Deciding whether a regular language is power-closed is PSPACE-complete

Yuval Filmus

September 2, 2012

Abstract

A regular language L is power-closed if whenever $x \in L$, also $x^k \in L$ for all $k \geq 1$. We show that given a deterministic finite automaton A, it is PSPACE-complete to decide whether the language accepted by A is power-closed.

1 Introduction

Let L be a language over some finite alphabet Σ. Calbrix and Nivat [4], while studying prefix and period languages of ω-languages, defined the power language of L:

$$\text{Pow}(L) = \{x^k : x \in L, k \geq 1\}.$$

We say that L is power-closed if $L = \text{Pow}(L)$. With each regular ω-language, Calbrix and Nivat associate two regular languages, the prefix language and the period language. The latter language is power-closed.

Calbrix [3] posed the problem of characterizing for which regular languages L, the power language $\text{Pow}(L)$ is also regular. The problem was solved for unary languages by Cachat [2], and partial results of Horváth, Leupold and Lischke [7] were followed by a complete solution by Fazekas [6]. Other related research includes Lischke [9], which considered the complexity of the language consisting of all roots of a given language, and Anderson, Rampersad, Santean and Shallit [1], which (among other results) consider the complexity of determining whether all words in a language are powers.

Calbrix and Nivat showed that a regular language is power-closed if and only if it can be written as a finite union

$$L = \bigcup_{i=1}^{N} L_i^+,$$

where all L_i are regular. Their proof is constructive: L_i are the congruence classes of the syntactic congruence of L. Since L is the union of the L_i, their proof gives an algorithm for deciding whether a regular language is power-closed.
The complexity of the algorithm depends on the number of congruence classes. If the language L is presented by an n-state deterministic finite automaton, then there can be as many as n^n congruence classes, and therefore the algorithm is EXPTIME. This algorithm is explicitly mentioned by Fazekas [6].

We consider the problem of deciding whether a regular language, presented as a deterministic finite automaton, is power-closed. We improve on Calbrix and Nivat’s method by giving a PSPACE algorithm. Complementing this result, we show that the problem is PSPACE-hard. This also shows that our algorithm is optimal.

Anderson et al. showed that it is PSPACE-complete to determine, given a deterministic finite automaton A and an integer k, whether the kth power of the language accepted by A is regular. Our result generalizes similarly: it is PSPACE-complete to determine, given a deterministic finite automaton A and an integer k, whether the language accepted by A is closed under taking kth powers. Anderson et al. prove the hardness part of their result using an old result of Kozen [8], whose proof is very similar to our PSPACE-hardness proof.

2 Definitions

A deterministic finite automaton (DFA for short) is given by a quadruple $A = \langle Q, q_0, F, \delta \rangle$, where Q is the set of states, q_0 is the initial state, F is the set of accepting states, and δ is the transition function. For simplicity, we assume that the DFA operates over the binary alphabet $\Sigma = \{0, 1\}$. The language accepted by the DFA is $L(A)$.

Fix some standard encoding of DFAs with the property that the encoding of a DFA with n states has length $\text{poly}(n)$. PC is the language consisting of all DFAs A such that $L(A)$ is power-closed.

For $n \geq 1$, $[n] = \{1, \ldots, n\}$. For a function f on a set S, $f^{(k)}$ is the kth composition of f on itself. So $f^{(1)}(x) = f(x)$, $f^{(2)}(x) = f(f(x))$, and so on. The length of a string w is denoted $|w|$. The empty string is ϵ. We say that w is a power if $w = z^k$ for some word z and $k > 1$.

For $n \geq 1$ and $0 \leq x \leq 2^n - 1$, $B_n(x)$ is a string of length n which is the binary encoding of x. For a string w and $i \in [|w|]$, $\text{bit}(w, i)$ is the ith bit of w. The first bit of w is $\text{bit}(w, 1)$, and so on.

3 PSPACE algorithm

Our algorithm for deciding whether a regular language is power-closed uses the fact that the syntactic congruence has at most n^n congruence classes, where n is the size of the minimal DFA. This fact implies that if a language is not power-closed, then there is a counterexample of length at most n^n.

