
Forcing with Random Variables

and Proof Complexity

(Reading Group, June 13 & June 20)

Yuval Filmus

June 17, 2013

1 One-sorted models

In the previous week, we went over the construction of the models K(F ). Here we give a concrete example:
the model K(Frud) whose two-sorted version makes an appearance later on in the book.

Our starting point is some ω1-saturated non-standard model of arithmetic M which has names for all
natural functions, which are functions Nk → N for some integer k. We take a non-standard integer n. We
call a member ofM subexponential if it is at most 2n

ε

for some infinitesimal ε. The set of all subexponentials
is denoted Mn (since it’s downward-closed, it forms a cut). A natural function has subexponential growth if
given subexponential inputs, its output is subexponential. (Each natural function extends to a function in
M which satisfies the same first-order properties.) For example, polynomials have subexponential growth.
The set of all functions having subexponential growth is denoted Ln.

We take an integer n and let Ωrud consist of all definable subsets of [n]. A decision tree is a binary

tree whose inner nodes are labeled i
?∈ ω (where i ∈ [n]), its edges are labels yes and no, and its leaves are

labeled with subexponentials. A decision tree is shallow if its height is nε for some infinitesimal ε. The set
Frud consists of all functions computed by shallow decision trees. Note that all these functions are coded by
elements of M.

The set F satisfies a crucial property: it is Ln-closed. This means that if f(x1, . . . , xk) has subex-
ponential growth and β1, . . . , βk ∈ Frud then the function f(β1, . . . , βk), defined by f(β1, . . . , βk)(ω) =
f(β1(ω), . . . , βk(ω)), is also in Frud. To see this, we simply compose the trees.

2 Two-sorted models

In the sequel, we use two-sorted models which have an addition string sequence, which more properly
consists of M-finite strings. This will be useful for formulating the pigeonhole principle, as well as crucial
for expressing quantifier elimination, which is the technique we will use to prove induction on our models.

We will denote number sort variables using lowercase letters and string sort variables using uppercase
letters. We can think of string variables in two ways: either as sequences of numbers, or as sets of integers.
For a number term t and a string variable X, X(t) is the value of X at t, where X is considered as a
sequence. We will also use the shorthand t ∉X for X(t) = 0. We call X a set if X is {0,1}-valued. If X is a
set then t ∈X iff X(t) = 1.

The strings that we consider will usually be bounded: for some t, X(x) ≠ 0→ x < t. In this case we write
X < t and say that X is a string of length t. (A string of length t is also a string of length s for all s > t.) The
related notations ∀X < t and ∃X < t are shorthands for ∀X(X < t→ ⋯) and ∃X(X < t ∧⋯), respectively.

In the model K(F,G), F represents the number sort and G represents the string sort. The construction
of G from F is always the same, and we illustrate it by extending the model K(Frud) to K(Frud,Grud).

1



For each subexponential m and m-tuple β0, . . . , βm−1 ∈ Frud (which belongs to M), we define an element
Θ = Θβ0,...,βm−1 of G by

Θ(α) = λω.
⎧⎪⎪⎨⎪⎪⎩

βα(ω)(ω) if α(ω) <m,
0 otherwise.

Here α ∈ Frud, and the notation λω.f(ω) signifies a function mapping ω ∈ Ωrud to f(ω) ∈Mn. The set Grud

consists of all Θβ0,...,βm−1 for all sequences ⟨β0, . . . , βm−1⟩ in M whose length is subexponential.
In order to understand the definition, consider first the case of constant α. For a subexponential x, if

x < m then Θ(x) = βx, and otherwise Θ(x) ≡ 0. Thus Θ behaves like a string of length m. When α is not
constant, α(ω) codes the position of the string being accessed.

There is another way of looking at this definition, by switching the order of arguments. For ω ∈ Ωrud

define a function Θω ∶ [m]→Mn by
Θω = ⟨β0(ω), . . . , βm−1(ω)⟩.

In other words, Θ is a random sequence of length m, each entry of which has a uniform definition, in the
sense that it belongs to Frud. Under this definition we have

Θ(α) = λω.Θω[α(ω)].

Here the square brackets signify the i’th element in a sequence (in this case i = α(ω)), and we use the
convention that elements which are out of range are simply zero (we can imagine that the sequences are
encoded using the Gödel encoding 2x03x15x2⋯). In the future we will use parentheses instead of square
brackets whenever we are sure that α(ω) is in range.

