
Random order greedy up to 4 parts∗

Yuval Filmus

November 14, 2018

1 Introduction

The greedy algorithm is a heuristic for optimizing a monotone set function f given a constraint
I ⊆ 2U , in other words for solving the following optimization problem:

max
S∈I

f(S).

Assuming that I is hereditary (that is, if A ∈ I then all subsets of A are also in I), the greedy
algorithm can be stated as follows:

1. Initialize S ← ∅.

2. While there exists an element x ∈ I \ S such that S ∪ {x} ∈ I:

S ← S ∪ {x}, where x = arg max
y : S∪{y}∈I

f(S ∪ {y}).

3. Output S.

The performance of this heuristic naturally depends on the nature of both f and I. The
simplest case is when f is a monotone linear function, which is a function that satisfies f(∅) = 0
and f(S ∪ T) = f(S) + f(T) whenever S, T are disjoint; equivalently, f(S) =

󰁓
x∈S w(x), where

w : U → R≥0 is an arbitrary non-negative weight function. In this case, it is classically known that
the greedy heuristic is optimal — produces the optimal value for all objective functions f — if and
only if I is a matroid [Rad57, Edm71].

The picture becomes more interesting when f is a monotone submodular function, that is, when
it satisfies the following three properties:

(a) Normalization: f(∅) = 0.

(b) Monotonicity: if A ⊆ B then f(A) ≤ f(B).

(c) Submodularity: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Equivalently, if A ⊆ B then f(C|A) ≥ f(C|B), where f(C|A) := f(C ∪A)− f(A).

∗Based on work dating 2010–2011.

1

The standard example of a monotone submodular function is a coverage function: the elements
of U are interpreted as subsets of a universe V with a non-negative weight function w : V → R≥0,
and f(S) is the total weight of all elements (of V) covered by the sets in S.

When I consists of all subsets of U of size at most r — the so-called uniform matroid — the
greedy algorithm has an approximation ratio of 1−1/e (or even slightly better, for fixed r) [NWF78].
For general matroids, however, the approximation ratio drops to 1/2 [FNW78]. A simple example
showing the tightness of 1/2 is given by a coverage function over a partition matroid. In a partition
matroid, the universe U is partitioned into r sets P1, . . . , Pr, and the set I consists of all subsets of
P1 × · · ·× Pr. Here is the example:

P1 = {A = {x}, B = {y, z}}, P2 = {C = {y}}, w(x) = w(y) = 1, w(z) = 󰂃 > 0.

The optimal solution is {A,C}, of value 2, but the greedy algorithm produces the solution {B,C},
whose value is only 1 + 󰂃. In this example, the element z guarantees that the algorithm chooses B
in the first step. It is more convenient to allow the algorithm to break ties adversarially, in which
case we can dispense with this extra element.

There is a simple modification of the greedy algorithm, for the specific case in which I is a
partition matroid with parts P1, . . . , Pr, which overcomes this counterexample. Given a permutation
π of {1, . . . , r}, the algorithm proceeds as follows:

1. Initialize S ← ∅.

2. For i = π(1), . . . ,π(r):

S ← S ∪ {x}, where x = arg max
y∈Pi

f(S ∪ {y}).

3. Return S.

If we choose the permutation π = 12, then the greedy algorithm still fails on the aforementioned
example. But when π = 21, it finds the optimal solution! This suggests running the modified greedy
algorithm on all possible orderings. However, this is not feasible unless r is very small, since there
are r! many different orderings. Instead, it is natural to consider picking π at random. We call this
algorithm random order greedy. We are interested in analyzing the expected approximation ratio
of this algorithm, as a function of r.

The algorithm, as stated, is not completely defined, since we haven’t specified a tie-breaking
rule. Our analysis will be oblivious to the tie-breaking rule used, as long as the following natural
property holds:

The tie-breaking rule used to select x ∈ Pπ(j) is independent
of the relative order of π(j + 1), . . . ,π(n).

