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—— Abstract

We prove a new query-to-communication lifting for randomized protocols, with inner product as
gadget. This allows us to use a much smaller gadget, leading to a more efficient lifting. Prior to this
work, such a theorem was known only for deterministic protocols, due to Chattopadhyay et al. [3]
and Wu et al. [20]. The only query-to-communication lifting result for randomized protocols, due to
Go0s, Pitassi and Watson [11], used the much larger indexing gadget.

Our proof also provides a unified treatment of randomized and deterministic lifting. Most
existing proofs of deterministic lifting theorems use a measure of information known as thickness. In
contrast, Goos, Pitassi and Watson [11] used blockwise min-entropy as a measure of information.
Our proof uses the blockwise min-entropy framework to prove lifting theorems in both settings in a
unified way.
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Query-to-communication lifting for BPP using inner product

1 Introduction

In this work, we prove new lifting theorems that use the inner-product function as a gadget.
Let f: {0,1}" — {0,1}™ and g: {0,1}* x {0,1}* — {0, 1} be functions (where g is referred
to as a gadget). The block-composed function f o g™ is the function that takes n instances
(z1,11),- -, (Tn,yn) of inputs for g and computes f o g" as,

f ogn((x17y1)7 EER (l‘n,yn)) = f(g(xlﬁyl)vg(x%yQ)a s ag(xnayn))'

Lifting theorems are theorems that relate the communication complexity of f o g" to the
query complexity! of f and the communication complexity of g.

More specifically, consider the following communication problem: Alice gets z1, ..., Zx,,
Bob gets y1,...,yn, and they wish to compute the output of f o ¢g” on their inputs. The
natural protocol for doing so is the following: Alice and Bob jointly simulate a decision tree
of optimal height for solving f. Any time the tree queries the i-th bit, they compute g on the
i-th instance by invoking the best possible communication protocol for g. A lifting theorem
is a theorem that says that this natural protocol is optimal.

Lifting theorems are interesting because they create a connection between query complexity
and communication complexity. This connection, besides being interesting in its own right,
allows us to transfer lower bounds and separations from the from query complexity (which is
a relatively simple model) to a communication complexity (which is a significantly richer
model).

In particular, the first result of this form, due to Raz and McKenuzie [17], proved a lifting
theorem from deterministic query complexity to deterministic communication complexity
when g is the index function. They then used it to prove new lower bounds on communication
complexity by lifting query-complexity lower-bounds. More recently, Goos, Pitassi and
Watson [10] applied that theorem to separate the logarithm of the partition number and
the deterministic communication complexity of a function, resolving a long-standing open
problem. This too was done by proving such a separation in the setting of query complexity
and lifting it to the setting of communication complexity. This result stimulated a flurry of
work on lifting theorems of various kinds, such as: round-preserving lifting theorems with
applications to time-space trade-offs for proof complexity [5], deterministic lifting theorems
with other gadgets [3, 20], lifting theorems from randomized query complexity to randomized
communication complexity [11], lifting theorems for DAG-like protocols [7] with applications
to monotone circuit lower bounds, lifting theorems for asymmetric communication problems
[4] with applications to data-structures, and a lifting theorem [16] for the EQUALITY gadget.

Viewed from another angle, lifting theorems are natural generalizations of classic theorems
such as direct-sum theorems and XOR lemmas [21, 13, 6, 14, 1, 2]: in particular, if we set f
to be the identity function or the parity function, we get a direct sum theorem or an XOR,
lemma, for g, respectively. This point of view motivates the work of Hatami et al. [12] that
made progress towards proving a lifting theorem with a constant-size gadget.

In almost all known lifting theorems, the function f can be arbitrary (and may also be a
general search problem) while g is usually a specific function (e.g., the index function). This
raises the following natural question: for which choices of g can we prove lifting theorems?

L Here, we limit ourselves mostly to theorems lifting precisely the query complexity of f to the commu-
nication complexity. Consequently, we do not discuss lifting-like theorems due to Sherstov [18] and
independently due to Shi and Zhu [19], that enabled several important later developments. Moreover, it
is not clear how to make this line of work for relations f that are not necessarily Boolean functions.
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This question is interesting both because many applications depend on the choice of g, and
because if we view lifting theorems as generalizations of direct-sum theorems, we would like
them to work for as many choices of g as possible.

In particular, applications of lifting theorems often depend on the size of the gadget,
which is the length of the input to g. Both the deterministic lifting theorem of Raz and
McKenzie [17] and the randomized lifting theorem of G66s et al. [11] use the indexing function
INDEX, which has very large size (polynomial in n). Reducing the gadget size to a constant
would have many interesting applications.

In the deterministic setting, the gadget size was recently improved to logarithmic by
the independent works of [3] and [20], who chose the gadget g to be the inner product
function. Moreover, [3, 15] showed the lifting to work for a large class of gadgets. However,
the randomized lifting theorem of G66s et al. [11], until our work, seemed to work only with
INDEX as gadget.

In this work, we prove a randomized lifting theorem using an inner product gadget of
logarithmic size. This has the immediate application that any lower bound on the outer
function f can now be lifted to a much stronger lower bound on the composed function fo g™,
since hardness is measured as a function of the input length. This allows us, for example, to
simplify the lower bounds of G6ds, and Jayram [8] on AND-OR trees and MAJORITY trees,
since we can now obtain them directly from the randomized query complexity lower bounds
rather than going through conical juntas.

We now turn to state our main result more formally. Let n € N be such that n > 2 and

let b % 10,000 - log n. Let A def {0, l}b, and let g: A x A — {0,1} denote the inner product

(mod 2) gadget. We prove lifting theorems for various lifted versions of G L g". That is,
G: A" x A™ — {0,1}"™ is the function that takes n independent instances of g and computes
g on all of them. Here is our main result:

» Theorem 1 (Randomized lifting). Let S: {0,1}" — X be any search problem and let I be
a bounded-error randomized communication protocol that solves S o G with complexity c
and error probability €. Then, there exists a randomized decision tree T that solves S with
complexity O(5) and bounded error probability.