The crucial property satisfied by this definition is that Θ(α) ∈ Frud. This can be seen by taking the
decision tree for α and replacing the leaves by either 0 or decision trees for the appropriate βi. (To make this
argument formal, we have to notice that the trees in the m-tuple β0, . . . , βm−1 have a maximal height, and so
there is a uniform subpolynomial bound on their height.) Another important property is that Grud contains
all constant strings of subexponential length, analogously to Frud containing all constant subexponential
numbers.

3 Defining truth

We now extend the definition of truth from K(F ) to K(F,G). We will use the following notation: for a
predicate P (ω), ⟪P (ω)⟫ = {ω ∈ Ω ∶ P (ω)}; I is the ideal of infinitesimally small sets in the Boolean algebra
B. The definitions for K(F ) were:

� Jα = βK = ⟪α(ω) = β(ω)⟫/I.

� For a relation R, JR(α1, . . . , αk)K = ⟪R(α1(ω), . . . , αk(ω))⟫/I.

� J¬tK = ¬JtK, Js ∧ tK = JsK ∧ JtK, Js ∨ tK = JsK ∨ JtK.

� J∀xA(x)K = ⋀α∈F JA(α)K.

� J∃xA(x)K = ⋁α∈F JA(α)K.

The latter two exist since the Boolean algebra is complete.
The extensions to K(F,G) are:

� JΘ = ΞK = ⟪Θω = Ξω⟫/I.

� J∀XA(X)K = ⋀Θ∈GJA(Θ)K.

� J∃XA(X)K = ⋁Θ∈GJA(Θ)K.

2



4 Lower bounds using forcing

How do we prove lower bounds using this framework? For simplicity, we only consider the AC0 case. Our
goal is to prove lower bounds for a Frege system in which all lines have constant depth, i.e. AC0-Frege. To
this end, we consider the corresponding two-sorted uniform proof theory V 0. This theory is axiomatized by
the usual Peano axioms (without induction), and the following two axiom schemes:

Comprehension: For any bounded formula A, ∃X∀y < x(y ∈X ↔ A(y, z1, . . . , zk)). (Here x, z1, . . . , zk are
parameters.)

Induction: For any bounded formula B, [B(0, y1, . . . , yk) ∧ ∀x(B(x, y1, . . . , yk) → B(x + 1, y1, . . . , yk))] →
∀xB(x, y1, . . . , yk). (Here y1, . . . , yk are parameters.)

Bounded formulas are only allowed to have bounded number quantifiers ∀x < t and ∃x < t, and no string
quantifiers.

Proofs in V 0 correspond to subexponential size constant depth AC0-Frege proof, a phenomenon known
as propositional translation. However, we will be interested in a slightly different property of V 0: it can
prove the reflection principle for AC0-Frege. To explain the reflection principle, we have to describe some
predicates, depending on a parameter d ∈N:

� Fd(y, Y, z) is a bounded formula coding “Y is a depth-d formula of length y on z variables”.

� Pd(x,X, y, Y, z) is a bounded formula coding “X is a depth-d AC0-Frege proof of length x of formula
Y of length y on z variables”.

� Sd(y, Y, z,Z) is a bounded formula coding “Z is a satisfying assignment for the depth-d formula Y of
length y on z variables”.

The reflection principle states that ∀Z(Fd(y, Y, z) ∧ Pd(x,X, y, Y, z) → Sd(y, Y, z,Z)). For each d ∈ N, V 0

can prove this principle.
The pigeonhole principle can be described by a bounded formula PHP(x,R) whose meaning is “R doesn’t

encode an injection from [x + 1] to [x]” (a weaker principle states that R doesn’t encode a bijection from
[x+1] onto [x]). It can also be encoded by a propositional formula PHPx(r0,0, . . . , rx,x−1) on (x+1)x variables
encoding the graph of R. The theory V 0 proves that for all R, Sd(∣PHPx ∣,PHPx, (x+1)x,R)↔ PHP(x,R).

Suppose that for some d ∈ N and all large enough m ∈ N there exist depth-d AC0-Frege proofs Πm of

PHPm of size at most s(m), where s(m) = 2m
o(1)

(that is, s(m) = 2m
f(m)

where f(m)Ð→ 0). Formally,

Fd(t(m),PHPm, (m + 1)m) ∧ Pd(s(m),Πm, t(m),PHPm, (m + 1)m),

where t(m) = ∣PHPm ∣ is a polynomial. Saturation implies that for some non-standard n there exists a
depth-d AC0-Frege proof Πn of PHPn of subexponential size, that is

Fd(t(n),PHPn, (n + 1)n) ∧ Pd(s(n),Πn, t(n),PHPn, (n + 1)n).