This assumption is especially natural if we consider random order greedy as an online algorithm,
in which the parts P1, . . . , Pr arrive in random order and are revealed to the algorithm one at a
time. Whenever each part is revealed, the algorithm must immediately choose some element from
the part to add to the solution.

Definition 1.1. Given r ≥ 1, we define ρ(r) as the supremum value ρ∗ such that the expected
approximation ratio of random order greedy is at least ρ∗ on any instance.

2

To illustrate the definition, the example above shows that ρ(r) ≤ (1/2 + 1)/2 = 3/4.
It is always the case that ρ(r) ≥ 1/2. Recently, Buchbinder, Feldman and Garg [BFG] have

shown that ρ(r) ≥ c for some absolute constant c > 1/2 independent of r. In this short note, we
prove the following result:

Theorem 1.2. We have ρ(1) = 1, ρ(2) = 2/3, ρ(3) = 7/12, and 103/180 ≤ ρ(4) ≤ 19/33.

Since 7/12 < 1−1/e, this shows that random order greedy performs worse than other approxima-
tion algorithms such as continuous greedy [CCPV11, FNS11] or non-oblivious local search [FW14],
which give the optimal approximation ratio 1− 1/e for any matroid.

2 Two parts

In this section we prove that ρ(2) = 2/3. The proof consists of two parts: an upper bound and a
lower bound. The upper bound is given by a simple construction, based on a coverage function.
All other upper bounds in this note are also based on coverage functions, which we conjecture are
always enough to obtain the upper bound on ρ(r) for any r.

2.1 Upper bound

The upper bound stems from the following set system:

P1 P2

O1 = {a1, b1, c1} O2 = {a2, b2, c2}
S1 = {a2, b2, c1} S2 = {a2, b1, c1}

All elements have weight 1 in this case.
It is easy to check that {O1, O2} is the optimal solution, which contains 6 elements. In contrast,

the random order greedy could operate as follows (breaking ties adversarially):

• When π = 12: Choose S1 in the first step. Any choice in the second step will result in a
solution containing only 4 elements.

• When π = 21: Choose S2 in the first step. Any choice in the second step will result in a
solution containing only 4 elements.

This shows that the approximation ratio of random order greedy on this example is 4/6 = 2/3.
As mentioned above, by adding small-weight elements to S1, S2 we can force random order

greedy to choose S1, S2 (even non-adversarially), at an arbitrarily small cost in the resulting ap-
proximation ratio.

2.2 Lower bound

For the lower bound, we use the following notation:

• o1, o2 is an optimal solution.

• s1, s12 is the solution output by the algorithm when π = 12; note s1 ∈ P1 and s12 ∈ P2.

• s2, s21 is the solution output by the algorithm when π = 21.

3

Since the algorithm always makes a choice which maximizes the value of the objective func-
tion, we know that the following inequalities must hold, where we use the shorthand notation
f(x1, . . . , xℓ) = f({x1, . . . , xℓ}):

• Considering the first step when π = 12: f(s1) ≥ f(o1), f(s21).

• Considering the first step when π = 21: f(s2) ≥ f(o2), f(s12).

• Considering the second step when π = 12: f(s12|s1) ≥ f(o2|s1), f(s2|s1).

• Considering the second step when π = 21: f(s21|s2) ≥ f(o1|s2), f(s1|s2).

From these inequalities, we can deduce

3f(s1, s12) = 3f(s1) + 3f(s12|s1)
≥ f(s1) + 2f(o1) + 2f(o2|s1) + f(s2|s1)
= 2f(o1) + 2f(o2|s1) + f(s1, s2).

Switching the roles of 1 and 2, we similarly deduce

3f(s2, s21) ≥ 2f(o2) + 2f(o1|s2) + f(s1, s2).

Summing both inequalities gives

3f(s1, s12) + 3f(s2, s21) ≥ 2f(o1) + 2f(o2) + 2f(o1|s2) + 2f(o2|s1) + 2f(s1, s2).