Using essentially the same proof method, we also prove a similar result in the deterministic
setting:

» Theorem 2 (Deterministic lifting). Let S be any search problem that takes inputs from {0,1}",
and let II be a deterministic communication protocol that solves S o G with complezity c.
Then, there exists a deterministic decision tree T' that solves S with complexity O(F).

Most existing proofs of deterministic lifting theorems employ an information measure
known as thickness, borrowed from earlier work on the KRW conjecture. The one deviation
from this is the recent beautiful work of Garg et al. [7] who prove a deterministic lifting
theorem in the dag-like setting. Curiously, their result does not use the thickness measure of
information, but rather uses the blockwise min-entropy measure of information that was used
by Go66s, Pitassi and Watson [11] in order to prove a randomized lifting theorem. A natural
direction of further research is to investigate if these disparate techniques can be unified.
Indeed, a related question was asked in the first work to employ the measures of min-entropy
for lifting by Go6s et al. [9]: they asked if min-entropy and density based techniques could
be used to prove (or simplify the existing proof of) Raz—McKenzie style deterministic lifting
theorems.

Our unified proof answers this question by showing that the same information measure
(blockwise min entropy) can in fact be used in both the deterministic and randomized settings.
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Query-to-communication lifting for BPP using inner product

The main difference between the two proofs is the way in which we decide the next bit of the
communication protocol: in the deterministic setting, we make a greedy choice, and in the
randomized setting, we make a (non-uniform) random choice. Whereas in the randomized
setting, our information measure guarantees that we are able to estimate the distribution of
the next bit of the protocol, in the deterministic setting it guarantees richness, that is, when
the protocol ends, there is some input consistent with answers of all queries made by the
decision tree.

Organization of the paper In Section 2 we set up the machinery that is used in both
the deterministic and the randomized lifting theorems. We prove the deterministic lifting
theorem in Section 3, and the randomized lifting theorem in Section 4. Both proofs use a
Fourier-theoretic lemma, proved in Section 5.

2 Common Machinery

In this paper we consider lifting theorems for the most general case of search problems. A
search problem § is defined by a relation Z x O where 7 is a finite set of inputs and O is a
finite set of outputs. The goal of the search problem, given an input x € Z is to find at least
one output o € O such that (z,0) € S. Like in the statement of the main theorem, let S be
any search problem that takes inputs from {0, 1}", and let II be a bounded-error randomized
communication protocol that solves S o G with complexity ¢ and error probability e. We
prove the randomized and deterministic lifting theorems, by building deterministic and
randomized decision trees of cost O(c/b) based on respective protocols of cost c¢. Intuitively,
in both theorems, on input z € {0,1}", the tree T' will simulate the action of the protocol II
on inputs (z,y) € G~1(z). More specifically, the tree will simulate the protocol bit by bit,
and maintain a rectangle X x ) that is consistent with the protocol so far such that all the
strings in G(X x )) are consistent with the queries made so far. To this end, we consider
random variables X and Y that are distributed uniformly over X and ) respectively. We
now state a few useful definitions and results about such random variables

The first such definition ensures that the random variables we consider have enough
blockwise min-entropy.

» Definition 3. Let X be a random variable taking values in A™. We say that X is d-dense
if for every I C [n] it holds that Hoo(X1) > 6-0-|I].

We would like these random variables to be consistent with the query answers obtained
by the decision tree thus far in the simulation. To this end, we also define the following
notion of restrictions.

» Definition 4. Given a restriction p € {0,1,x}", we denote by fix(p) and free(p) the set of
fized and free coordinates of p respectively.

Intuitively, fix(p) represents the query answers obtained thus far, and free(p) represents the
yet unqueried coordinates. With these definitions, we define the property that we would like
to maintain for X and Y during the simulation.

» Definition 5 (following [11]). Let X,Y be random variables taking values in A™, and let
p €10,1,%}" be a restriction. We say that X andY are p-structured if Ktree(p) and Yiree(p)
are 0.9-dense, and

fix
9™ (Xeix(p): Yax(p)) = Ph(o):
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In both lifting theorems, the decision tree T starts by setting X and Y to be uniform
over A", and maintains throughout the simulation the invariant that, if p is the restriction
that represents the current “state of knowledge” regarding the input z, then X and Y are
p-structured. In order to maintain this invariant, we use the following Fourier-analytic result,
which is proved in Section 5.

» Definition 6. Let o € A™ and let Y be a random variable taking values in A™. We say that
a is n-bad for Y if there exists a set I C [n] and a string o € {0,1} such that the random
variable

Vi1 9" (a1, Y1) = o1
is not n-dense or
Pr [gl(aj,YI) = 01] < 2 M=t

» Theorem 7 (Main Technical Tool). Let n € N and let b € N such that b > 10000 - log(n).
Let X and Y be random wvariables taking values in A™ that are éx-dense and dy-dense
respectively. Suppose that dx + dy > 1.3 and §y > 0.1. Then, the probability that X takes a

value that is ;'—gl—bad for'Y is at most 27001,

We also use the following analogue of the “uniform marginals lemma” of [11] for the inner
product gadget.

» Lemma 8 (Uniform marginals lemma). Let X, Y be random variables uniformly distributed
over sets X,Y C A", and suppose they are p-structured. Then, for any z € {0,1}" that is
consistent with p, the uniform distribution over G=1(2)N(X xY) has its marginal distributions
#-close to X and Y respectively.

In order to prove Lemma 8, we use the following definition and lemma from G&os et al. [9].

