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Abstract24

We prove a new query-to-communication lifting for randomized protocols, with inner product as25

gadget. This allows us to use a much smaller gadget, leading to a more efficient lifting. Prior to this26

work, such a theorem was known only for deterministic protocols, due to Chattopadhyay et al. [3]27

and Wu et al. [20]. The only query-to-communication lifting result for randomized protocols, due to28

Göös, Pitassi and Watson [11], used the much larger indexing gadget.29

Our proof also provides a unified treatment of randomized and deterministic lifting. Most30

existing proofs of deterministic lifting theorems use a measure of information known as thickness. In31

contrast, Göös, Pitassi and Watson [11] used blockwise min-entropy as a measure of information.32

Our proof uses the blockwise min-entropy framework to prove lifting theorems in both settings in a33

unified way.34
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1 Introduction46

In this work, we prove new lifting theorems that use the inner-product function as a gadget.47

Let f : {0, 1}n → {0, 1}m and g : {0, 1}b × {0, 1}b → {0, 1} be functions (where g is referred48

to as a gadget). The block-composed function f ◦ gn is the function that takes n instances49

(x1, y1), . . . , (xn, yn) of inputs for g and computes f ◦ gn as,50

f ◦ gn((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).51

Lifting theorems are theorems that relate the communication complexity of f ◦ gn to the52

query complexity1 of f and the communication complexity of g.53

More specifically, consider the following communication problem: Alice gets x1, . . . , xn,54

Bob gets y1, . . . , yn, and they wish to compute the output of f ◦ gn on their inputs. The55

natural protocol for doing so is the following: Alice and Bob jointly simulate a decision tree56

of optimal height for solving f . Any time the tree queries the i-th bit, they compute g on the57

i-th instance by invoking the best possible communication protocol for g. A lifting theorem58

is a theorem that says that this natural protocol is optimal.59

Lifting theorems are interesting because they create a connection between query complexity60

and communication complexity. This connection, besides being interesting in its own right,61

allows us to transfer lower bounds and separations from the from query complexity (which is62

a relatively simple model) to a communication complexity (which is a significantly richer63

model).64

In particular, the first result of this form, due to Raz and McKenzie [17], proved a lifting65

theorem from deterministic query complexity to deterministic communication complexity66

when g is the index function. They then used it to prove new lower bounds on communication67

complexity by lifting query-complexity lower-bounds. More recently, Göös, Pitassi and68

Watson [10] applied that theorem to separate the logarithm of the partition number and69

the deterministic communication complexity of a function, resolving a long-standing open70

problem. This too was done by proving such a separation in the setting of query complexity71

and lifting it to the setting of communication complexity. This result stimulated a flurry of72

work on lifting theorems of various kinds, such as: round-preserving lifting theorems with73

applications to time-space trade-offs for proof complexity [5], deterministic lifting theorems74

with other gadgets [3, 20], lifting theorems from randomized query complexity to randomized75

communication complexity [11], lifting theorems for DAG-like protocols [7] with applications76

to monotone circuit lower bounds, lifting theorems for asymmetric communication problems77

[4] with applications to data-structures, and a lifting theorem [16] for the EQUALITY gadget.78

Viewed from another angle, lifting theorems are natural generalizations of classic theorems79

such as direct-sum theorems and XOR lemmas [21, 13, 6, 14, 1, 2]: in particular, if we set f80

to be the identity function or the parity function, we get a direct sum theorem or an XOR81

lemma for g, respectively. This point of view motivates the work of Hatami et al. [12] that82

made progress towards proving a lifting theorem with a constant-size gadget.83

In almost all known lifting theorems, the function f can be arbitrary (and may also be a84

general search problem) while g is usually a specific function (e.g., the index function). This85

raises the following natural question: for which choices of g can we prove lifting theorems?86

1 Here, we limit ourselves mostly to theorems lifting precisely the query complexity of f to the commu-
nication complexity. Consequently, we do not discuss lifting-like theorems due to Sherstov [18] and
independently due to Shi and Zhu [19], that enabled several important later developments. Moreover, it
is not clear how to make this line of work for relations f that are not necessarily Boolean functions.
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This question is interesting both because many applications depend on the choice of g, and87

because if we view lifting theorems as generalizations of direct-sum theorems, we would like88

them to work for as many choices of g as possible.89

In particular, applications of lifting theorems often depend on the size of the gadget,90

which is the length of the input to g. Both the deterministic lifting theorem of Raz and91

McKenzie [17] and the randomized lifting theorem of Göös et al. [11] use the indexing function92

INDEX, which has very large size (polynomial in n). Reducing the gadget size to a constant93

would have many interesting applications.94

In the deterministic setting, the gadget size was recently improved to logarithmic by95

the independent works of [3] and [20], who chose the gadget g to be the inner product96

function. Moreover, [3, 15] showed the lifting to work for a large class of gadgets. However,97

the randomized lifting theorem of Göös et al. [11], until our work, seemed to work only with98

INDEX as gadget.99

In this work, we prove a randomized lifting theorem using an inner product gadget of100

logarithmic size. This has the immediate application that any lower bound on the outer101

function f can now be lifted to a much stronger lower bound on the composed function f ◦gn,102

since hardness is measured as a function of the input length. This allows us, for example, to103

simplify the lower bounds of Göös, and Jayram [8] on AND-OR trees and MAJORITY trees,104

since we can now obtain them directly from the randomized query complexity lower bounds105

rather than going through conical juntas.106

We now turn to state our main result more formally. Let n ∈ N be such that n ≥ 2 and107

let b def= 10, 000 · logn. Let Λ def= {0, 1}b, and let g : Λ× Λ→ {0, 1} denote the inner product108

(mod 2) gadget. We prove lifting theorems for various lifted versions of G def= gn. That is,109

G : Λn × Λn → {0, 1}n is the function that takes n independent instances of g and computes110

g on all of them. Here is our main result:111

I Theorem 1 (Randomized lifting). Let S : {0, 1}n → Σ be any search problem and let Π be112

a bounded-error randomized communication protocol that solves S ◦ G with complexity c113

and error probability ε. Then, there exists a randomized decision tree T that solves S with114

complexity O( cb ) and bounded error probability.115

Using essentially the same proof method, we also prove a similar result in the deterministic116

setting:117

I Theorem 2 (Deterministic lifting). Let S be any search problem that takes inputs from {0, 1}n,118

and let Π be a deterministic communication protocol that solves S ◦ G with complexity c.119

Then, there exists a deterministic decision tree T that solves S with complexity O( cb ).120