Furthermore, since t(n) is polynomial and s(n) = 2n
f(n)

where f(n) is infinitesimal, t(n), s(n) ∈Mn.
The formula Fd(t(n),PHPn, (n + 1)n) ∧ Pd(s(n),Πn, t(n),PHPn, (n + 1)n) is valid (has truth value 1B)

in any K(F,G) since it holds in M: this preservation result, which holds for any bounded formula, can be
proved by structural induction using the definition of truth. Here n ∈ F is the constant function given by
n(ω) = n, and PHPn,Πn are constant strings: for all ω, (PHPn)ω is the string encoding PHPn.

The reflection principle implies that ∀ZSd(t(n),PHPn, (n + 1)n,Z). The idea is to come up with some
∆ ∈ G for which PHPn(R) is not valid (has truth value smaller than 1B). Since PHPn(R) is equivalent to
Sd(t(n),PHPn, (n + 1)n,∆) under V 0, if such a ∆ exists then we reach a contradiction, and must conclude
that the original proofs of length s(m) cannot have existed. Now let s(m) be the length of the shortest

proof of PHPm. This shows that s(m) cannot be of the form 2m
o(1)

, and so s(m) = 2m
Ω(1)

.

3



5 A plethora of models

5.1 Shallow decision trees

So far we have described one model, K(Frud,Grud). While this model satisfies comprehension and induction
for open formulas (formulas without quantifiers), in order to get a full model of V 0 we need to extend it to
a more complicated model K(Ftree,Gtree), which is defined as follows.

Let δ0, δ1, . . . be rational numbers satisfying the following two properties: 0 < δk < 1 and ∏∞
i=0 δi > 0. A

leveled decision tree is a decision tree of height k in which all nodes at level k are leaves and all nodes at level
i < k query a subset Si ⊂ [n] of size nδ0⋯δi−1 − nδ0⋯δi depending only on the level i (for i = 0, ∣S0∣ = n − nδ0);
furthermore all subsets Si are disjoint.

Pick an arbitrary non-standard h. The sample space Ωtree consists of pairs ⟨T,ω⟩ where T is a leveled
decision tree of height h and ω ⊆ [n]. A function α ∈ Ftree is given by a standard k and, for each leveled
decision tree of height k, a shallow decision tree for every leaf. In order to compute α(T,ω), truncate the
tree T to height k, insert the given shallow decision trees at the leaves, and compute the result on ω. The
second sort Gtree is defined just like Grud.

The structure K(Ftree,Gtree) forms a model of V 0, and the proof crucially requires the H̊astad switching
lemma. The structure furthermore has some witnessing properties and some preservation properties.

5.1.1 Witnessing

We start by listing the witnessing properties:

� If ∀X < x∃Y < xB(x,X,Y ) is valid in K(Ftree,Gtree) for some bounded formula B(x,X,Y ) then for
all standard ε > 0 there is Γ ∈ Gtree such that

Pr
(T,ω)∈Ωtree

[Γ(T,ω) < n ∧B(n,ω,Γ(T,ω))] > 1 − ε.

� If ∀X < x∃Y < x∀Z < xB(x,X,Y,Z) is valid in K(Ftree,Gtree) for some bounded formula B(x,X,Y,Z)
then for all standard ε > 0 there is Γ ∈ Gtree such that for all Θ ∈ Gtree,

Pr
(T,ω)∈Ωtree

[Γ(T,ω) < n ∧B(n,ω,Γ(T,ω),Θ(T,ω))] > 1 − ε.

These can be used to show that some statements cannot be proved in V 0. For example, let B(x,X,Y )
state that for all i < n, Y (i) =X(0)⊕⋯⊕X(i). This can be expressed as a bounded formula: Y (0) =X(0)
and for all 0 < i < n, Y (i) = Y (i − 1)⊕X(i). If ∀X < x∃Y < xB(x,X,Y ) were provable in V 0 then it would
be valid in K(Ftree,Gtree), and so for all standard ε > 0 there would exist Γ ∈ Gtree such that

Pr
(T,ω)∈Ωtree

[ΓT,ω < n ∧B(n,ω,ΓT,ω)] > 1 − ε.