» Definition 9. Let ¢ > 0 and let V be a random variable taking values from a setV. We say

that V' is e-pointwise close to uniform if for every v € V it holds that Pr[V =wv] € (1 +¢)- ﬁ

» Lemma 10. Let A, B be 0.6-dense random variables taking values from A™. Then g™ (A, B)
is 2726 -uniform.
The proof of this lemma, which is similar to the proof of the uniform marginals lemma in [11],

appears in Appendix A.
We use the following simple folklore fact about density.

» Proposition 11. Let X be a random variable over A7, and let I C J be maximal subset of
coordinates such that Hoo(X1) < 8-b-|I|. Let a € A be a value such that

Pr[X; =a] > 27901
Then, the random variable X j_1| X1 = « is §-dense.

We also use the following decomposition result from Goos et al. [11], which extends the
last proposition.

» Lemma 12 (Density-restoring partition). Let X be a random variable over X C A”7. Then,
there exists a partition

x iy uar

such that every X' is associated with a set I; C J, a value o; € Ali, and a probability

D>i df py [X €Xiu...U Xﬂ that satisfy the following properties: Denote by X* the random

variable X conditioned on X € X*.

XX:5
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Xj s fived to a;.
X_; is 0.9-dense.
Hoo(X") > Hoo(X) — 0.9 b |I;| — log p%

3 The deterministic lifting theorem

In this section, we prove the deterministic lifting theorem, restated from the Introduction.

» Theorem 13 (Restatement of Theorem 2). Let S be any search problem that takes inputs
from {0,1}", and let 11 be a deterministic communication protocol that solves S o G with
complexity c. Then, there exists a decision tree T' that solves S with complexity O(7).

As noted earlier, the decision tree T" we construct would simulate the protocol IT. Throughout
the simulation, the tree keeps track of random variables X,Y , which represent the inputs to
the protocol, and maintains the invariant that they are p-structured. When the protocol II
ends, the decision tree T" ends as well and outputs the output of II. In order to complete the
proof of Theorem 2, we need to show three things:

How to simulate a single bit of the protocol while maintaining the above invariant.

After the decision tree ends, its output is a correct output of S on z.

The total number of queries made by the decision tree 7' during the lifting is O(F).

Due to space constraints, we will only briefly describe the simulation, relegating its
analysis to Appendix B.

Consider a given step in the simulation where the tree is at a particular node of the
protocol II. Let X,) be the current set of inputs that are being maintained which are
consistent with this node, and let X,Y be random variables uniformly distributed over X', ).
Let p € {0,1,*}" denote the restriction that represents the queries that have been made so
far and their answers, i.e., coordinates that were queried are fixed to the answers that were
received, and coordinates that were not queried are free. By the invariant we maintain, the
variables X,Y are p-structured.

We would like to simulate the next bit of the protocol. Suppose without loss of generality
that it is Alice’s turn to speak. The tree T chooses the next bit to be the bit that has the
highest probability of being sent by Alice, if the inputs are chosen according to X. The tree
then updates the set X' to be consistent with the new bit, and updates the random variable X
accordingly. Now, if the p-structure property of X,Y has been violated, then it must be
because Xfee(p) is no longer 0.9-dense, since the new bit did not affect Y. The tree now
modifies the sets X, ) and the restriction p to restore the structuredness of X, Y. In order
to do so, the tree T repeats the following steps iteratively until X and Y are p-structured:
1. Condition Xgee(p) on not taking a value that is 0.4-bad for Yiee(,), and update X" accord-

ingly.

2. If Xiree(p) is now 0.9-dense, then we are done — the structuredness has been restored.

Otherwise continue.

3. Let I C free(p) be a maximal set that violates the density of Xpee(p) (i-€., Hoo(X) <

0.9-b-|I]), and let oy € A be a “heavy” value that satisfies Pr[X; = ;] > 270901,
4. Condition X on X; = «j, and update X accordingly. Proposition 11 implies that

Ktree(p)—1 18 now 0.9-dense.

5. Query the coordinates in I, and update p accordingly.
Condition Y on ¢’ (ayz,Y;) = pr, and update ) accordingly.
7. If Yiree(p) 18 now 0.9-dense then we are done — the structuredness has been restored.

Otherwise go back to Step 1 but replace the roles of X and Y.

e
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In order for the steps of the above process to always be well-defined, we need to show
that we never condition on events with probability 0. If this is always satisfied, it follows that
the algorithm terminates and at termination the random variables X,Y are p-structured.
To see this, note that the process only stops if Xree(p) and Yiee(p) are 0.9-dense, and the
process clearly maintains the invariant that

g™ (Xtix(p)» Yax(p)) = Phix(p)-

Moreover, the process always stops, since in every iteration the size of the set free(p) decreases,
and it cannot decrease below 0.

We turn to show that we never condition on a zero probability event. To this end, we will
show that the process preserves the following property: At the beginning of every iteration,
one of the variables Xgee(p) and Yiee(p) is 0.9-dense, and the other is at least 0.4-dense.
Observe that this property indeed holds at the beginning of the first iteration: at this point,
Y is 0.9-dense, and X must be at least 0.4-dense — since we chose the next bit of Alice to be
the one with the highest probability, and therefore the min-entropy of any set of coordinates
could have dropped by at most 1.

Suppose that the property holds at the beginning of a given iteration. The first condi-
tioning takes place at Step 1. When Step 1 is performed, we know by Theorem 7 that the
event that Xpee(p) does not take values that are 0.4-bad for Yjce(,) has non-zero probability:
to see it, note that by assumption éx > 0.4 and dy > 0.9, so it holds that dx + dy > 1.3
and % > 0.4, so the requirements of the theorem are satisfied.