Most existing proofs of deterministic lifting theorems employ an information measure121

known as thickness, borrowed from earlier work on the KRW conjecture. The one deviation122

from this is the recent beautiful work of Garg et al. [7] who prove a deterministic lifting123

theorem in the dag-like setting. Curiously, their result does not use the thickness measure of124

information, but rather uses the blockwise min-entropy measure of information that was used125

by Göös, Pitassi and Watson [11] in order to prove a randomized lifting theorem. A natural126

direction of further research is to investigate if these disparate techniques can be unified.127

Indeed, a related question was asked in the first work to employ the measures of min-entropy128

for lifting by Göös et al. [9]: they asked if min-entropy and density based techniques could129

be used to prove (or simplify the existing proof of) Raz–McKenzie style deterministic lifting130

theorems.131

Our unified proof answers this question by showing that the same information measure132

(blockwise min entropy) can in fact be used in both the deterministic and randomized settings.133
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The main difference between the two proofs is the way in which we decide the next bit of the134

communication protocol: in the deterministic setting, we make a greedy choice, and in the135

randomized setting, we make a (non-uniform) random choice. Whereas in the randomized136

setting, our information measure guarantees that we are able to estimate the distribution of137

the next bit of the protocol, in the deterministic setting it guarantees richness, that is, when138

the protocol ends, there is some input consistent with answers of all queries made by the139

decision tree.140

Organization of the paper In Section 2 we set up the machinery that is used in both141

the deterministic and the randomized lifting theorems. We prove the deterministic lifting142

theorem in Section 3, and the randomized lifting theorem in Section 4. Both proofs use a143

Fourier-theoretic lemma, proved in Section 5.144

2 Common Machinery145

In this paper we consider lifting theorems for the most general case of search problems. A146

search problem S is defined by a relation I × O where I is a finite set of inputs and O is a147

finite set of outputs. The goal of the search problem, given an input x ∈ I is to find at least148

one output o ∈ O such that (x, o) ∈ S. Like in the statement of the main theorem, let S be149

any search problem that takes inputs from {0, 1}n, and let Π be a bounded-error randomized150

communication protocol that solves S ◦ G with complexity c and error probability ε. We151

prove the randomized and deterministic lifting theorems, by building deterministic and152

randomized decision trees of cost O(c/b) based on respective protocols of cost c. Intuitively,153

in both theorems, on input z ∈ {0, 1}n, the tree T will simulate the action of the protocol Π154

on inputs (x, y) ∈ G−1(z). More specifically, the tree will simulate the protocol bit by bit,155

and maintain a rectangle X × Y that is consistent with the protocol so far such that all the156

strings in G(X × Y) are consistent with the queries made so far. To this end, we consider157

random variables X and Y that are distributed uniformly over X and Y respectively. We158

now state a few useful definitions and results about such random variables159

The first such definition ensures that the random variables we consider have enough160

blockwise min-entropy.161

I Definition 3. Let X be a random variable taking values in Λn. We say that X is δ-dense162

if for every I ⊆ [n] it holds that H∞(XI) ≥ δ · b · |I|.163

We would like these random variables to be consistent with the query answers obtained164

by the decision tree thus far in the simulation. To this end, we also define the following165

notion of restrictions.166

I Definition 4. Given a restriction ρ ∈ {0, 1, ∗}n, we denote by fix(ρ) and free(ρ) the set of167

fixed and free coordinates of ρ respectively.168

Intuitively, fix(ρ) represents the query answers obtained thus far, and free(ρ) represents the169

yet unqueried coordinates. With these definitions, we define the property that we would like170

to maintain for X and Y during the simulation.171

I Definition 5 (following [11]). Let X,Y be random variables taking values in Λn, and let172

ρ ∈ {0, 1, ∗}n be a restriction. We say that X and Y are ρ-structured if Xfree(ρ) and Yfree(ρ)173

are 0.9-dense, and174

gfix(ρ) (Xfix(ρ), Yfix(ρ)
)

= ρfix(ρ).175
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In both lifting theorems, the decision tree T starts by setting X and Y to be uniform176

over Λn, and maintains throughout the simulation the invariant that, if ρ is the restriction177

that represents the current “state of knowledge” regarding the input z, then X and Y are178

ρ-structured. In order to maintain this invariant, we use the following Fourier-analytic result,179

which is proved in Section 5.180

I Definition 6. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say that181

α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the random182

variable183

Y[n]−I
∣∣gI(αI , YI) = σI184

is not η-dense or185

Pr
[
gI(αI , YI) = σI

]
< 2−|I|−1.186

I Theorem 7 (Main Technical Tool). Let n ∈ N and let b ∈ N such that b ≥ 10000 · log(n).187

Let X and Y be random variables taking values in Λn that are δX-dense and δY -dense188

respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1. Then, the probability that X takes a189

value that is δY
2.01 -bad for Y is at most 2−0.01·b.190

We also use the following analogue of the “uniform marginals lemma” of [11] for the inner191

product gadget.192

I Lemma 8 (Uniform marginals lemma). Let X,Y be random variables uniformly distributed193

over sets X ,Y ⊆ Λn, and suppose they are ρ-structured. Then, for any z ∈ {0, 1}n that is194

consistent with ρ, the uniform distribution over G−1(z)∩(X×Y) has its marginal distributions195

1
n3 -close to X and Y respectively.196

In order to prove Lemma 8, we use the following definition and lemma from Göös et al. [9].197

I Definition 9. Let ε > 0 and let V be a random variable taking values from a set V. We say198

that V is ε-pointwise close to uniform if for every v ∈ V it holds that Pr [V = v] ∈ (1± ε) · 1
|V| .199

I Lemma 10. Let A,B be 0.6-dense random variables taking values from Λm. Then gm(A,B)200

is 2− b
20 -uniform.201

The proof of this lemma, which is similar to the proof of the uniform marginals lemma in [11],202

appears in Appendix A.203

We use the following simple folklore fact about density.204

I Proposition 11. Let X be a random variable over ΛJ , and let I ⊆ J be maximal subset of
coordinates such that H∞(XI) < δ · b · |I|. Let α ∈ ΛI be a value such that

Pr [XI = α] > 2−δ·b·|I|.