We now turn our gaze to the right-hand side: clearly f(o1) + f(o2) ≥ f(o1, o2), and moreover

f(o1|s2) + f(o2|s1) + f(s1, s2) ≥ f(o1|o2, s1, s2) + f(o2|s1, s2) + f(s1, s2) ≥
f(o1|o2, s1, s2) + f(o2, s1, s2) ≥ f(o1, o2, s1, s2) ≥ f(o1, o2).

In total, this shows that
3f(s1, s12) + 3f(s2, s21) ≥ 4f(o1, o2),

or equivalently,
f(s1, s12) + f(s2, s21)

2
≥ 2

3
f(o1, o2).

The left-hand side is the expected value of the solution produced by the greedy algorithm, and so
this completes the proof that the approximation ratio is always at least 2/3.

3 A lower bound method

The main inequality driving the lower bound on ρ(2) is

f(o1|s2) + f(o2|s1) + f(s1, s2) ≥ f(o1, o2).

In this section we discuss a general method of proving such inequalities, using a kind of proof
system constructed expressly for this purpose.

4

Definition 3.1. Let U be a universe. A line is an expression of the form α → b, where α ⊆ U and
b ∈ U . A proof is a sequence of lines αi → bi such that αi ⊆ {bj : j < i}.

As an example, here is a proof:

→ s1

s1 → s2

s1 → o2

s2 → o1

We will abbreviate lines with the same left-hand side by combining their right-hand sides. For
example, the proof above can be shortened to

→ s1

s1 → s2, o2

s2 → o1

The main result about proofs is the following lemma, which generalizes the aforementioned
main inequality.

Lemma 3.2. Let (αi → bi)1≤i≤ℓ be a proof. Then every monotone submodular function f on U
satisfies the following inequality:

ℓ󰁛

i=1

f(bi|αi) ≥ f(b1, . . . , bℓ).

Proof. The proof is by induction on ℓ. When ℓ = 1, necessarily α1 = ∅, and so the inequality is the
tautological f(b1) ≥ f(b1).

Now suppose that the claim is true for ℓ, and consider an additional line αℓ+1 → bℓ+1, where
αℓ+1 ⊆ {b1, . . . , bℓ}. Using the induction hypothesis,

ℓ+1󰁛

i=1

f(bi|αi) ≥ f(b1, . . . , bℓ) + f(bℓ+1|αℓ+1) ≥ f(b1, . . . , bℓ) + f(bℓ+1|β1, . . . , bℓ) = f(b1, . . . , bℓ+1).

The next step is relating this lemma to random order greedy, as applied to a partition matroid
with r parts P1, . . . , Pr. We first need to fix some notations. We denote an optimal solution by

o1, . . . , or.

When run on a permutation π of {1, . . . , r}, random order greedy selects elements from the parts
Pπ(1), . . . , Pπ(r), in this order. Furthermore, the element chosen from Pπ(j) depends only on the
ones chosen in the preceding steps, as a consequence of our assumption on the tie-breaking rule.
Therefore we can denote the sets chosen by random order greedy on this permutation by

sπ(1), sπ(1)π(2), . . . , sπ(1)...π(r).

We think of the elements as colored by the parts they belong to: oi has color i and sπ(1)...π(i) has
color π(i).

We can now describe the specific type of proofs which will be useful for analyzing random order
greedy.

5

Definition 3.3. A line α → b is legal if α = sπ(1), sπ(1)π(2), . . . , sπ(1)...π(t) for some permutation π,
and b has color π(t+ 1).

A proof is legal if all lines are legal, and furthermore each of o1, . . . , or appears on the right-hand
side of some line.

A legal proof corresponds to an upper bound on f(o1, . . . , or), as indicated by the following
simple lemma.

Lemma 3.4. Let (αi → bi)1≤i≤ℓ be a legal proof. Suppose αi → bi corresponds to a permutation πi,
where αi has length ti. Then for every monotone submodular function f , the outcome of running
random order greedy satisfies

ℓ󰁛

i=1

f(sπi(1)...πi(ti+1)|sπi(1), . . . , sπi(1)...πi(ti)) ≥ f(o1, . . . , or).