The next conditioning takes place at Step 4, but here the event has non-zero probability
by definition. The last conditioning takes place at Step 6, and here the event has non-zero
probability due to the assumption that Xy.ce(,) does not take values that are bad for Yee(,)

— and in particular

Pr[g"(ar, Y1) = pg] > 271170

Finally, we need to show that the above property is maintained for the next iteration. As
stated in Step 4, at this point X is 0.9-dense. Moreover, since we know that Xpee(p) does
not take values that are 0.4-bad for Yi.ee(p), it follows in particular that

}/free(p) ‘gI(aIa YI) =PI

is 0.4-dense. This concludes the proof. The rest of the analysis can be found in Appendix B.

4 The randomized lifting theorem

In this section, we prove the randomized lifting theorem, restated next.

» Theorem 14 (Restatement of Theorem 1). Let S be any search problem that takes inputs
from {0,1}", and let 11 be a randomized communication protocol that solves S o G with
complexity ¢ and error probability €. Then, there exists a decision tree T that solves S with
complezity O(£) and error probability € + 5.

As noted earlier, the decision tree T' we construct simulates the protocol II. The simulation
is similar to the deterministic one, with two main differences:
Instead of choosing the next bit of the protocol to be the most likely bit, we choose
it randomly according to the distribution of the next bit (except that we abort the
simulation on bits of very small probability).

XX:7
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Instead of choosing I and «j arbitrarily, we choose them from the density-restoring
partition of Lemma 12, according to the distribution induced by this partition (except
that we truncate parts of the partition that have very small probability).
In the following sections, we describe the simulation, analyze its error probability, and analyze
its query complexity, respectively. For simplicity, we describe a simulation that has a better
error probability of € + o(1) but query complexity that is efficient only in expectation. This

1

simulation can be transformed into one with error probability € + {5, and efficient query

complexity in the worst case, using standard arguments.

4.1 The simulation

As before, the decision tree 1" simulates the protocol II while maintaining a rectangle X x )
that is contained in the rectangle of the current node of II. When the simulation ends,
T outputs the output of II. Throughout the simulation, the decision tree T considers random
variables XY that are uniformly distributed over X x ) and maintains the invariant that
they are p-structured (for a restriction p that records the queries made so far). For the
purpose of the simulation, we may assume without loss of generality that II is deterministic
(since T can use its randomness to choose the randomness of II, and then pretend that IT is
deterministic for the rest of the simulation).

We turn to explain how to simulate a single bit of the protocol. Suppose that at a given
point it is Alice’s turn to speak. The protocol partitions X into Xy U X;. The tree now
chooses the next bit to be 0 with probability ||)§(°|| and to be 1 otherwise. If the bit that
was chosen had probability less than 7712’ the tree halts and declares error. Otherwise, the

tree updates X to the corresponding set among Xy, X7 and updates the random variable X

accordingly.

Now, if the p-structure property of X,Y has been violated, then it must be because
Xfree(p) 18 1o longer 0.9-dense, since the new bit did not affect Y. The tree now modifies the
sets X', Y and the restriction p to restore the structuredness of X,Y. In order to do so, the
tree T repeats the following steps iteratively until X, Y are p-structured:

1. Condition Xgee(p) on not taking a value that is 0.4-bad for Yee(,), and update X" accord-
ingly.

2. If X is now 0.9-dense, then we are done — the structuredness has been restored. Otherwise
continue.

3. Let Xpree(p) = X LU...UX" be the density-restoring partition of Lemma 12 with respect
t0 Xfree(p)- Choose a random class in the partition, where the class X" is chosen with
probability Pr [Xgee(,) € X

4. Recall that we defined the probability

DP>i © pr [Xtree(p) € X'U...U X,

If p>; < -, the tree T halts and declares error.

5. Let I; and «; be the set and the value associated with the class X*. The tree conditions
X on the event Xireo(p) € X i and updates X accordingly. The variable Ktree(p)—1; 1S NOW
0.9-dense by the properties of the density-restoring partition.

6. Query the coordinates in I;, and update p based on the query answers.

~

Condition Y on g!(a;, Y7,) = p1,, and update ) accordingly.
8. If Yiree(p) is now 0.9-dense then we are done — the structuredness has been restored.
Otherwise go back to Step 1 but replace the roles of X and Y.
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The proof that the process is well-defined and always halts, and that the p-structuredness
invariant is maintained, is the same as in the deterministic simulation. The only difference
here is that choosing the next bit of the protocol decreases the min-entropy of the blocks by
at most 2logn bits rather than by at most 1 bit. Nevertheless, since the random variable X
started as 0.9-dense and b > 20logn, the variable X is still 0.4-dense after choosing the next
bit.

4.2 Correctness

We prove that the decision tree errs with probability at most € 4+ o(1) (recall that ¢ is the
error probability of the protocol II). Fix an input z € {0,1}". Let 7 be the (random)
transcript generated by the simulation of T on z (if we the simulation declares error, we
set m = L). Let «’ denote the (random) transcript of IT on random inputs (X’,Y”) that are
distributed uniformly over G=1(2) (again, we assume that IT’ is deterministic and that the
only randomness comes from the choice of (X’,Y”)). We will prove that the distributions of
and 7’ are o(1)-close. Since 7’ outputs the correct answer on z with probability at least 1 —¢,
it will follow that 7 outputs the correct answer on z with probability at least 1 — e — o(1).

To prove that 7 and 7’ are o(1)-close, we describe a coupling of = with 7’ that satisfies that
7 = 7’ with probability at least 1 — o(1). To this end, we show that there exists a coupling of
the random choices of the simulation with X’,Y” such that, up to some bad event £ of small
probability, it holds that the pair (X', Y”) is uniformly distributed in G=1(z)N (X x ))). Since
X x Y determines the transcript = of the simulation (as X x ) is contained the rectangle of
the current node in the protocol), whenever (X', Y’) € (X,)) it holds that = = =’.