Then, the random variable XJ−I |XI = α is δ-dense.205

We also use the following decomposition result from Göös et al. [11], which extends the206

last proposition.207

I Lemma 12 (Density-restoring partition). Let X be a random variable over X ⊆ ΛJ . Then,208

there exists a partition209

X def= X 1 ∪ · · · ∪ X r210

such that every X i is associated with a set Ii ⊆ J , a value αi ∈ ΛIi , and a probability211

p≥i
def= Pr

[
X ∈ X i ∪ . . . ∪ X r

]
that satisfy the following properties: Denote by Xi the random212

variable X conditioned on X ∈ X i.213



XX:6 Query-to-communication lifting for BPP using inner product

Xi
Ii

is fixed to αi.214

Xi
J−Ii is 0.9-dense.215

H∞(Xi) ≥ H∞(X)− 0.9 · b · |Ii| − log 1
p≥i

.216

3 The deterministic lifting theorem217

In this section, we prove the deterministic lifting theorem, restated from the Introduction.218

I Theorem 13 (Restatement of Theorem 2). Let S be any search problem that takes inputs219

from {0, 1}n, and let Π be a deterministic communication protocol that solves S ◦ G with220

complexity c. Then, there exists a decision tree T that solves S with complexity O( cb ).221

As noted earlier, the decision tree T we construct would simulate the protocol Π. Throughout222

the simulation, the tree keeps track of random variables X,Y , which represent the inputs to223

the protocol, and maintains the invariant that they are ρ-structured. When the protocol Π224

ends, the decision tree T ends as well and outputs the output of Π. In order to complete the225

proof of Theorem 2, we need to show three things:226

How to simulate a single bit of the protocol while maintaining the above invariant.227

After the decision tree ends, its output is a correct output of S on z.228

The total number of queries made by the decision tree T during the lifting is O( cb ).229

Due to space constraints, we will only briefly describe the simulation, relegating its230

analysis to Appendix B.231

Consider a given step in the simulation where the tree is at a particular node of the232

protocol Π. Let X ,Y be the current set of inputs that are being maintained which are233

consistent with this node, and let X,Y be random variables uniformly distributed over X ,Y .234

Let ρ ∈ {0, 1, ∗}n denote the restriction that represents the queries that have been made so235

far and their answers, i.e., coordinates that were queried are fixed to the answers that were236

received, and coordinates that were not queried are free. By the invariant we maintain, the237

variables X,Y are ρ-structured.238

We would like to simulate the next bit of the protocol. Suppose without loss of generality239

that it is Alice’s turn to speak. The tree T chooses the next bit to be the bit that has the240

highest probability of being sent by Alice, if the inputs are chosen according to X. The tree241

then updates the set X to be consistent with the new bit, and updates the random variable X242

accordingly. Now, if the ρ-structure property of X,Y has been violated, then it must be243

because Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now244

modifies the sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order245

to do so, the tree T repeats the following steps iteratively until X and Y are ρ-structured:246

1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-247

ingly.248

2. If Xfree(ρ) is now 0.9-dense, then we are done — the structuredness has been restored.249

Otherwise continue.250

3. Let I ⊆ free(ρ) be a maximal set that violates the density of Xfree(ρ) (i.e., H∞(XI) <251

0.9 · b · |I|), and let αI ∈ ΛI be a “heavy” value that satisfies Pr [XI = αI ] > 2−0.9·b·|I|.252

4. Condition X on XI = αI , and update X accordingly. Proposition 11 implies that253

Xfree(ρ)−I is now 0.9-dense.254

5. Query the coordinates in I, and update ρ accordingly.255

6. Condition Y on gI(αI , YI) = ρI , and update Y accordingly.256

7. If Yfree(ρ) is now 0.9-dense then we are done — the structuredness has been restored.257

Otherwise go back to Step 1 but replace the roles of X and Y .258
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In order for the steps of the above process to always be well-defined, we need to show259

that we never condition on events with probability 0. If this is always satisfied, it follows that260

the algorithm terminates and at termination the random variables X,Y are ρ-structured.261

To see this, note that the process only stops if Xfree(ρ) and Yfree(ρ) are 0.9-dense, and the262

process clearly maintains the invariant that263

gfix(ρ) (Xfix(ρ), Yfix(ρ)
)

= ρfix(ρ).264

Moreover, the process always stops, since in every iteration the size of the set free(ρ) decreases,265

and it cannot decrease below 0.266

We turn to show that we never condition on a zero probability event. To this end, we will267

show that the process preserves the following property: At the beginning of every iteration,268

one of the variables Xfree(ρ) and Yfree(ρ) is 0.9-dense, and the other is at least 0.4-dense.269

Observe that this property indeed holds at the beginning of the first iteration: at this point,270

Y is 0.9-dense, and X must be at least 0.4-dense — since we chose the next bit of Alice to be271

the one with the highest probability, and therefore the min-entropy of any set of coordinates272

could have dropped by at most 1.273

Suppose that the property holds at the beginning of a given iteration. The first condi-274

tioning takes place at Step 1. When Step 1 is performed, we know by Theorem 7 that the275

event that Xfree(ρ) does not take values that are 0.4-bad for Yfree(ρ) has non-zero probability:276

to see it, note that by assumption δX ≥ 0.4 and δY ≥ 0.9, so it holds that δX + δY ≥ 1.3277

and δY
2.01 ≥ 0.4, so the requirements of the theorem are satisfied.278

The next conditioning takes place at Step 4, but here the event has non-zero probability279

by definition. The last conditioning takes place at Step 6, and here the event has non-zero280

probability due to the assumption that Xfree(ρ) does not take values that are bad for Yfree(ρ)281

— and in particular282

Pr
[
gI(αI , YI) = ρI

]
≥ 2−|I|−1.283

Finally, we need to show that the above property is maintained for the next iteration. As284

stated in Step 4, at this point X is 0.9-dense. Moreover, since we know that Xfree(ρ) does285

not take values that are 0.4-bad for Yfree(ρ), it follows in particular that286

Yfree(ρ)
∣∣gI(αI , YI) = ρI287

is 0.4-dense. This concludes the proof. The rest of the analysis can be found in Appendix B.288