Lemma 3.1. Let $A = \langle Q, q_0, F, \delta \rangle$ be a DFA with n states. If $L(A)$ is not power-closed then there is a word w of length at most n^n and $2 \leq k \leq n$ such that $w \in L(A)$ and $w^k \notin L(A)$.
Proof. Let Λ be the set of congruence classes of the syntactic congruence of A. Each congruence class \(L \in \Lambda \) has a representation

\[
L = \{ w : \forall q \in Q, \delta(q, w) = \lambda(q) \}, \quad \lambda : Q \to Q.
\]

Since \(L \) is determined by \(\lambda \), \(|\Lambda| \leq n^n\). We can construct a DFA with set of states \(\Lambda \) that upon reading a word \(w \), reaches the unique state \(L \in \Lambda \) such that \(w \in L \). This shows that each congruence class contains a word of length at most \(n \).

It is easy to see that \(L(A) \) is power-closed if and only if for all congruence classes \(L \), the following property holds for their representing function \(\lambda \): if \(\lambda(q_0) \in F \) then \(\lambda^{(k)}(q_0) \in F \) for all \(k \geq 1 \). Hence \(L(A) \) is not power-closed if for some congruence class \(L \) with corresponding function \(\lambda \) it is true that \(\lambda(q_0) \in F \) but \(\lambda^{(k)}(q_0) \notin F \) for some \(k > 1 \). Since the domain of \(\lambda \) has size \(n \), we can assume \(k \leq n \).

Theorem 3.2. The language \(PC \) is in PSPACE.

Proof. According to Savitch’s theorem [10], \(NPSPACE = PSPACE \). Therefore it is enough to give an \(NPSPACE \) algorithm for \(PC \). Given a DFA \(A = (Q, q_0, F, \delta) \) with \(n \) states, the algorithm guesses a word \(w \) of length at most \(n^n \), and calculates the function \(\lambda : Q \to Q \) given by \(\lambda(q) = \delta(q, w) \). This requires space \(O(n \log n) \). It then verifies that \(\lambda(q_0) \in F \) while \(\lambda^{(k)}(q_0) \notin F \) for some \(2 \leq k \leq n \).

4 PSPACE hardness

In order to show that \(PC \) is PSPACE-hard, we will reduce a variant of \(TQBF \) to \(PC \).

Definition 4.1. An instance of \(TQBF \) consists of a totally quantified Boolean formula

\[
\psi = Q_1x_1 \cdots Q_nx_n \phi(x_1, \ldots, x_n),
\]

where \(Q_i \in \{\forall, \exists\} \). The language \(TQBF \) consists of all true totally quantified Boolean formulas. The language \(cTQBF \) consists of all true totally quantified Boolean formulas in which \(\phi \) is in conjunctive normal form.

Lemma 4.2. The language \(cTQBF \) is PSPACE-complete.

Proof sketch. It is well-known that \(TQBF \) is PSPACE-complete. Clearly \(cTQBF \in PSPACE \), and it remains to reduce \(TQBF \) to \(cTQBF \). Given a formula \(\phi \) in the variables \(x_1, \ldots, x_n \), one can construct a formula \(\sigma \) in conjunctive normal form with extra variables \(\vec{y} \) such that \(\phi \leftrightarrow \exists \vec{y}\sigma \leftrightarrow \forall \vec{y}\sigma \). Moreover, \(\sigma \) can be constructed in size which is polynomial in the size of \(\phi \). Since

\[
Q_1x_1 \cdots Q_nx_n \phi \leftrightarrow Q_1x_1 \cdots Q_nx_n \exists \vec{y}\sigma,
\]

this reduces \(TQBF \) to \(cTQBF \). □
The general idea of the reduction is given by the following lemma, whose proof will occupy most of the section.

Lemma 4.3. Let $\psi = Q_1 x_1 \cdots Q_n x_n \phi(x_1, \ldots, x_n)$ be an instance of $cTQBF$, where ϕ consists of m clauses. Let $p \geq 3n$ be prime. There is an algorithm running in time $\text{poly}(n, m, p)$ which constructs a DFA A with the following properties:

(a) There is a word $z_\psi \notin L(A)$ such that $z_\psi^p \in L(A)$, and furthermore z_ψ^p is the only power in $L(A)$.

(b) For some k, $\text{bit}(z_\psi, k)$ is the truth value of ψ.