More specifically, we prove that there exists a coupling and an event £ with probability
at most %b = 0(1) such that, when the simulation ends, conditioned on —& it holds that
the pair (X’,Y”) is uniformly distributed in G™1(z) N (X x V). To this end, we define
a sequence of events &1,&s, ... such that Pr[&] < & - (¢t — 1) and at the begining of the
t-th iteration, conditioned on —¢&; it holds that the pair (X’,Y”) is uniformly distributed in
G H(2z) N (X x Y). We then set £ to be the event at the end of the last iteration. Since the
number of iterations is at most ¢ < n - b (as each iteration transmits 1-bit), it follows that
the probability of £ is at most % ¢ < %b. In order to construct the coupling and the events
&1,&s, ..., we prove the following auxiliary result.

» Lemma 15. Suppose that we constructed the coupling until the beginning of the t-th
iteration, and there is an event & such that conditioned on —&; it holds that the pair
(X', Y") is uniformly distributed in G=(2) N (X x V). Then, there exists a way to extend
the coupling until the end of the t-th iteration, and there exists an event 41, such that
Pr[&y1] < Pr[&] + % and at the end of the t-th iteration, conditioned on =&,y it holds
that the pair (X',Y"') is uniformly distributed in G=1(2) N (X x V).

Given Lemma 15, we design the coupling and the events &1, &, ... by setting £ to be the
empty event and then applying Lemma 15 repeatedly until we reach the last iteration.

Proof. Suppose that the simulation ran until the beginning of the ¢-th iteration according to
our coupling. If the event & happened, then the coupling behaves arbitrarily until the end
of the simulation, and we assume that the simulation failed. Let us now condition on the
event & not having happened, so we may assume that at the beginning of the ¢-th iteration,
the pair (X’,Y”) is uniformly distributed in G=1(z) N (X x V). We start by setting &1 to
be the event &, and we will add more events to it as the simulation progresses.

XX:9
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The simulation starts by choosing the next bit of the protocol, and suppose that it is

Alice’s turn to speak. The simulation has probability I‘f("“ to choose 0, and by the uniform

marginals lemma (Lemma 8), the random variable X’ has probability % + - to be in Xp. In

other words, the distribution of the class that the simulation chooses among Xj, X7, and the
1

distribution of the class that X' chooses, are —z-close, and therefore there exists a coupling

of those choices such that the same class is chosen in both with probability at least 1 — n%, )
we use it to extend our coupling. We add to ;41 the event in which the simulation and X’
choose a different class among A, X7, and for the rest of the proof we assume that it did
not happen. We also add to &1 the event in which the simulation declared failure since it
chose a bit with probability less than # (clearly, this event has probability less than #),
and for the rest of the proof we assume that it did not happen. We may thus assume that
after this step, the pair (X’,Y”) is uniformly distributed in G=1(2) N (X x ).

Next, the simulation removes from & the values that are 0.4-bad for Y. The probability
that X takes such a value is at most 270-01't < 7%37 and therefore the probability that X’
takes such a value is at most % by the uniform marginals lemma. We add the event that
X' takes a bad value to &1 and assume for the rest of the proof that it did not happen.
Hence, we may again assume that after this step, X’ belongs to X', and that the pair (X', Y”)
is uniformly distributed in G=1(2) N (X x ).

In the following step, a class X'* is chosen according to the distribution induced by Ktree(p)-

éree( 2 belongs. By the uniform marginals lemma,

the distributions of X% and X are %—close, and therefore there is a coupling of those classes
1

Let us now choose the class X% to which X

such that they are equal with probability at least 1 — -, so we use it to extend our coupling.
We add to £;41 the event in X* # ./'\,”,, and for the rest of the proof we assume that it did not
happen. We also add to &1 the event in which the simulation declared error since p<; < %
(clearly, this event has probability less than ), and for the rest of the proof we assume that
it did not happen. We therefore assume again that after this step, X’ belongs to X', and
that the pair (X’,Y”) is uniformly distributed in G=1(2) N (X x V).

Finally, the simulation conditions Y on ¢’(«;, Y7,) = pz,. This conditioning trivially holds
for Y (since by assumption (X’,Y”) € G~!(z) and by this point we chose X; = ay,), and
no further coupling needs to be done.

We conclude the proof by upper bounding the probability of the event &1. At the
beginning, we set £:11 to be &, and therefore at this point its probability is Pr [€;]. The step
of choosing the next bit of the protocol contribute to &1 events whose total probability
is at most n% + # Steps 1 to 7 above add to £.41 events of total probability at most %.
Those latter steps are now repeated until (X,Y") are p-structured. However, they may be
repeated at most n times, since each time they are repeated, the tree makes at least one
query, and it cannot make more than n queries. Hence, in all of those repetitions together,
those steps in the simulation contribute to £;+1 events whose total probability is at most nf%.
It follows that

Prl€u] < Prl&] + 5 + 5 + -5 <Prl&] +

as required. <

4.3 The query complexity
We show that the ezpected query complexity of this simulation is O(7). Again, we define the

deficiency of X,Y to be

def
A=2-b- \free(p)| - Hoo(Xfree(p)) — Hoo(iffree(p))-
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We will show that whenever the simulation sends one bit in the protocol, the deficiency is
increased by O(1) in expectation. On the other hand, we will show that whenever a query is
made, the deficiency is always decreased by at least Q(b). Thus, the expected deficiency at
any point is at most

O(#bits communicated) — Q(b - #queries).

Since the deficiency is always at least 0 and the number of bits communicated is at most c,

it follows that the expected number of queries is upper bounded by O(f).
Whenever we choose the next bit for Alice, the deficiency increases by log % (if the

next bit is 0) or by log % (if the next bit is 1). Thus, the expected increase in deficiency is

|Xo| X & X
L T I 0 O P
|X| || [X] ||

| Xo|

This is the value of the binary entropy function on 3, and hence it is upper bounded by 1.