Proof. The semantics of random order greedy guarantees that for every line i,

f(sπi(1)...πi(ti+1)|sπi(1), . . . , sπi(1)...πi(ti)) ≥ f(bi|sπi(1), . . . , sπi(1)...πi(ti)) = f(bi|αi).

Therefore Lemma 3.2 implies that

ℓ󰁛

i=1

f(sπi(1)...πi(ti+1)|sπi(1), . . . , sπi(1)...πi(ti)) ≥
ℓ󰁛

i=1

f(bi|αi) ≥ f(b1, . . . , bℓ) ≥ f(o1, . . . , or),

using the assumption that all of o1, . . . , or appear in b1, . . . , bℓ.

The next step is symmetrization. The inequality in the statement of Lemma 3.4 remains valid
if we apply a random permutation of the parts. Such a random permutation turns each quantity
of the form f(s1...t+1|s1, . . . , s1...t) into the symmetrized quantity

St := E
π
[f(sπ(1)...π(t+1)|sπ(1), . . . , sπ(1)...π(t))].

This allows us to deduce a clean corollary of Lemma 3.4, which requires first a definition.

Definition 3.5. The weight of a legal proof (αi → bi)1≤i≤ℓ is the vector w0, . . . , wr−1, where wt is
the number of lines in which |αi| = t.

For example, the legal proof considered above has weight (1, 3). Another legal proof, of weight
(2, 0), is the trivial

→ o1, o2.

Lemma 3.6. If a legal proof has weight w then

r−1󰁛

t=0

wtSt ≥ f(o1, . . . , or).

Proof. This follows straightforwardly from Lemma 3.4 by symmetrization, as indicated above.

6

Let us denote by S the expected value of the solution produced by random order greedy:

S = E
π
[f(sπ(1), . . . , sπ(1)...π(r))].

We can relate S to S0, . . . , Sr−1 as follows:

Lemma 3.7. We have S = S0 + · · ·+ Sr−1.

Proof. Simple application of the chain rule f(a, b) = f(a) + f(b|a).

We are now ready to state the main result of this section:

Theorem 3.8. Suppose w1, . . . , ws are weight vectors of legal proofs, and let α1, . . . ,αs ≥ 0 satisfy
the constraint

α1w
1 + · · ·+ αsw

s = (1, . . . , 1).

Then the approximation ratio of random order greedy on r parts satisfies

ρ(r) ≥ α1 + · · ·+ αs.

Proof. Combining Lemma 3.7 and Lemma 3.6, we obtain

S ≥ S1 + · · ·+ Sr =

s󰁛

k=1

αk

r−1󰁛

t=0

wk
t St ≥

s󰁛

k=1

αkf(o1, . . . , or).

As an illustration, above we have shown that w1 = (1, 3) and w2 = (2, 0) are weight vectors of
legal proofs. Taking α1,α2 = 1/3, 1/3, we see that ρ(2) ≥ 2/3.

4 Three parts

In this section we prove that ρ(3) = 7/12, leveraging our work in Section 3.

4.1 Upper bound

The upper bound stems from the following set system:

P1 P2 P3

O1 = {x1, y1, z1, w1} O2 = {x2, y2, z2, w2} O3 = {x3, y3, z3, w3}
S1 = {x2, y2, x3, y3} S2 = {x1, y1, x3, y3} S3 = {x1, y1, x2, y2}

S12 = {x1, x2, z3} S13 = {x1, x3, z2}
S21 = {x1, x2, z3} S23 = {x2, x3, z1}
S31 = {x1, x3, z2} S32 = {x2, x3, z1}

As in Section 2.1, all elements have weight 1. Note that Sij = Sji.
It is easy to see that {O1, O2, O3} is the optimal solution. By choosing an appropriate tie-

breaking rule (or by suitably adding elements of small weight), we can guarantee that when the

7

permutation is ijk, random order greedy chooses the sets Si, Sij , Sijk. To see this, it suffices to
check the case ijk = 123, by symmetry. We need to check the following conditions:

|S1| ≥ |O1|, |S21|, |S31|,
|S1 ∪ S12| ≥ |S1 ∪O2|, |S1 ∪ S2|, |S1 ∪ S32|,

|S1 ∪ S12 ∪O3| ≥ |S1 ∪ S12 ∪ S3|, |S1 ∪ S12 ∪ S13|, |S1 ∪ S12 ∪ S23|.