Fix T so that
Pr
ω⊆[n]

[ΓT,ω < n ∧B(n,ω,ΓT,ω)] > 1 − ε.

We think of ω and ΓT,ω as strings of length n. The event considered states that ΓT,ω(0) = ω(0) and for all
0 < i < n, ΓT,ω(i) = ΓT,ω(i − 1)⊕ ω(i).

Suppose that Γ is given by functions β0, . . . , βn−1 ∈ Ftree. Then with probability 1 − ε over the choice
of ω, β0(T,ω) = ω(0) and for all 0 < i < n, βi(T,ω) = βi−1(T,ω) ⊕ ω(i). The functions β0, . . . , βn−1 are all
computed (given T ) by decision trees of height at most n − nδ for some standard δ > 0. Let i < n be some
element not queried by βn−1. We can prove by induction that if the event holds for both ω and ω△ {i} (an
event that happens with probability 1−2ε) then βn−1(T,ω) = βn−1(T,ω∆{i})⊕1, contradicting the fact that
βn−1 doesn’t query i.

4



5.1.2 Preservation

The model K(Ftree,Gtree) preserves formulas of the following forms:

� ∀x∀X < xB(x,X), where B(x,X) is a bounded formula.

� ∀x∀X < x∃y < x∀Z < xB(x,X, y,Z), where B(x,X, y,Z) is a bounded formula.

� ∀x∃Y < x∀Z < xB(x,Y,Z), where B(x,Y,Z) is a bounded formula.

That is, if one of these formulas is true in M then it is also true in K(Ftree,Gtree). This can be used to
prove circuit lower bounds. We start by showing that there is no bounded formula P (x,X) calculating the
parity of a string X of length x. If there were such a formula then it would be true in N (and so inM) that

∀x∀X < x∀y < xP (x,X)↔ ¬P (x,X △ {y}).

(The set X∆{y} can be defined by a bounded formula.) Preservation of formulas of the first kind implies
that this is also true in K(Ftree,Gtree).

Let ∆ ∈ Gtree be given by the functions βi = 1∣i∈ω for all i < n. Thus ∆T,ω(i) = βi(T,ω) = 1∣i∈ω, in other
words, ∆T,ω codes the string ω. Substituting x = n and X = ∆, we deduce that

∀y < xP (n,∆)↔ ¬P (n,∆△ {y})

is valid inK(Ftree,Gtree). Quantifier elimination (described below) shows that for some γ ∈ Ftree, d(P (n,∆), γ) =
0, that is the event P (n,ω) ≠ γ(T,ω) has infinitesimal probability. Define a new α ∈ Ftree by replacing the
label of each leaf in the trees defined by γ with some element not queried in the path leading to that leaf.
We claim that P (n,∆) ↔ P (n,∆ △ {α}) is valid, leading to a contradiction. Indeed, up to infinitesimal
probability, at a point ⟨T,ω⟩ we have P (n,∆) ↔ γ(T,ω) and P (n,∆ △ {α(T,ω)}) ↔ γ(T,ω ⊕ α(T,ω)).
Since the trees given by γ depend only in T , γ(T,ω)↔ γ(T,ω ⊕ α(T,ω)).

In order to deduce a circuit lower bound, we follow an argument analogous to the way we obtained a
lower bound on lengths of proofs. For any d ∈N there is a bounded formula Vd(x,X, y, Y ) which computes
the value of the depth-d circuit Y of length y on the input X of length x. For any given m, given a circuit
Ym for parity of size s(m) we can define P (x,X) = Vd(x,X, s(m), Y ) for all x ≤ m. If such circuits exist
for all m ∈ N then we get a circuit Yn for some non-standard n, and so can define P (x,X) below n, thus
reaching a contradiction. (As stated this gives only a quasipolynomial lower bound since s(m) needs to have
subexponential growth; but that can be fixed.)

The two-sorted version of the pigeonhole principle PHP(x,R) is a bounded formula, and so ∀x∀R <
xPHP(x,R) is valid in K(Ftree,Gtree). Therefore this model cannot be used to prove lower bounds on the
pigeonhole principle.