Conditioning on X not taking a value that is 0.4-bad for Y increases the deficiency by at
most 1 bit since its probability is at least % All in all, the expected increase in the deficiency
is at most 2.

We turn to show that when a query is being made, the deficiency decreases by Q(b).

Suppose that the decision tree queried a set I; C free(p). This brings about the following
changes to the deficiency:
The variable X was conditioned on the event X eq(,) € X . By Lemma 12, this decreases
the min-entropy of X by at most 0.9 -b - |I;| + log p% Now, Step 4 guarantees that

pi > %, and therefore log p% < 3logn < 0.01-b. All in all, this step increases the
deficiency by at most 0.91 - |I;]
The variable Y is conditioned on the event g% (ay,,Yr,) = pr,, which has probability at
least 27171=1 by the assumption that X does not take bad values. This increases the
deficiency by at most |I;| + 1.
The set I; is removed from the set free(p). By definition of deficiency, this dereases the
term of 2-b - |free(p)| by 2-b- ||, decreases Hoo(Yiree(p)) by at most b-|I;|, and does not
change Hoo (Xfree(p)) (since at this point X7, is fixed to ay,). All in all, the deficiency is
decreased by at least b - |I;].
Finally, the queries may make the process repeat for another iteration, so Step 1 may be
performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b|IZ|—091b|IZ|—(|IZ|+1)—2ZOO5IJ|Il|,

as required. This concludes the proof.

5 Fourier-theoretic result

We recall our notation, some definitions and the result. Let n € N and let b € N be such that
b > 10,000 - logn. We denote the domain of the inner product gadget by A = {0, l}b (so the
inner product is over A x A), and denote ¢ = |A| = 2°. Given a string v € A, we denote the
corresponding Fourier character by x (x) Lef (=1)%*) When considering a set I C [n] and
the space of functions f: A’ — R, we index the corresponding Fourier characters by tuples

from A!, such that for every v € Al it holds that xy = [T;c; X

XX:11
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» Definition 16. Let a € A™ and let Y be a random variable taking values in A™. We say
that o is n-bad for Y if there exists a set I C [n] and a string o € {0,1}" such that the
random variable

Yin—1 [Vier (a4, Yi) = 0;
is not n-dense or
PrVier (o, Y;) = 03] < 9—|-1
In this section we prove the following result.

» Theorem 17 (Restatement of Theorem 7). Let X and Y be random variables taking values
in A" that are §x-dense and Jy -dense respectively. Suppose that dx + 6y > 1.3 and dy > 0.1.

Then, the probability that X takes a value that is %—bad for'Y is at most ¢~ °-0L.

For the rest of this section, fix the random variables X and Y, and suppose that they are
0 x-dense and Jy-dense respectively where dx + dy > 1.3 and dy > 0.1. We use the following
definition, which essentially isolates "badness" to a particular set of coordinates.

» Definition 18. Let ¢ > 0. We say that o € A™ is e-bad for Y on J C [n] if there exist a
string B; € A7, a non-empty set I C [n] — J and a string o € {0,1}" such that

Pr[Y; =85 and Vicr (o, Y;) = 03] ¢ 2711 (Pr[Y; = B5] £ ¢).

In particular, if J = 0, we view Y;,8; as the empty string and the event Y; = B; as an
event that occurs with probability 1 vacuously.

Morally, a value is not bad if it is not bad on any J. Theorem 17 will follow as a corollary
from the following result (see that last part of Appendix C).

» Lemma 19. For every J C [n], the probability that X takes a value that is e-bad for Y on
J is at most q*év-\J\70.05/62_

In order to analyze the probability of bad values, it is more convenient to consider “unbiased”
values, i.e., values « for which the event Y; = 3 is not correlated with inner products of the
form V;er (o, Y;) = 0;. This bias is naturally measured using Fourier coefficients. We denote
by D: A™ — [0,1] the distribution of Y, i.e., the function that for every § € A™ outputs
Pr[Y = j]. For a set of indices K C [n], we denote by Dy the function corresponding to
the marginal distribution over K. Moreover, given disjoint sets J, K C [n] and a string
Bs € A we denote by Dk g,: A% — [0,1] the function that maps each Bx € AF to
PT[YK :BK and Y] :ﬁj}.

» Definition 20. We say that a value o € A™ is e-biased for Y with respect to J C [n] if for

every non-empty I C [n] — J and for every By € A7 it holds that ﬁjﬁJ (Oé])’ <eg-q LTI

Lemma 19 follows immediately from the next two propositions. The first proposition is
a “Vazirani lemma” type of result that shows that small bias implies small distortion of
probabilities.

» Proposition 21. If a value o € A™ is e-biased for Y with respect to J C [n], then it is not
e-bad with respect to J.

The second proposition upper bounds the probability of X taking a value with large bias
using the fact that X and Y are dx-dense and dy-dense respectively.

» Proposition 22. For every J C [n], the probability that X takes a value that is not e-biased

for'Y with respect to J is at most q";Y"J‘fo'%/sQ.