Substituting the actual values, we get

4 ≥ 4, 3, 3, 6 ≥ 6, 6, 5, 7 ≥ 7, 7, 7.

The solution produced by random order greedy has value 7, compared to the optimal 12.

4.1.1 Symmetric upper bounds

The upper bound proved in this section is symmetric: it is invariant under permutations of the
three indices 1, 2, 3 (curiously, the upper bound in Section 2.1 doesn’t satisfy this property). While
symmetric upper bounds are not the most general ones, they are easier to construct and analyze.
In particular, it suffices to describe the following sets:

O1, S1, S12, . . . , S1...r.

In all our examples, in fact S1...r = Or.
The upper bound can thus be described succinctly as follows:

O1 = {x1, y1, z1, w1}
S1 = {x2, y2, x3, y3}
S12 = {x1, x2, z3}

4.2 Lower bound

For the lower bound, we use the method of Section 3. We start by exhibiting three legal proofs.
The first legal proof has the trivial weight vector (3, 0, 0):

→ o1, o2, o3

The second legal proof has weight vector (1, 3, 2):

→ s2

s2 → o3, s23

s2, s23 → o1, s1

s1 → o2

The third legal proof has weight vector (1, 2, 4):

→ s1

s1 → s12

s1, s12 → o3, s13

s1, s13 → o2, s2

s2 → o1

8

The following equation shows, via Theorem 3.8, that ρ(3) ≥ 14/24 = 7/12:

5(3, 0, 0) + 6(1, 3, 2) + 3(1, 2, 4) = 24(1, 1, 1).

5 Four parts

In this section we prove that 103/180 ≤ ρ(4) ≤ 19/33.

5.1 Upper bound

The upper bound is given by a set system, which we describe along the lines of Section 4.1.1:

O1 = {a1, b1, c1, d1, e1, f1, g1}
S1 = {b2, c2, b3, c3, b4, c4}
S12 = {c1, e2, d3, e3, f3, d4, e4, f4}
S123 = {f1, f2, g4}

This set system has the additional symmetry that Sijk = Sjik.
In contrast to all examples described above, this time different elements have different weights:

x ai bi ci di ei fi gi
w(x) 14 14 8 5 4 7 14

The optimal solution is {O1, O2, O3, O4}. A long but routine calculation shows that ran-
dom order greedy could choose the sets S1, S12, S123, O4 when the permutation is 1234. Since
f(O1, O2, O3, O4) = 264 while f(S1, S12, S123, O4) = 152, this shows that ρ(4) ≤ 152/264 = 19/33.

We mention without proof that a more complicated example (which isn’t symmetric) gives an
improved upper bound of 207/361.

5.2 Lower bound

The lower bound follows via the method of Section 3. This time we need four different legal proofs.
The first legal proof has the trivial weight vector (4, 0, 0, 0):

→ o1, o2, o3, o4

The second legal proof has weight vector (2, 3, 0, 0):

→ s1, o1

s1 → o2, o3, o4

The third legal proof has weight vector (1, 1, 6, 0):

→ s1

s1 → s12

s1, s12 → s3, s34, o3, o4

s3, s34 → o1, o2

9

The final legal proof has weight vector (1, 1, 3, 5):

→ s1

s1 → s12

s1, s12 → s123

s1, s12, s123 → s124, s34, o4

s1, s12, s124 → s3, o3

s3, s34 → o1, o2

The following equation shows, via Theorem 3.8, that ρ(4) ≥ 103/180:

11(4, 0, 0, 0) + 44(2, 3, 0, 0) + 12(1, 1, 6, 0) + 36(1, 1, 3, 5) = 180(1, 1, 1, 1).