5.2 Algebraic decision trees

The structure K(Ftree,Gtree) we have just considered is a model of V 0, and so can be used to reason about
AC0 circuits and AC0-Frege proofs. We proceed to describe a structure K(Falg,Galg) which can be used to
reason about AC0[2] circuits and AC0[2]-Frege proofs. This time the corresponding theory is Q2V

0, which
is V 0 augmented with the quantifier Q2y < tA(y) whose meaning is “A(y) holds an odd number of times in
the range y < t”. This quantifier is axiomatized by the following axioms:

� ¬Q2y < 0A(y).

� ¬A(t)→ (Q2y < tA(y)↔ Q2y < t + 1A(y)).

� A(t)→ (Q2y < tA(y)↔ ¬Q2y < t + 1A(y)).

5



The added quantifier requires defining the truth value of JQ2y < tA(y)K so that these axioms hold. The
definition is somewhat delicate and omitted for now.

The structure K(Falg,Galg) has the sample space Ωalg consisting of all subsets of [n] (that is, Ωalg = Ωrud).
An algebraic decision tree is a decision tree in which internal nodes are labeled by polynomials of low degree
(degree nε for some infinitesimal ε), and leaves are labeled with subexponentials. The polynomials are
computed modulo 2, and so each internal node has two outgoing edges labeled 0 and 1. The set Falg consists
of all functions computed by shallow algebraic decision trees (algebraic decision trees of depth nε for some
infinitesimal ε). The set Galg is defined as in the previous cases.

The structure K(Falg,Galg) is a model of Q2V
0; in contrast to the previous case, there is no need to

extend it to accommodate applications of the switching lemma. The place of the switching lemma is taken by
the Razborov-Smolensky method in the following form: a disjunction of an arbitrary number of low degree
polynomials can be approximated by a low degree polynomial.

The modelK(Falg,Galg) satisfies those properties of witnessing and preservation enjoyed byK(Ftree,Gtree),
and as a consequence cannot be used to prove lower bound on the pigeonhole principle. However, witnessing
implies that Q2V

0 cannot prove the existence of the transitive closure of a relation, and preservation can be
used to prove lower bounds on circuits computing the mod-p function for odd p.

5.3 PHP decision trees

The structure K(Ftree,Gtree), while constituting a model of V 0, satisfies the pigeonhole principle. We
now consider a different structure K(FPHP,GPHP) which is also a model of V 0 but for which the pigeonhole
principle fails. As in the case of K(Ftree,Gtree), we start by describing a rudimentary model K(F 0

PHP,G
0
PHP),

and then extend it in a similar fashion to the full-blown model.
The sample space Ω0

PHP of K(F 0
PHP,G

0
PHP) consists of all bijections mapping a subset of [n + 1] onto

[n]. A PHP decision tree is a decision tree whose internal nodes are labeled with queries of the form i ↦?
for i ∈ [n + 1] (with n outgoing edges) and ? ↦ j for j ∈ [n] (with n + 1 outgoing edges). As before, leaves
are labeled by subexponentials. The set F 0

PHP consists of all partial functions computed by shallow PHP
decision trees. Members of F 0

PHP are only partial functions since ω(i) could be undefined. However, this
happens with infinitesimal probability (as a simple inductive argument shows), and so can be ignored when
calculating truth values. The family G0

PHP is defined as in the previous cases.
While K(F 0

PHP,G
0
PHP) is not a model of V 0, it is useful as an illustration of a model in which the

pigeonhole principle fails. Indeed, consider the function ∆0 ∈ G0
PHP corresponding to βi,j = 1∣ω(i)=j for

i < n + 1 and j < n (clearly βi,j ∈ F 0
PHP). We have ∆0

ω(i, j) = βi,j(ω) = 1∣ω(i)=j , and so ∆0
ω is the graph of ω

(we consider ∆0
ω as a two argument function using some pairing function). Therefore, for every α ∈ F 0

PHP we
have

∆0(α,β)(ω) = ∆0
ω(α(ω), β(ω)) = 1∣ω(α(ω))=β(ω).

We claim that the pigeonhole principle fails for ∆0. The principle states that one of the following cases
holds (to simplify notation, we consider ∆0(i, j) as a predicate rather than a {0,1} value):

1. ∃i < n + 1∀j < n¬∆0(i, j).

2. ∃i, j < n∃k < n + 1(i ≠ j ∧∆0(k, i) ∧∆0(k, j)).

3. ∃i, j < n + 1∃k < n(i ≠ j ∧∆0(i, k) ∧∆0(j, k)).