4 The randomized lifting theorem289

In this section, we prove the randomized lifting theorem, restated next.290

I Theorem 14 (Restatement of Theorem 1). Let S be any search problem that takes inputs291

from {0, 1}n, and let Π be a randomized communication protocol that solves S ◦ G with292

complexity c and error probability ε. Then, there exists a decision tree T that solves S with293

complexity O( cb ) and error probability ε+ 1
10 .294

As noted earlier, the decision tree T we construct simulates the protocol Π. The simulation295

is similar to the deterministic one, with two main differences:296

Instead of choosing the next bit of the protocol to be the most likely bit, we choose297

it randomly according to the distribution of the next bit (except that we abort the298

simulation on bits of very small probability).299
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Instead of choosing I and αI arbitrarily, we choose them from the density-restoring300

partition of Lemma 12, according to the distribution induced by this partition (except301

that we truncate parts of the partition that have very small probability).302

In the following sections, we describe the simulation, analyze its error probability, and analyze303

its query complexity, respectively. For simplicity, we describe a simulation that has a better304

error probability of ε+ o(1) but query complexity that is efficient only in expectation. This305

simulation can be transformed into one with error probability ε + 1
10 , and efficient query306

complexity in the worst case, using standard arguments.307

4.1 The simulation308

As before, the decision tree T simulates the protocol Π while maintaining a rectangle X × Y309

that is contained in the rectangle of the current node of Π. When the simulation ends,310

T outputs the output of Π. Throughout the simulation, the decision tree T considers random311

variables X,Y that are uniformly distributed over X × Y and maintains the invariant that312

they are ρ-structured (for a restriction ρ that records the queries made so far). For the313

purpose of the simulation, we may assume without loss of generality that Π is deterministic314

(since T can use its randomness to choose the randomness of Π, and then pretend that Π is315

deterministic for the rest of the simulation).316

We turn to explain how to simulate a single bit of the protocol. Suppose that at a given317

point it is Alice’s turn to speak. The protocol partitions X into X0 ∪ X1. The tree now318

chooses the next bit to be 0 with probability |X0|
|X | and to be 1 otherwise. If the bit that319

was chosen had probability less than 1
n2 , the tree halts and declares error. Otherwise, the320

tree updates X to the corresponding set among X0,X1 and updates the random variable X321

accordingly.322

Now, if the ρ-structure property of X,Y has been violated, then it must be because323

Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now modifies the324

sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order to do so, the325

tree T repeats the following steps iteratively until X,Y are ρ-structured:326

1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-327

ingly.328

2. IfX is now 0.9-dense, then we are done — the structuredness has been restored. Otherwise329

continue.330

3. Let Xfree(ρ) = X 1 ∪ . . . ∪ X r be the density-restoring partition of Lemma 12 with respect331

to Xfree(ρ). Choose a random class in the partition, where the class X i is chosen with332

probability Pr
[
Xfree(ρ) ∈ X i

]
.333

4. Recall that we defined the probability334

p≥i
def= Pr

[
Xfree(ρ) ∈ X i ∪ . . . ∪ X r

]
.335

If p≥i < 1
n3 , the tree T halts and declares error.336

5. Let Ii and αi be the set and the value associated with the class X i. The tree conditions337

X on the event Xfree(ρ) ∈ X i and updates X accordingly. The variable Xfree(ρ)−Ii is now338

0.9-dense by the properties of the density-restoring partition.339

6. Query the coordinates in Ii, and update ρ based on the query answers.340

7. Condition Y on gI(αi, YIi) = ρIi , and update Y accordingly.341

8. If Yfree(ρ) is now 0.9-dense then we are done — the structuredness has been restored.342

Otherwise go back to Step 1 but replace the roles of X and Y .343
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The proof that the process is well-defined and always halts, and that the ρ-structuredness344

invariant is maintained, is the same as in the deterministic simulation. The only difference345

here is that choosing the next bit of the protocol decreases the min-entropy of the blocks by346

at most 2 logn bits rather than by at most 1 bit. Nevertheless, since the random variable X347

started as 0.9-dense and b > 20 logn, the variable X is still 0.4-dense after choosing the next348

bit.349

4.2 Correctness350

We prove that the decision tree errs with probability at most ε+ o(1) (recall that ε is the351

error probability of the protocol Π). Fix an input z ∈ {0, 1}n. Let π be the (random)352

transcript generated by the simulation of T on z (if we the simulation declares error, we353

set π = ⊥). Let π′ denote the (random) transcript of Π on random inputs (X ′, Y ′) that are354

distributed uniformly over G−1(z) (again, we assume that Π′ is deterministic and that the355

only randomness comes from the choice of (X ′, Y ′)). We will prove that the distributions of π356

and π′ are o(1)-close. Since π′ outputs the correct answer on z with probability at least 1− ε,357

it will follow that π outputs the correct answer on z with probability at least 1− ε− o(1).358

To prove that π and π′ are o(1)-close, we describe a coupling of π with π′ that satisfies that359

π = π′ with probability at least 1− o(1). To this end, we show that there exists a coupling of360

the random choices of the simulation with X ′, Y ′ such that, up to some bad event E of small361

probability, it holds that the pair (X ′, Y ′) is uniformly distributed in G−1(z)∩ (X ×Y). Since362

X × Y determines the transcript π of the simulation (as X × Y is contained the rectangle of363

the current node in the protocol), whenever (X ′, Y ′) ∈ (X ,Y) it holds that π = π′.364

More specifically, we prove that there exists a coupling and an event E with probability365

at most 6·b
n = o(1) such that, when the simulation ends, conditioned on ¬E it holds that366

the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). To this end, we define367

a sequence of events E1, E2, . . . such that Pr [Et] ≤ 6
n2 · (t − 1) and at the begining of the368

t-th iteration, conditioned on ¬Et it holds that the pair (X ′, Y ′) is uniformly distributed in369

G−1(z) ∩ (X × Y). We then set E to be the event at the end of the last iteration. Since the370

number of iterations is at most c ≤ n · b (as each iteration transmits 1-bit), it follows that371

the probability of E is at most 6
n2 · c ≤ 6b

n . In order to construct the coupling and the events372

E1, E2, . . ., we prove the following auxiliary result.373

I Lemma 15. Suppose that we constructed the coupling until the beginning of the t-th374

iteration, and there is an event Et such that conditioned on ¬Et it holds that the pair375

(X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). Then, there exists a way to extend376

the coupling until the end of the t-th iteration, and there exists an event Et+1, such that377

Pr [Et+1] ≤ Pr [Et] + 6
n2 and at the end of the t-th iteration, conditioned on ¬Et+1 it holds378

that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).379

Given Lemma 15, we design the coupling and the events E1, E2, . . . by setting E1 to be the380

empty event and then applying Lemma 15 repeatedly until we reach the last iteration.381

Proof. Suppose that the simulation ran until the beginning of the t-th iteration according to382

our coupling. If the event Et happened, then the coupling behaves arbitrarily until the end383

of the simulation, and we assume that the simulation failed. Let us now condition on the384

event Et not having happened, so we may assume that at the beginning of the t-th iteration,385

the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). We start by setting Et+1 to386

be the event Et, and we will add more events to it as the simulation progresses.387
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The simulation starts by choosing the next bit of the protocol, and suppose that it is388