In the rest of the section, whenever we say “polysize”, we mean an object whose size is $\text{poly}(n, m, p)$. The main theorem of this section follows directly from the lemma.

Theorem 4.4. The language PC is PSPACE-hard.

Proof. We reduce $cTQBF$ to PC. Let $\psi = Q_1 x_1 \cdots Q_n x_n \phi(x_1, \ldots, x_n)$ be an instance of $cTQBF$. Bertrand’s postulate shows that there is a prime $p \geq 3n$ such that $p \leq 6n$. We find such a prime in time $\text{poly}(n)$. Construct the polysize DFA A of Lemma 4.3. Using A, construct another polysize DFA B such that $L(B) = L(A) \cap \Sigma^k \Sigma^\omega$. We claim that $L(B)$ is power-closed if and only if ψ is true. Indeed, if ψ is false then $z_\psi \in L(B)$ while $z_\psi^p \notin L(B)$, and so $L(B)$ is not power-closed. Conversely, if $L(B)$ is not power-closed then there is a power $w = z^k \notin L(B)$ such that $z \in L(B)$. Since $w \in L(A)$, necessarily $w = z_\psi^p$. Since $\text{bit}(w, k) = 0$, we conclude that ψ is false. □

The idea behind the proof of Lemma 4.3 is that while a polysize DFA cannot recognize z_ψ using one pass, it can recognize it using multiple passes. We proceed to define z_ψ.

Definition 4.5. The word z_ψ is a concatenation $z_\psi = M_\psi y_\psi$ of $M_\psi = 10^{2n(m+1)}1$ and $y_\psi = B_n(0)^m v_{B_n(0)} \cdots B_n(2^n - 1)^m v_{B_n(2^n - 1)}$, and $v_{x_1 \ldots x_n}$ is defined as follows, for $i \in [n]$: $\text{bit}(v_{x_1 \ldots x_n}, i) = \begin{cases} Q_i y_i \cdots Q_n y_n \phi(x_1, \ldots, x_{i-1}, y_i, \ldots, y_n) & \text{if } x_i = \cdots = x_n = 1, \\ 0 & \text{otherwise.} \end{cases}$

We divide the string y_ψ into blocks of size n and superblocks of size $(m + 1)n$.

The word M_ψ serves as a marker, and the actual data appears in y_ψ. We start by showing how to recognize y_ψ using $3n$ passes.
Lemma 4.6. There are $3n$ efficiently constructible polysize DFAs A_1, \ldots, A_{3n} such that

$$\bigcap_{i=1}^{3n} L(A_i) = \{y_\psi\}.$$

Proof. For each $i \in [n]$ we will construct three DFAs A_i, A_{n+i}, A_{2n+i} which are in charge of checking the ith bit in each input block.

The DFA A_i accepts the language

$$(((\Sigma^i-1\Sigma^{n-i})^m + (\Sigma^i-1\Sigma^{n-i})^m)\Sigma^n)^*.$$

Together, the DFAs A_1, \ldots, A_n verify that each superblock is of the form $B_n(x)^mv$.

The DFA A_{n+i} checks that the first superblock is of the form $B_n(0)^mv$, that the last superblock is of the form $B_n(2^n - 1)^mv$, and that any two consecutive superblocks conform to the pattern

$$\Sigma^i-1(0(\Sigma^{n-i}\setminus 1^{n-i})\Sigma^{n-\Sigma^i-1}\Sigma^{n-i}\Sigma^m + \Sigma^{i-1}01^{n-1}\Sigma^{n-\Sigma^i-1}1\Sigma^{n-i}\Sigma^m + \Sigma^{i-1}11^{n-1}\Sigma^{n-\Sigma^i-1}0\Sigma^{n-i}\Sigma^m).$$

In words, if two consecutive superblocks are of the form $x_1 \cdots x_n\Sigma^m$ and $x_1' \cdots x_n\Sigma^m$, then $x_i = 1$ implies $x_i' = \overline{x_i}$, and otherwise $x_i' = x_i$.

Together, the DFAs A_1, \ldots, A_{2n} verify the structure of y_ψ up to the value of $v_{B(0)}$, $\ldots, v_{B(2^n-1)}$.