(A weaker principle also allows the possibility that ∃i < n∀j < n + 1¬∆0(j, i).) We claim that all these
possibilities are invalid, and in fact have truth value 0B.

We start with the second statement. Let α,β, γ ∈ F 0
PHP. We have

Jα,β < n ∧ γ < n + 1 ∧ α ≠ β ∧∆0(γ,α) ∧∆0(γ, β)K
=⟪α(ω), β(ω) < n ∧ γ(ω) < n + 1 ∧ α(ω) ≠ β(ω) ∧ ω(γ(ω)) = α(ω) ∧ ω(γ(ω)) = β(ω)⟫/I = 0B.

6



Therefore the second statement has the truth value 0B. The third statement similarly has the truth value
0B.

We now turn to the first statement. Given α ∈ F 0
PHP, consider β ∈ F 0

PHP which replaces each leaf of α
labeled i < n + 1 with a query i↦?, and labels each leaf by the answer to the query. For this β we have

Jα < n + 1 ∧ β < n ∧ ¬∆0(α,β)K
=⟪α(ω) < n + 1 ∧ β(ω) < n ∧ ω(α(ω)) ≠ β(ω)⟫/I = 0B.

This shows that the first statement has the truth value 0B as well. In a similar way, we could extend the
argument to the weaker onto pigeonhole principle described above.

5.3.1 Full-blown version

We now define a structure K(FPHP,GPHP) which is a model of V 0 but in which the pigeonhole principle
fails, for the same reason it fails for K(F 0

PHP,G
0
PHP). The construction resembles that of K(Ftree,Gtree),

but is more involved.
Let h be the minimal element of M satisfying n1/5h < 10. Each point in the sample space ΩPHP consists

of a partial injection ω from [n + 1] onto [n] together with a partition R0, . . . ,Rh of [n] into pieces of size

∣Ri∣ = n1/5i − n1/5i+1 (where n1/5h+1 = 0). A function α ∈ FPHP is given by an integer k ∈ N and a collection
of shallow PHP decision trees whose index set is described below. Given ⟨ω,R0, . . . ,Rh⟩ ∈ ΩPHP, α gets to
see ω restricted to the inverse image of R0 ∪⋯ ∪Rk, affixes a shallow PHP decision tree depending only on
this data, and follows this tree to compute α(ω). The set GPHP is defined as in the previous cases.

The role of the H̊astad switching lemma is now played by the PHP switching lemma, and that explains

the appearance of the quantities n1/5i . The counterexample ∆ ∈ GPHP is defined analogously to ∆0 ∈ G0
PHP

to satisfy ∆(α,β)(ω,R0, . . . ,Rh) = 1∣ω(α(ω))=β(ω).

6 A glimpse of the proof

The difficult part in showing that a model like K(Ftree,Gtree) satisfies V 0 is proving that the comprehension
and induction axiom schemes are valid. The strategy is to prove these in two steps. The first, easy step
is to prove comprehension and induction for open formulas (formulas without quantifiers); we call these
restricted versions open comprehension and open induction. Then we prove that a version of quantifier
elimination holds in the model, using the appropriate switching lemma. Comprehension and induction for
general bounded formulas then follows.

6.1 Open comprehension and open induction

We start by illustrating how open comprehension and open induction are proved, using the simple model
K(Frud,Grud). Open comprehension states that for every open formula A,

∃Θ∀β < α(Θ(β) = 1↔ A(β, γ1, . . . , γk))

is valid, where α, γ1, . . . , γk ∈ Frud. The first step is to notice that the leaves in α have some maximal value m ∈
Mn. Therefore we need to construct for each i ≤m a function δi satisfying δi(ω) = 1↔ A(i, γ1(ω), . . . , γk(ω)).
Such functions can be computed by composing the trees corresponding to γ1, . . . , γk.

Open induction states that for every open formula B,

[B(0, β1, . . . , βk) ∧ ∀α(B(α,β1, . . . , βk)→ B(α + 1, β1, . . . , βk))]→ ∀αB(α,β1, . . . , βk),

where β1, . . . , βk ∈ Frud. Since every α ∈ Frud is bounded by some m ∈Mn, it is enough to prove the following
bounded variant:

[B(0, β1, . . . , βk) ∧ ∀α <m(B(α,β1, . . . , βk)→ B(α + 1, β1, . . . , βk))]→ B(m,β1, . . . , βk).