Alice’s turn to speak. The simulation has probability |X0|
|X | to choose 0, and by the uniform389

marginals lemma (Lemma 8), the random variable X ′ has probability |X0|
|X | ±

1
n3 to be in X0. In390

other words, the distribution of the class that the simulation chooses among X0,X1, and the391

distribution of the class that X ′ chooses, are 1
n3 -close, and therefore there exists a coupling392

of those choices such that the same class is chosen in both with probability at least 1− 1
n3 , so393

we use it to extend our coupling. We add to Et+1 the event in which the simulation and X ′394

choose a different class among X0,X1, and for the rest of the proof we assume that it did395

not happen. We also add to Et+1 the event in which the simulation declared failure since it396

chose a bit with probability less than 1
n2 (clearly, this event has probability less than 1

n2 ),397

and for the rest of the proof we assume that it did not happen. We may thus assume that398

after this step, the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).399

Next, the simulation removes from X the values that are 0.4-bad for Y . The probability400

that X takes such a value is at most 2−0.01·b ≤ 1
n3 , and therefore the probability that X ′401

takes such a value is at most 2
n3 by the uniform marginals lemma. We add the event that402

X ′ takes a bad value to Et+1 and assume for the rest of the proof that it did not happen.403

Hence, we may again assume that after this step, X ′ belongs to X , and that the pair (X ′, Y ′)404

is uniformly distributed in G−1(z) ∩ (X × Y).405

In the following step, a class X i is chosen according to the distribution induced by Xfree(ρ).406

Let us now choose the class X i′ to which X ′free(ρ) belongs. By the uniform marginals lemma,407

the distributions of X i and X i′ are 1
n3 -close, and therefore there is a coupling of those classes408

such that they are equal with probability at least 1− 1
n3 , so we use it to extend our coupling.409

We add to Et+1 the event in X i 6= X i′ , and for the rest of the proof we assume that it did not410

happen. We also add to Et+1 the event in which the simulation declared error since p≤i < 1
n3411

(clearly, this event has probability less than 1
n3 ), and for the rest of the proof we assume that412

it did not happen. We therefore assume again that after this step, X ′ belongs to X , and413

that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).414

Finally, the simulation conditions Y on gI(αi, YIi) = ρIi . This conditioning trivially holds415

for Y ′ (since by assumption (X ′, Y ′) ∈ G−1(z) and by this point we chose X ′Ii = αIi), and416

no further coupling needs to be done.417

We conclude the proof by upper bounding the probability of the event Et+1. At the418

beginning, we set Et+1 to be Et, and therefore at this point its probability is Pr [Et]. The step419

of choosing the next bit of the protocol contribute to Et+1 events whose total probability420

is at most 1
n3 + 1

n2 . Steps 1 to 7 above add to Et+1 events of total probability at most 4
n3 .421

Those latter steps are now repeated until (X,Y ) are ρ-structured. However, they may be422

repeated at most n times, since each time they are repeated, the tree makes at least one423

query, and it cannot make more than n queries. Hence, in all of those repetitions together,424

those steps in the simulation contribute to Et+1 events whose total probability is at most 4
n2 .425

It follows that426

Pr [Et+1] ≤ Pr [Et] + 1
n3 + 1

n2 + 4
n2 ≤ Pr [Et] + 6

n2 ,427

as required. J428

4.3 The query complexity429

We show that the expected query complexity of this simulation is O( cb ). Again, we define the430

deficiency of X,Y to be431

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).432
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We will show that whenever the simulation sends one bit in the protocol, the deficiency is433

increased by O(1) in expectation. On the other hand, we will show that whenever a query is434

made, the deficiency is always decreased by at least Ω(b). Thus, the expected deficiency at435

any point is at most436

O(#bits communicated)− Ω(b ·#queries).437

Since the deficiency is always at least 0 and the number of bits communicated is at most c,438

it follows that the expected number of queries is upper bounded by O( cb ).439

Whenever we choose the next bit for Alice, the deficiency increases by log |X ||X0| (if the440

next bit is 0) or by log |X ||X1| (if the next bit is 1). Thus, the expected increase in deficiency is441

|X0|
|X |
· log |X |

|X0|
+ |X1|
|X |
· log |X |

|X1|
.442

This is the value of the binary entropy function on |X0|
|X | , and hence it is upper bounded by 1.443

Conditioning on X not taking a value that is 0.4-bad for Y increases the deficiency by at444

most 1 bit since its probability is at least 1
2 . All in all, the expected increase in the deficiency445

is at most 2.446

We turn to show that when a query is being made, the deficiency decreases by Ω(b).447

Suppose that the decision tree queried a set Ii ⊆ free(ρ). This brings about the following448

changes to the deficiency:449

The variable X was conditioned on the event Xfree(ρ) ∈ X i. By Lemma 12, this decreases450

the min-entropy of X by at most 0.9 · b · |Ii| + log 1
p≥i

. Now, Step 4 guarantees that451

pi ≥ 1
n3 , and therefore log 1

pi
≤ 3 logn < 0.01 · b. All in all, this step increases the452

deficiency by at most 0.91 · |Ii|453

The variable Y is conditioned on the event gIi(αIi , YIi) = ρIi , which has probability at454

least 2−|Ii|−1 by the assumption that X does not take bad values. This increases the455

deficiency by at most |Ii|+ 1.456

The set Ii is removed from the set free(ρ). By definition of deficiency, this dereases the457

term of 2 · b · |free(ρ)| by 2 · b · |Ii|, decreases H∞(Yfree(ρ)) by at most b · |Ii|, and does not458

change H∞(Xfree(ρ)) (since at this point XIi is fixed to αIi). All in all, the deficiency is459

decreased by at least b · |Ii|.460

Finally, the queries may make the process repeat for another iteration, so Step 1 may be461

performed again, increasing the deficiency by another 2 bits.462

Summing all those effects together, we get that the deficiency was decreased by at least463

b · |Ii| − 0.91 · b · |Ii| − (|Ii|+ 1)− 2 ≥ 0.05 · b · |Ii| ,464

as required. This concludes the proof.465

5 Fourier-theoretic result466

We recall our notation, some definitions and the result. Let n ∈ N and let b ∈ N be such that467

b ≥ 10, 000 · logn. We denote the domain of the inner product gadget by Λ = {0, 1}b (so the468

inner product is over Λ× Λ), and denote q = |Λ| = 2b. Given a string γ ∈ Λ, we denote the469

corresponding Fourier character by χγ(x) def= (−1)〈γ,x〉. When considering a set I ⊆ [n] and470

the space of functions f : ΛI → R, we index the corresponding Fourier characters by tuples471

from ΛI , such that for every γ ∈ ΛI it holds that χγ =
∏
i∈I χγi .472
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I Definition 16. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say473

that α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the474

random variable475

Y[n]−I |∀i∈I 〈αi, Yi〉 = σi476

is not η-dense or477

Pr [∀i∈I 〈αi, Yi〉 = σi] < 2−|I|−1.478

In this section we prove the following result.479

I Theorem 17 (Restatement of Theorem 7). Let X and Y be random variables taking values480

in Λn that are δX-dense and δY -dense respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1.481