The rest of the proof can be found in Appendix C.
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A Missing proofs from Section 2

Proof of Lemma 8. Let (X’,Y”) be uniformly distributed over G=1(2) N (X x V). We prove
that X is n%—close to X', and a similar argument works for Y. Let £ C X be any test event,
and without loss of generality assume that Pr[X € £] > 1 (otherwise replace E with its
complement). Let us denote by X¢ the random variable that is uniformly distributed over
£, i.e., it distributed like X|€. Since X,Y are p-structured, it holds that Ktree(p)s X, free(p),
and Yfree(p) are 0.6-dense and therefore by Lemma 10 and our choice of b it holds that
gfree(ﬂ)(Xfree(p),Yfree(p)) and gree(r )(ngree(p), Yiee(p)) are n%—pointwise close to uniform. It
follows that

Pr(X' €& =

(5><y)|/|X><y|

(X xV)/]1X x|

_ Pr[G(X,Y)=zand X € £]

B Pr(G(X,Y) = 7]

T PrlG(X,Y) =4

_ Pr[G(X%)Y) =]

S Tmey) =g el

7 Pr [ free(p) (Xfree(p)’ Y}ree(p)) = Zfree(p)}
Pr [ free(p) (Xfree(p)a varee(p)) = Zfree(p)]

-Pr[X € €]

-Pr{X e €]

(1+57)
m-Pr[XGf}
€ 1:|:nlS>~Pr[X€5]

as required. |

B  Missing proofs from Section 3

B.1 Concluding the simulation

In this section, we prove that when the simulation ends, the protocol IT outputs an answer
in S(z). To this end, all we need to prove is that when the simulation ends, we can find
x € X and y € Y such that G(z,y) = 2z: To see why, observe that the output of the protocol
at this point must be its output on (z,y), since the rectangle X x Y is contained in the
rectangle of the leaf to which the protocol arrived. Now, since we assumed that II computes
S o @G, it follows that its output must be (S o G)(x,y) = S(2).

We thus turn to show that there exist x,y € X x Y such that G(z,y) = z. Recall
that when the protocol ends, it holds that X, Y are p-structured (by the invariant that we
maintained). This means that gﬁx(f’)(Xﬁx(p), Yiax(p)) = Zaix(p)> and that Xpree(p)s Yree(p) are
0.9-dense. By Theorem 7, it follows that Xpee(p) takes a value that is not 0.4-bad for Yiee(p)
with non-zero probability. This means that there exists some x € X' such that Tp.ee(p) is not
0.4-bad for Yee(p)- By the definition of badness, it follows that

Pr |:gfree(p) (xfree(p)a }/free(p)) = Zfree(p) > 27\free(p)|71 >0
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and therefore there exists some y € ) such that gfree(p)(xfmc(p), Ytree(p)) = Zfree(p)- 1t follows
that = and y satisfy

9 (T (), Yaix() = (o)
gfree(p) (xfree(p)v yfree(p)) = Zfree(p)

and therefore G(z,y) = z, as required.

B.2 The query complexity

We conclude by showing that the total number of queries the tree 7' makes is O(§). To this
end, we define the deficiency of X,Y to be

def
A=2-b- \free(p)| — Hoo(Xfree(p)) — Hoo(y}ree(p))'

We prove that whenever the protocol II transmits a bit in the simulation, the deficiency
increases by O(1), and that whenever the tree T makes a query, the deficiency is decreased
by Q(b). Since the deficiency is always non-negative, and the protocol transmits at most
c bits, it follows that the tree must make at most O(7) bits.

We start by showing that when the protocol II transmits a bit in the simulation, the
deficiency increases by O(1). When a bit is transmitted, either X or Y is conditioned on
an event of probability at least %, depending on which player spoke, and the other variable
remains unchanged. This means that the sum Heo(Xree(p)) + Hoo(Yiree(p)) decreases by at
most 1, and therefore the deficiency increases by at most 1. Next, the simulation might
perform Step 1 in the process above, i.e., condition X or Y on taking a value that is not bad.
This event has probability 1 — 270-01'b > %, so conditioning on it increases the deficiency by
at most 1. All in all, we increased the deficiency by at most 2. All the other steps that might
be taken are only taken if a query is being made, so we account their deficiency increases to
the following “query part” of the analysis.

We turn to show that when a query is being made, the deficiency decreases by Q(b).
Suppose that the decision tree queried a set I C free(p). This applies the following changes
to the deficiency:

The variable X is conditioned on the event X; = «j, which has probability greater

than 2709l by the definition of a;. Hence, this conditioning increases the deficiency

by at most 0.9-b- |I].

The variable Y is conditioned on the event g’(ay, Y7) = pr, which has probability at least

2~ 71=1 1y the assumption that X does not take bad values. This increases the deficiency

by at most || + 1.

The set I is removed from the set free(p). Looking at the definition of deficiency, this

decreases the first term, 2- b - |free(p)|, by at most 2-b-|I|, decreases Hoo(Yireo(p)) by at

most b - |I], and does not change Ho(Xfree(,)) (since at this point X7 is fixed to o). All
in all, the deficiency is decreased by b - |I].

Finally, the queries may make the process repeat for another iteration, so Step 1 may be

performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b |I|—0.9 b |I|— (I +1)—2>0.05b-|I|

in each iteration, as required. This concludes the proof.
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C Missing proofs from Section 5

Proof of Proposition 21

Let a € A™ be an e-biased value for Y with respect to a set J C [n], let 3; € A7 be a string,
I C [n] — J be a non-empty set, and o € {0,1}" be a string. Let E denote the event that

(@i, Y;) = o for all i € I, and for every K C I, let o = >, x 0. It holds that

Pr [YJ = ,BJ and Ea} = Z Pr [YJ = /BJ and Y] = ﬂ]} . 1vi€1<ai,5i>:0'7'

BreAl

= Z PI[YJ:ﬂJaHdY]:51}~H

BreA!

(Expanding the product) = Z Dr.g,(Br) - 271 Z (=1)7% - Xax (BK)

BreAl

— 9~ I, Z(_l)ak . Z DI”gJ(ﬂ]) “Xax (BK)

KCI

KCI

BreA!

i€l

<1 + (=D - Xai (Bi)

2

— 9—HI. Z(—l)ok . Z DK,ﬁJ(ﬂK) 'XCU((BK)

KCI

Br EAK

)

XX:17

=27 Dyg, +271 > (1) > Dis,(Bx) - Xax (Bk)

PAKCI

Br EAK

Next, observe that Dy 3, = Pr[Y; = ;] by definition, and therefore

Pr(Yy =gy and Eo) =27\ PriYs =850+ D (=17 Y D, (Bx)  Xax (Br)

Now,

(Formula for Fourier coefficients)

Z (_1)0K' Z DK7ﬁJ(ﬁK).XC¥K(/BK)

P0AKCT

<

PAKCI

0£KCT

Br EAK

Br EAK

> (=1)7% g™ Dy g, (k)
PAKCI

(Triangle inequality) < Z g5 ’DKWBJ (aK)’

(o is e-biased) < Z gKl g g L HIK]

(q def p10000)

The required result follows.