7



Simple manipulation allows us to reduce to the case in which B(0, β1, . . . , βk) and ¬B(m,β1, . . . , βk) are
valid (even true for all ω ∈ Ωrud), and then we have to show that

∃α <m(B(α,β1, . . . , βk) ∧ ¬B(α + 1, β1, . . . , βk)).

We show that this is valid by coming up with α ∈ Frud which satisfies this statement. The idea is to use binary
search: since we know that B(0) is true and B(m) is false (ignoring the parameters for brevity), if B(m/2)
is true then there must be a counterexample in [m/2,m), and otherwise there must be a counterexample
in [0,m) (here a counterexample is a value i such that B(i) ∧ ¬B(i + 1)). Binary search takes logarithmic
time, and each step can be implemented using a shallow decision tree. The resulting decision tree has depth
nε logm for some infinitesimal ε. Since m is subexponential, logm = nδ for some infinitesimal δ, and so the
resulting decision tree is also shallow.

6.2 Quantifier elimination

In order to tackle general comprehension and induction, we prove below the following form of quantifier
elimination (for K(Ftree,Gtree)). For every open formula B(x1, . . . , xk, y) and for all m ∈Mn there exists a
function Θ ∈ Gtree such that the following formula is valid for all α1, . . . , αk ∈ Ftree:

[α1, . . . , αk <m ∧ ∃β <mB(α1, . . . , αk, β)]→ [Θ(α1, . . . , αk) <m ∧B(α1, . . . , αk,Θ(α1, . . . , αk))]. (1)

It then follows that

∀α1, . . . , αk <m[∃β <mB(α1, . . . , αk, β)]↔ B(α1, . . . , αk,Θ(α1, . . . , αk))

is valid. In other words, the formula ∃β <mB(α1, . . . , αk, β) is equivalent to an open formula. Iterating the
construction, we get that every bounded formula is equivalent to an open formula below m. Going over the
proofs of open comprehension and open induction, we see that this is enough to imply general comprehension
and induction.

6.3 Applying the switching lemma

We now complete the proof that K(Ftree,Gtree) is a model of V 0 by showing that the model admits quantifier
elimination in the sense of (1). For simplicity, assume that k = 1. We want to find for every open formula
B(x, y) and subexponential m a function Θ ∈ Gtree such that the following is valid:

[α <m ∧ ∃γ <mB(α, γ)]→ [Θ(α) <m ∧B(α,Θ(α))]. (2)

The function Θ will be given by functions β0, . . . , βm−1 ∈ Ftree. Informally, βi will attempt to find an
element j such that B(i, j) holds, if such an element exists. What should the functions β0, . . . , βm−1 satisfy
for (2) to hold? If (2) fails for some α ∈ Ftree then

JΘ(α) <m ∧B(α,Θ(α))K < J∃γ <mB(α, γ)K.

(We can assume that α <m always holds.) In particular,

µ(Θ(α) <m ∧B(α,Θ(α))) < µ(∃γ <mB(α, γ)).

We showed that B is a complete Boolean algebra by showing that each supremum is equal to a countable
supremum. This implies that

J∃γ <mB(α, γ)K = ⋁
i∈N

Jγi <m ∧B(α, γi)K

for some γi ∈ Ftree. Using the fact that B(α, i) can be evaluated by a shallow decision tree, we can construct
for each k ∈N a function δk ∈ Ftree satisfying

Jδk <m ∧B(α, δk)K = ⋁
i≤k

Jγi <m ∧B(α, γi)K.

8



Therefore µ(δk <m ∧B(α, δk)) tends to µ(∃γ <mB(α, γ)), and so for large enough k,

µ(Θ(α) <m ∧B(α,Θ(α))) < µ(δk <m ∧B(α, δk)).

This implies that the following set has non-infinitesimal measure:

⟪δk(ω) <m ∧B(α(ω), δk(ω))⟫ ∖ ⟪Θ(α)(ω) <m ∧B(α(ω),Θ(α)(ω))⟫
=⟪δk(ω) <m ∧B(α(ω), δk(ω))⟫ ∖ ⟪βα(ω)(ω) <m ∧B(α(ω), βα(ω)(ω))⟫.