Before defining A_{2n+i}, we define a helper function $o_i : \{0,1\}^2 \rightarrow \{0,1\}$:

$$o_i(b,c) = \begin{cases} b \land c & \text{if } Q_i = \forall, \\ b \lor c & \text{if } Q_i = \exists. \end{cases}$$

In order to define A_{2n+i}, consider first the case $i = n$. The automaton has one bit of memory b. It operates one superblock $x[1] \cdots x[m]v$ at a time (here $|x[1]| = \cdots = |x[m]| = |v| = n$). While reading $x[j]$, it computes the truth value c_j of the jth clause of ϕ. After reading $x[m]$, it calculates $c = c_1 \land \cdots \land c_m$. Now there are two cases: if $x[m]_n = 0$ then the automaton stores c at memory b and verifies that $\text{bit}(v, n) = 0$. If $x[m]_n = 1$, it verifies that $\text{bit}(v, n) = o_n(b,c)$.

The case $i < n$ is similar. Again, the automaton has one bit of memory b, and operates one superblock $x[1] \cdots x[m]v$ at a time. This time there are three cases. If $x[m]_{i+1} \cdots x[m]_n \neq 1^{n-i}$ then the automaton simply verifies that $\text{bit}(v, i) = 0$. If $x[m]_{i+1} \cdots x[m]_n = 1^{n-i}$ then the automaton calculates $c = \text{bit}(v, i+1)$. If $x[m]_i = 0$ then it stores c at memory b and verifies that $\text{bit}(v, i) = 0$. If $x[m]_i = 1$, it verifies that $\text{bit}(v, i) = o_i(b,c)$.

The DFAs A_1, \ldots, A_{3n} together verify the exact structure and contents of y_ψ, and they are all polysize.

The automata A_1, \ldots, A_{3n} are pasted together using the following lemma.

Lemma 4.7. Let B_1, \ldots, B_q be DFAs of maximal size S, and M a word. There is an efficiently constructible DFA B whose size is $\text{poly}(S, q, |M|)$, such that

$$L(B) = \{w_1Mw_2M \cdots Mw_q : w_i \in L(B_i) \cap \Sigma^\star M\Sigma^\star\}.$$
In other words, $L(B)$ consists of M-free words from $L(B_1), \ldots, L(B_q)$, separated by M.

Proof. Let C be a DFA such that $L(C) = \{M\}$. For $i \in [q-1]$, construct a DFA C_i with a single accepting state such that

$$L(C_i) = \{wM : w_i \in L(B_i) \cap \Sigma^* M \Sigma^*\}.$$

The DFA C_i keeps track of the current state of both B_i and C, as well as the state that B_i were in $|M|$ symbols ago. Also, construct a DFA C_q such that

$$L(C_q) = \{w : w_i \in L(B_q) \cap \Sigma^* M \Sigma^*\}.$$

Finally, the required DFA B is constructed by taking the DFAs C_1, \ldots, C_q, and for $i \in [q-1]$, identifying the accepting state of C_i and the initial state of C_{i+1}.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let A_0 be a DFA accepting the language $\{\epsilon\}$, and let A_1, \ldots, A_{3n} be the DFAs constructed by Lemma 4.6. Construct a DFA A using Lemma 4.7 from $A_0, A_1, \ldots, A_{3n}, A_1, \ldots, A_{p-3n}$ (assuming $p \leq 6n$), using $M = M_\psi$. It is easy to check that A is polysize, and it remains to verify the properties of A claimed in the lemma. For the second claim, the truth value of ψ is equal to bit($v_1^n, 1$).

For the first claim, it is easy to check that y_ψ does not contain M_ψ, and therefore $z_\psi^* \in L(A)$ while $z_\psi \notin L(A)$. On the other hand, suppose $w = z^k \in L(A)$ is a power. If M_ψ appears l times in z then it appears kl times in w, hence $kl = p$. Since $k > 1$, we conclude that $k = p$ and $l = 1$. Also, z must be of the form $z = M_\psi y$. The definition of $L(A)$ implies that $y \in L(A_1) \cap \cdots \cap L(A_{3n})$, hence $y = y_\psi$ and $z = z_\psi$.

5 Acknowledgments

This paper answers a question posed on cstheory.stackexchange.com by Vincenzo Ciancia. The proof of Theorem 4.4 was inspired by [5].

References