0£KCI

IN
™

= £ -

1]

e

k=1

|I| —-0.1-k
()«

k —0.1-k
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Proof of Proposition 22

Fix J C [n]. We first upper bound the probability that X takes a value « that violates the
e-biased property for a specific subset I C [n] — J, and then take a union bound over all
subsets I. Let I C [n] — J be a non-empty set. For every value « that is not e-biased due

to I, there exists a value 37 € A’ such that ‘.DI’QJ (al)‘ > e - ¢ I We upper bound the

by showing that the sum of their squares

number of large coefficients of the form )Dl,ﬂ,; (ar)

is not too large, which follows from the high min-entropy of Hu(Y7ys). For simplicity of
notation, denote K = I U J. It holds that

Z Z Drg,(ar)® = Z Z Dy g, (ar)?

ar€AL ﬁJGAJ ﬁJGAJ ajeA!
(Parseval’s inequality) = Z g M. Z Dr s, (Br)?
BreA’ BreA!

=q 1. Z Z Doy (Br, Bs)?

BsEAT BreA!

=q M. Z D (Bk)?

BrEAK
=q - Y Privk =gk’
Br EAK
< g "l max{Pr[Yi = Bx]}- Y Pr[Vk = p]

Br EAK
= ¢ W max {Pr[Yx = Bx]}
< q—|1| .q—‘;Y'\K\

) T8y 1]

We wish to upper bound the number of strings a; € A’ for which there is some 3 such that
’D]76J(QI)’ > ¢ . gVl For every such string ay, it holds in particular that

Z EI,ﬁJ(OéIV > 52 . q72.2~|1\.
BreN’

Therefore, the number such strings «; is at most

g~ (T =6v 17| (12=6v) || =6v-|J]

<
€2 . g—2.2/1] = 22

Since X is dx-dense, the probability that X; = a for any a; is at most ¢~ %%l and therefore
the total probability of the bad a;’s is at most

q(1-2_6X_6Y)"I‘_5Y‘|J|

q(1-2—5Y)'|1|—5Y'\J\ .

—ox-|I| _
q =
g2 g2
—0.1-[I|=8y-|J
q [T|—dy-|J]

(By the assumption that dx + dy > 1.3) < =



705

706

707

708

709

710

711

712
713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728
29

730

731

732

A. Chattopadhyay et al.

Finally, by taking union bound over all bad I’s, we get that the probability that X takes a
bad value is at most

0.1 [I| =6y -|J —Sy-|J
s T=seldl geovlal S o
g2 T g2 q
0£IC n] 04£IC n]
g S o
:T'; i )4
1=
=0y |J|
q i —0.14
<D
i=1
5 |J| qO.Ul
def 10000y - 4 ° 0.014  —0.1-
(q = n ) S 572 . Z q T, q i
i=1
oy J
<4 v l. 0.01 . 0.01 ,—0.1
<" " g
§ g—0v-171-0.05
ST

Proof of Theorem 17 from Lemma 19

We consider two “bad events” that might happen, and upper bound the probability of both
events using Lemma 19:
X takes a value that %-bad for the empty set (i.e., J = 0). By Lemma 19, the probability
of this event is at most 4 - ¢~°:95.
For any non-empty set J C [n], the variable X takes a value that is e-bad for J with
€= q_%'u |. By applying Lemma 19 and the union bound, the probability of this event
is at most

—8y+|J|—0.05

q _ — ¢ 005, Z qéy-u\-(ﬁq)
503 0y 1J|

0£7Cn) 9 0£7C[n]

— ¢ 005, Z qf().OOl-(;y-‘J‘
0#JC[n]

n
_ n _ Sy i
—q 0'05'2(]’) g~ 00016y -]

Jj=1

n
< q~005. an g~ 0-001-6y -]
Jj=1

def —
(q € TL40000,5Y > 01) < q 0.05 |

< =005

n
Z nd .op4I
j=1

n
>
Jj=1

< g~005
Hence, with probability at least 1 —5-¢~9% > 1 — ¢=%% none of these bad events happen.
We now prove that whenever these events do not happen, the variable X takes a value that

is not %—bad for Y.

XX:19
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733 Let a € A™ be a value for X that does not give rise to the foregoing bad events. Let
s I C[n]and o € {0,1}, and let E, denote the event Vie; (o, Y;) = 0;. We want to show
s that for every I C [n] and for every o € {0,1}’, the random variable

736 Yinj—1 [Vier (Yi, i) = 0;

1w 1S %—dense, and that Pr[E,] > 271/I=1. We start with the latter condition. Since we know

73 that « is not %—bad for the empty set, it holds that

1
B cy e

mo  as required. Next, let J C [n] — I and 8; € A7. We prove that
- Pr|Y; = f;|E,] < 9= 201l — q*%wl.

S
n2  Since we know that « is not e-bad for J with ¢ = q_ﬁ'u | it holds that

ws  PrlYy=pyand B,] <271l (Pr Yy = By] + q—z%“l)

744 < 2_|I| : (q_éy +q_%A|J|>
745 S 2_|I|+1 . q_%u‘

746

nr It follows that

Pr[Y; = By and E,]
Pr[E,]

9= 1IH+1 . =371

748 Pr [YJ = ﬁJ|Ea] =

IN

749

73 as required.
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