In particular,
⟪∃y <mB(α(ω), y)⟫ ∖ ⟪βα(ω)(ω) <m ∧B(α(ω), βα(ω))(ω)⟫

has non-infinitesimal measure. One way to guarantee that this never happens is to ensure that

⋃
i<m

Ei ≜ ⋃
i<m

⟪∃y <mB(i, y)⟫ ∖ ⟪βi(ω) <m ∧B(i, βi(ω)⟫

has infinitesimal measure. (Note that ⟪∃y < mB(i, y)⟫ is a non-trivial set since B may have parameters
depending on ω.) Below we construct elements β0, . . . , βm−1 for which this condition is satisfied.

We start by recalling that
⟪∃y <mB(i, y)⟫ = ⋃

j<m
⟪B(i, j)⟫.

The idea is that βi will find a j <m satisfying B(i, j) (if any exists) using binary search. The problem is that
we need to answer queries of the form “does there exist j ∈ [u, v] satisfying B(i, j)”. The range [u, v] could
be very big, and so if we combine the decision trees for B(i, j) together the result would not be shallow. The
idea is to use the switching lemma in order to approximate the query.

Recall that each B(i, j) is computed by shallow decision trees which replace the nodes at height k of any
leveled decision tree (k doesn’t depend on i, j). The function βi will apply one more restriction by replacing
nodes at height k + 1. H̊astad’s switching lemma shows that each query can be approximated by a shallow
decision tree with a very small probability of error. Hence we can implement the binary search, with only
a small probability of error. The probability of error is so small (indeed, exponential) that a union bound
shows that the total measure of all Ei is infinitesimal.

6.3.1 Algebraic decision trees

A very similar argument works for algebraic decision trees. We described functions in Falg as computed
by shallow algebraic decision trees in which each node is annotated by a low degree polynomial. Each
leaf f in such a tree is reached if a certain low degree polynomial pf is equal to 1, and these polynomials
satisfy the additional properties pfpg = 0 for f ≠ g and ∑f pf = 1. We can use the polynomials pf as an
alternative description of the tree. This shows that every {0,1}-valued function in Falg is given by a low
degree polynomial.

Following our steps above, we need to find a shallow algebraic decision tree which approximates the
predicate ∃u ≤ j ≤ vB(i, j), which is a disjunction of low degree polynomials. Razborov’s trick allows us to
approximate this using a single low degree polynomial with low error. The rest of the construction proceeds
in the same way.

Since this argument uses an approximation without applying a restriction, we don’t require a leveled
sample space as in the other two cases.

6.3.2 PHP trees

A similar argument also works in the case of PHP decision trees. The PHP switching lemma replaces H̊astad’s
switching lemma. An added complication is that the functions we consider are only partially defined, and
this requires us to be more subtle: while each βi is undefined with infinitesimal probability, a priori the union
of the regions of undefinability can have non-infinitesimal measure. However, since the resulting function
is implemented using a shallow PHP decision tree, we know that it is undefined only with infinitesimal
probability. (The actual argument is a bit more delicate.)

9



6.4 Preservation

The main drawback of the model K(Ftree,Gtree) is that it preserves too many sentences. We explain why
this is the case, and how the model K(FPHP,GPHP) avoids this.

Suppose that a sentence of the form ∀x∀X < xB(x,X) holds inM, where B(x,X) is a bounded formula.
Take any Γ ∈ Gtree. The argument used to prove quantifier elimination shows that for each m ∈Mn there is
an open formula C(x) such that for x <m, C(x) is equivalent to B(x,Γ) in the sense of K(Ftree,Gtree) (i.e.
∀x <m(C(x)↔ B(x,Γ)) is valid), and furthermore for all α ∈ Ftree,

⟪α <m→ B(α,Γ)⟫△ ⟪α <m→ C(α)⟫ ∈ I. (3)

Since ∀x∀X < xB(x,X), ⟪α < m → B(α,Γ)⟫ = Ωtree, and so µ(⟪α < m → C(α)⟫) = 1. Since C is open,
Jα < m → C(α)K = ⟪α < m → C(α)⟫/I = 1B, and so α < m → C(α) is valid in K(Ftree,Gtree). Since C(x) is
equivalent to B(x,Γ) in K(Ftree,Gtree) for x <m, we deduce that ∀x <mB(x,Γ) is valid in K(Ftree,Gtree).
Since m was arbitrary, ∀x∀X < xB(x,X) is valid in K(Ftree,Gtree).

This argument fails in K(FPHP,GPHP) since (3) doesn’t hold.

10