Then, the probability that X takes a value that is δY
2.01 -bad for Y is at most q−0.01.482

For the rest of this section, fix the random variables X and Y , and suppose that they are483

δX -dense and δY -dense respectively where δX + δY ≥ 1.3 and δY ≥ 0.1. We use the following484

definition, which essentially isolates "badness" to a particular set of coordinates.485

I Definition 18. Let ε > 0. We say that α ∈ Λn is ε-bad for Y on J ⊆ [n] if there exist a486

string βJ ∈ ΛJ , a non-empty set I ⊂ [n]− J and a string σ ∈ {0, 1}I such that487

Pr [YJ = βJ and ∀i∈I 〈αi, Yi〉 = σi] /∈ 2−|I| · (Pr [YJ = βJ ]± ε) .488

In particular, if J = ∅, we view YJ , βJ as the empty string and the event YJ = βJ as an489

event that occurs with probability 1 vacuously.490

Morally, a value is not bad if it is not bad on any J . Theorem 17 will follow as a corollary491

from the following result (see that last part of Appendix C).492

I Lemma 19. For every J ⊆ [n], the probability that X takes a value that is ε-bad for Y on493

J is at most q−δY ·|J|−0.05/ε2.494

In order to analyze the probability of bad values, it is more convenient to consider “unbiased”495

values, i.e., values α for which the event YJ = βJ is not correlated with inner products of the496

form ∀i∈I 〈αi, Yi〉 = σi. This bias is naturally measured using Fourier coefficients. We denote497

by D : Λn → [0, 1] the distribution of Y , i.e., the function that for every β ∈ Λn outputs498

Pr [Y = β]. For a set of indices K ⊆ [n], we denote by DK the function corresponding to499

the marginal distribution over K. Moreover, given disjoint sets J,K ⊆ [n] and a string500

βJ ∈ ΛJ we denote by DK,βJ : ΛK → [0, 1] the function that maps each βK ∈ ΛK to501

Pr [YK = βK and YJ = βJ ] .502

I Definition 20. We say that a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n] if for503

every non-empty I ⊆ [n]− J and for every βJ ∈ ΛJ it holds that
∣∣∣D̂I,βJ (αI)

∣∣∣ ≤ ε · q−1.1·|I|.504

Lemma 19 follows immediately from the next two propositions. The first proposition is505

a “Vazirani lemma” type of result that shows that small bias implies small distortion of506

probabilities.507

I Proposition 21. If a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n], then it is not508

ε-bad with respect to J .509

The second proposition upper bounds the probability of X taking a value with large bias510

using the fact that X and Y are δX -dense and δY -dense respectively.511

I Proposition 22. For every J ⊆ [n], the probability that X takes a value that is not ε-biased512

for Y with respect to J is at most q−δY ·|J|−0.05/ε2.513

The rest of the proof can be found in Appendix C.514
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A Missing proofs from Section 2576

Proof of Lemma 8. Let (X ′, Y ′) be uniformly distributed over G−1(z)∩ (X ×Y). We prove577

that X is 1
n3 -close to X ′, and a similar argument works for Y . Let E ⊆ X be any test event,578

and without loss of generality assume that Pr [X ∈ E ] ≥ 1
2 (otherwise replace E with its579

complement). Let us denote by XE the random variable that is uniformly distributed over580

E , i.e., it distributed like X|E . Since X,Y are ρ-structured, it holds that Xfree(ρ), XEfree(ρ),581

and Yfree(ρ) are 0.6-dense and therefore by Lemma 10 and our choice of b it holds that582

gfree(ρ)(Xfree(ρ), Yfree(ρ)) and gfree(ρ)(XEfree(ρ), Yfree(ρ)) are 1
n4 -pointwise close to uniform. It583

follows that584

Pr [X ′ ∈ E ] =
∣∣G−1(z) ∩ (E × Y)

∣∣
|G−1(z) ∩ (X × Y)|585

=
∣∣G−1(z) ∩ (E × Y)

∣∣ / |X × Y|
|G−1(z) ∩ (X × Y)| / |X × Y|586

= Pr [G(X,Y ) = z and X ∈ E ]
Pr [G(X,Y ) = z]587

= Pr [G(X,Y ) = z|X ∈ E ]
Pr [G(X,Y ) = z] · Pr [X ∈ E ]588

=
Pr
[
G(XE , Y ) = z

]
Pr [G(X,Y ) = z] · Pr [X ∈ E ]589

=
Pr
[
gfree(ρ)(XEfree(ρ), Yfree(ρ)) = zfree(ρ)

]
Pr
[
gfree(ρ)(Xfree(ρ), Yfree(ρ)) = zfree(ρ)

] · Pr [X ∈ E ]590

∈
(
1± 1

n4

)(
1± 1

n4

) · Pr [X ∈ E ]591

∈
(

1± 1
n3

)
· Pr [X ∈ E ]592

593

as required. J594

B Missing proofs from Section 3595

B.1 Concluding the simulation596

In this section, we prove that when the simulation ends, the protocol Π outputs an answer597

in S(z). To this end, all we need to prove is that when the simulation ends, we can find598

x ∈ X and y ∈ Y such that G(x, y) = z: To see why, observe that the output of the protocol599

at this point must be its output on (x, y), since the rectangle X × Y is contained in the600

rectangle of the leaf to which the protocol arrived. Now, since we assumed that Π computes601

S ◦G, it follows that its output must be (S ◦G)(x, y) = S(z).602

We thus turn to show that there exist x, y ∈ X × Y such that G(x, y) = z. Recall603

that when the protocol ends, it holds that X,Y are ρ-structured (by the invariant that we604

maintained). This means that gfix(ρ)(Xfix(ρ), Yfix(ρ)) = zfix(ρ), and that Xfree(ρ), Yfree(ρ) are605