6 Methodology

In this final section, we explain briefly how we used computer searches to find the proofs in the
preceding sections.

6.1 Upper bounds

We found all upper bounds using the framework of Section 4.1.1. Let us take as an example the
upper bound in Section 4.1. The most general form of a symmetric upper bound is

O1 = A1

S1 = B1 ∪ C2 ∪ C3

S12 = D1 ∪ E2 ∪ F3

We will construct a linear program whose value is the best upper bound that can be obtained in
this way. The variables of the linear program are the weights of the elements in the Venn diagram
of A,B,C,D,E, F (64 in total). Section 4.1 states 9 linear inequalities that these non-negative
weights must satisfy in order to satisfy the semantics of random order greedy for the permutation
123. We specify that the total weight of O1, O2, O3 is 1, and minimize the total weight of S1, S12, O3.
The value of this program is 7/12, and one optimal solution is given by

w(A ∩ B̄ ∩ C̄ ∩ D̄ ∩ Ē ∩ F̄) = w(A ∩ B̄ ∩ C ∩ D̄ ∩ Ē ∩ F̄) =

w(A ∩ B̄ ∩ C ∩D ∩ E ∩ F̄) = w(A ∩ B̄ ∩ C̄ ∩ D̄ ∩ Ē ∩ F) =
1

12
.

This is exactly the solution appearing in Section 4.1 (scaled by a factor of 12), in which the
corresponding elements are called w, y, x, z.

6.2 Lower bounds

We found all lower bounds using the framework of Section 3. The idea is to enumerate all
“minimal” legal proofs, compute their weight vectors w1, . . . , ws, and then solve a linear pro-
gram which maximizes α1 + · · · + αs (over non-negative α1, . . . ,αs) subject to the constraint
α1w

1 + · · ·+ αsw
s = (1, . . . , 1).

10

To enumerate all legal proofs, we repeatedly come up with elements b such that α → b can be
added to the proof. Since we are only interested in the resulting weight vector, we want to know
what are the possible sizes of α. If α → b then in fact α′ → b for all prefixes α′ of α. Therefore, the
possible sizes of α are always 0, . . . , t for some t. As an optimization, we only consider the maximal
choice t. If the resulting weight vector is (w0, . . . , wr−1), then other weight vectors can be obtained
by “shifting mass to the left” (an operataion corresponding to majorization).

Instead of explicitly generating all weight vectors from the “maximal” weight vectors considered
above, we change the condition w := α1w

1+ · · ·+αsw
s = (1, . . . , 1) to the condition “(1, . . . , 1) can

be obtained from w by shifting mass to the left”, or equivalently, w0+ · · ·+wt ≤ t for 0 ≤ t ≤ r−1.
(The condition w0 + · · ·+ wr−1 = r follows from our maximizing α1 + · · ·+ αs.)

References

[BFG] Niv Buchbinder, Moran Feldman, and Mohit Garg. Online submodular maximization:
Beating 1/2 made simple. Manuscript.

[CCPV11] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a
monotone submodular function subject to a matroid constraint. SIAM J. Comput.,
40(6):1740–1766, 2011.

[Edm71] Jack Edmonds. Matroids and the greedy algorithm. Math. Programming, 1(1):127–136,
1971.

[FNS11] Feldman, Joseph (Seffi) Naor, and Roy Schwartz. A unified continuous greedy algorithm
for submodular maximization. In Proc. IEEE 52nd Annual Symposium on Foundations
of Computer Science (FOCS 2011), 2011.

[FNW78] Marshall L. Fisher, George L. Nemhauser, and Leonard A. Wolsey. An analysis of ap-
proximations for maximizing submodular set functions—II. Math. Programming, 8:73–
87, 1978.

[FW14] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maxi-
mization subject to a matroid constraint. SIAM J. Comp., 43:514–542, 2014.

[NWF78] George L. Nemhauser, Leonard A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions—I. Math. Programming, 1:265–
294, 1978.

[Rad57] Richard Rado. Note on independence functions. Proc. of the London Math. Soc., s3-
7(1):300–320, 1957.

11

