for ωn then
h(ψ1, . . . , ψn) = 〈ψ1, . . . , ψi−1, ψ, ψi+1, . . . , ψn〉, where ψ is some fixed satisfying assignment for ωi (depending
only on the formula ωi; this corresponds to the function w above).

Let f(〈ω1, . . . , ωn〉, 〈ψ1, . . . , ψn〉) denote the maximal i such that ψ1, . . . , ψi are satisfying assignments
for ω1, . . . , ωi. The theory S1 proves that f attains a maximum. If S1 = PV then the same would hold in
K(F), which as in the previous cases is a model of PV . Hence

J∃ψ1, . . . , ψn∀χ1, . . . , χnf(〈ω1, . . . , ωn〉, 〈ψ1, . . . , ψn〉) ≥ f(〈ω1, . . . , ωn〉, 〈χ1, . . . , χn〉)K = 1.

As before, for every ε > 0 there exist ψ1, . . . , ψn such that

µ(J∀χ1, . . . , χnf(〈ω1, . . . , ωn〉, 〈ψ1, . . . , ψn〉) ≥ f(〈ω1, . . . , ωn〉, 〈χ1, . . . , χn〉)K) ≥ 1− ε.

In particular,

µ(Jf(〈ω1, . . . , ωn〉, 〈ψ1, . . . , ψn〉 ≥ f(〈ω1, . . . , ωn〉, h(〈ψ1, . . . , ψn〉))K) ≥ 1− ε.

Therefore for every ε > 0, we can find ψ1, . . . , ψn such that with probability at least 1 − ε, ψ1, . . . , ψn are
satisfying assignments for ω1, . . . , ωn.

Suppose that the computation of ψ1, . . . , ψn includes k − 1 calls to the function h. Marginalizing shows
that we can fix ωk+1, . . . , ωn to some values so that ψ1, . . . , ψk are satisfying assignments for ω1, . . . , ωk with
probability at least 1− ε. Now we can run an argument similar to the one before (but accommodating the
fact that there is an error probability of ε) to come up with a P/poly algorithm solving SAT on 1− ε of the
instances.

4