0.9-dense. By Theorem 7, it follows that Xfree(ρ) takes a value that is not 0.4-bad for Yfree(ρ)606

with non-zero probability. This means that there exists some x ∈ X such that xfree(ρ) is not607

0.4-bad for Yfree(ρ). By the definition of badness, it follows that608

Pr
[
gfree(ρ)(xfree(ρ), Yfree(ρ)) = zfree(ρ)

]
≥ 2−|free(ρ)|−1 > 0609
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and therefore there exists some y ∈ Y such that gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ). It follows610

that x and y satisfy611

gfix(ρ)(xfix(ρ), yfix(ρ)) = zfix(ρ)612

gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ)613
614

and therefore G(x, y) = z, as required.615

B.2 The query complexity616

We conclude by showing that the total number of queries the tree T makes is O( cb ). To this617

end, we define the deficiency of X,Y to be618

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).619

We prove that whenever the protocol Π transmits a bit in the simulation, the deficiency620

increases by O(1), and that whenever the tree T makes a query, the deficiency is decreased621

by Ω(b). Since the deficiency is always non-negative, and the protocol transmits at most622

c bits, it follows that the tree must make at most O( cb ) bits.623

We start by showing that when the protocol Π transmits a bit in the simulation, the624

deficiency increases by O(1). When a bit is transmitted, either X or Y is conditioned on625

an event of probability at least 1
2 , depending on which player spoke, and the other variable626

remains unchanged. This means that the sum H∞(Xfree(ρ)) +H∞(Yfree(ρ)) decreases by at627

most 1, and therefore the deficiency increases by at most 1. Next, the simulation might628

perform Step 1 in the process above, i.e., condition X or Y on taking a value that is not bad.629

This event has probability 1− 2−0.01·b ≥ 1
2 , so conditioning on it increases the deficiency by630

at most 1. All in all, we increased the deficiency by at most 2. All the other steps that might631

be taken are only taken if a query is being made, so we account their deficiency increases to632

the following “query part” of the analysis.633

We turn to show that when a query is being made, the deficiency decreases by Ω(b).634

Suppose that the decision tree queried a set I ⊆ free(ρ). This applies the following changes635

to the deficiency:636

The variable X is conditioned on the event XI = αI , which has probability greater637

than 2−0.9·b·|I| by the definition of αI . Hence, this conditioning increases the deficiency638

by at most 0.9 · b · |I|.639

The variable Y is conditioned on the event gI(αI , YI) = ρI , which has probability at least640

2−|I|−1 by the assumption that X does not take bad values. This increases the deficiency641

by at most |I|+ 1.642

The set I is removed from the set free(ρ). Looking at the definition of deficiency, this643

decreases the first term, 2 · b · |free(ρ)|, by at most 2 · b · |I|, decreases H∞(Yfree(ρ)) by at644

most b · |I|, and does not change H∞(Xfree(ρ)) (since at this point XI is fixed to αI). All645

in all, the deficiency is decreased by b · |I|.646

Finally, the queries may make the process repeat for another iteration, so Step 1 may be647

performed again, increasing the deficiency by another 2 bits.648

Summing all those effects together, we get that the deficiency was decreased by at least649

b · |I| − 0.9 · b · |I| − (|I|+ 1)− 2 ≥ 0.05 · b · |I|650

in each iteration, as required. This concludes the proof.651
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C Missing proofs from Section 5652

Proof of Proposition 21653

Let α ∈ Λn be an ε-biased value for Y with respect to a set J ⊆ [n], let βJ ∈ ΛJ be a string,654

I ⊆ [n]− J be a non-empty set, and σ ∈ {0, 1}I be a string. Let E denote the event that655

〈αi, Yi〉 = σi for all i ∈ I, and for every K ⊆ I, let σK =
∑
i∈K σi. It holds that656

Pr [YJ = βJ and Eα] =
∑
βI∈ΛI

Pr [YJ = βJ and YI = βI ] · 1∀i∈I〈αi,βi〉=σi657

=
∑
βI∈ΛI

Pr [YJ = βJ and YI = βI ] ·
∏
i∈I

(
1 + (−1)σi · χαi(βi)

2

)
658

(Expanding the product) =
∑
βI∈ΛI

DI,βJ (βI) · 2−|I| ·
∑
K⊆I

(−1)σK · χαK (βK)659

= 2−|I| ·
∑
K⊆I

(−1)σK ·
∑
βI∈ΛI

DI,βJ (βI) · χαK (βK)660

= 2−|I| ·
∑
K⊆I

(−1)σK ·
∑

βK∈ΛK
DK,βJ (βK) · χαK (βK)661

= 2−|I| ·D∅,βJ + 2−|I| ·
∑
∅6=K⊆I

(−1)σK ·
∑

βK∈ΛK
DK,βJ (βK) · χαK (βK)662

663

Next, observe that D∅,βj = Pr [YJ = βJ ] by definition, and therefore664

Pr [YJ = βJ and Eα] = 2−|I|·

Pr [YJ = βJ ] +
∑
∅6=K⊆I

(−1)σK ·
∑

βK∈ΛK
DK,βJ (βK) · χαK (βK)

 .665

Now,666 ∣∣∣∣∣∣
∑
∅6=K⊆I

(−1)σK ·
∑

βK∈ΛK
DK,βJ (βK) · χαK (βK)

∣∣∣∣∣∣667

(Formula for Fourier coefficients) ≤

∣∣∣∣∣∣
∑
∅6=K⊆I

(−1)σK · q|K| · D̂K,βJ (αK)

∣∣∣∣∣∣668

(Triangle inequality) ≤
∑
∅6=K⊆I

q|K| ·
∣∣∣D̂K,βJ (αK)

∣∣∣669

(α is ε-biased) ≤
∑
∅6=K⊆I

q|K| · ε · q−1.1·|K|
670

= ε ·
|I|∑
k=1

(
|I|
k

)
· q−0.1·k

671

≤ ε ·
n∑
k=1

nk · q−0.1·k
672

(q def= n10000) = ε ·
n∑
k=1

nk · n−1000·k
673

≤ ε674
675

The required result follows.676
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Proof of Proposition 22677

Fix J ⊆ [n]. We first upper bound the probability that X takes a value α that violates the678

ε-biased property for a specific subset I ⊆ [n] − J , and then take a union bound over all679

subsets I. Let I ⊆ [n]− J be a non-empty set. For every value α that is not ε-biased due680

to I, there exists a value βJ ∈ ΛJ such that
∣∣∣D̂I,βJ (αI)

∣∣∣ > ε · q−1.1·|I|. We upper bound the681

number of large coefficients of the form
∣∣∣D̂I,βJ (αI)

∣∣∣ by showing that the sum of their squares682

is not too large, which follows from the high min-entropy of H∞(YI∪J). For simplicity of683

notation, denote K = I ∪ J . It holds that684

∑
αI∈ΛI

∑
βJ∈ΛJ

D̂I,βJ (αI)2 =
∑

βJ∈ΛJ

∑
αI∈ΛI

D̂I,βJ (αI)2
685

(Parseval’s inequality) =
∑

βJ∈ΛJ
q−|I| ·

∑
βI∈ΛI

DI,βJ (βI)2
686

= q−|I| ·
∑

βJ∈ΛJ

∑
βI∈ΛI

DI∪J(βI , βJ)2
687

= q−|I| ·
∑

βK∈ΛK
DK(βK)2

688

= q−|I| ·
∑

βK∈ΛK
Pr [YK = βK ]2689

≤ q−|I| ·max {Pr [YK = βK ]} ·
∑

βK∈ΛK
Pr [YK = βK ]690

= q−|I| ·max {Pr [YK = βK ]}691

≤ q−|I| · q−δY ·|K|692

= q−(1+δY )·|I|−δY ·|J|.693
694

We wish to upper bound the number of strings αI ∈ ΛI for which there is some βJ such that695 ∣∣∣D̂I,βJ (αI)
∣∣∣ > ε · q−1.1·|I|. For every such string αI , it holds in particular that696

∑
βJ∈ΛJ

D̂I,βJ (αI)2 > ε2 · q−2.2·|I|.697

Therefore, the number such strings αI is at most698

q−(1+δY )·|I|−δY ·|J|

ε2 · q−2.2·|I| ≤ q(1.2−δY )·|I|−δY ·|J|

ε2 .699

Since X is δX -dense, the probability that XI = αI for any αI is at most q−δX ·|I| and therefore700

the total probability of the bad αI ’s is at most701

q(1.2−δY )·|I|−δY ·|J|

ε2 · q−δX ·|I| = q(1.2−δX−δY )·|I|−δY ·|J|

ε2702

(By the assumption that δX + δY ≥ 1.3) ≤ q−0.1·|I|−δY ·|J|

ε2 .703
704
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Finally, by taking union bound over all bad I’s, we get that the probability that X takes a705

bad value is at most706 ∑
∅6=I⊆[n]

q−0.1·|I|−δY ·|J|

ε2 = q−δY ·|J|

ε2 ·
∑
∅6=I⊆[n]

q−0.1·|I|
707

= q−δY ·|J|

ε2 ·
n∑
i=1

(
n

i

)
q−0.1·i

708

≤ q−δY ·|J|

ε2 ·
n∑
i=1

ni · q−0.1·i
709

(q def= n10000) ≤ q−δY ·|J|

ε2 ·
q0.01∑
i=1

q0.01·i · q−0.1·i
710

≤ q−δY ·|J|

ε2 · q0.01 · q0.01 · q−0.1
711

≤ q−δY ·|J|−0.05

ε2712
713

Proof of Theorem 17 from Lemma 19714

We consider two “bad events” that might happen, and upper bound the probability of both715

events using Lemma 19:716

X takes a value that 1
2 -bad for the empty set (i.e., J = ∅). By Lemma 19, the probability717

of this event is at most 4 · q−0.05.718

For any non-empty set J ⊆ [n], the variable X takes a value that is ε-bad for J with719

ε = q−
δY

2.02 ·|J|. By applying Lemma 19 and the union bound, the probability of this event720

is at most721 ∑
∅6=J⊆[n]

q−δY ·|J|−0.05

q−
2

2.02 ·δY ·|J|
= q−0.05 ·

∑
∅6=J⊆[n]

qδY ·|J|·(
1

1.01−1)
722

= q−0.05 ·
∑

∅6=J⊆[n]

q−0.001·δY ·|J|723

= q−0.05 ·
n∑
j=1

(
n

j

)
· q−0.001·δY ·j724

≤ q−0.05 ·
n∑
j=1

nj · q−0.001·δY ·j725

(q def= n40000, δY ≥ 0.1) ≤ q−0.05 ·
n∑
j=1

nj · n−4·j
726

≤ q−0.05 ·
n∑
j=1

n−3·j
727

≤ q−0.05
728
729

Hence, with probability at least 1− 5 · q−0.05 ≥ 1− q−0.01, none of these bad events happen.730

We now prove that whenever these events do not happen, the variable X takes a value that731

is not δY
2.01 -bad for Y .732
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Let α ∈ Λn be a value for X that does not give rise to the foregoing bad events. Let733

I ⊂ [n] and σ ∈ {0, 1}I , and let Eα denote the event ∀i∈I 〈αi, Yi〉 = σi. We want to show734

that for every I ⊂ [n] and for every σ ∈ {0, 1}I , the random variable735

Y[n]−I |∀i∈I 〈Yi, αi〉 = σi736

is δY
2.01 -dense, and that Pr [Eα] ≥ 2−|I|−1. We start with the latter condition. Since we know737

that α is not 1
2 -bad for the empty set, it holds that738

Pr [Eα] ≥ 2−|I| ·
(

1− 1
2

)
= 2−|I|−1,739

as required. Next, let J ⊆ [n]− I and βJ ∈ ΛJ . We prove that740

Pr [YJ = βJ |Eα] ≤ 2−
δY

2.01 ·b·|J| = q−
δY

2.01 ·|J|.741

Since we know that α is not ε-bad for J with ε = q−
δY

2.02 ·|J|, it holds that742

Pr [YJ = βJ and Eα] ≤ 2−|I| ·
(

Pr [YJ = βJ ] + q−
δY

2.02 ·|J|
)

743

≤ 2−|I| ·
(
q−δY + q−

δY
2.02 ·|J|

)
744

≤ 2−|I|+1 · q−
δY

2.02 ·|J|.745
746

It follows that747

Pr [YJ = βJ |Eα] = Pr [YJ = βJ and Eα]
Pr [Eα]748

≤ 2−|I|+1 · q−
δY

2.02 ·|J|

2−|I|−1749

= 4 · q−
δY

2.02 ·|J|750

≤ q−
δY

2.01 ·|J|,751
752

as required.753
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