
Deciding whether a regular language is

power-closed is PSPACE-complete

Yuval Filmus

September 2, 2012

Abstract

A regular language L is power-closed if whenever x ∈ L, also xk ∈ L
for all k ≥ 1. We show that given a deterministic finite automaton A,
it is PSPACE-complete to decide whether the language accepted by A is
power-closed.

1 Introduction

Let L be a language over some finite alphabet Σ. Calbrix and Nivat [4], while
studying prefix and period languages of ω-languages, defined the power language
of L:

Pow(L) = {xk : x ∈ L, k ≥ 1}.

We say that L is power-closed if L = Pow(L). With each regular ω-language,
Calbrix and Nivat associate two regular languages, the prefix language and the
period language. The latter language is power-closed.

Calbrix [3] posed the problem of characterizing for which regular languages
L, the power language Pow(L) is also regular. The problem was solved for unary
languages by Cachat [2], and partial results of Horváth, Leupold and Lischke [7]
were followed by a complete solution by Fazekas [6]. Other related research in-
cludes Lischke [9], which considered the complexity of the language consisting of
all roots of a given language, and Anderson, Rampersad, Santean and Shallit [1],
which (among other results) consider the complexity of determining whether all
words in a language are powers.

Calbrix and Nivat showed that a regular language is power-closed if and only
if it can be written as a finite union

L =

N⋃
i=1

L+
i , (1)

where all Li are regular. Their proof is constructive: Li are the congruence
classes of the syntactic congruence of L. Since L is the union of the Li, their
proof gives an algorithm for deciding whether a regular language is power-closed.

1

The complexity of the algorithm depends on the number of congruence classes.
If the language L is presented by an n-state deterministic finite automaton, then
there can be as many as nn congruence classes, and therefore the algorithm is
EXPTIME. This algorithm is explicitly mentioned by Fazekas [6].

We consider the problem of deciding whether a regular language, presented
as a deterministic finite automaton, is power-closed. We improve on Calbrix
and Nivat’s method by giving a PSPACE algorithm. Complementing this result,
we show that the problem is PSPACE-hard. This also shows that our algorithm
is optimal.

Anderson et al. showed that it is PSPACE-complete to determine, given a
deterministic finite automaton A and an integer k, whether the kth power of
the language accepted by A is regular. Our result generalizes similarly: it is
PSPACE-complete to determine, given a deterministic finite automaton A and
an integer k, whether the language accepted by A is closed under taking kth
powers. Anderson et al. prove the hardness part of their result using an old
result of Kozen [8], whose proof is very similar to our PSPACE-hardness proof.

2 Definitions

A deterministic finite automaton (DFA for short) is given by a quadruple A =
〈Q, q0, F, δ〉, where Q is the set of states, q0 is the initial state, F is the set of
accepting states, and δ is the transition function. For simplicity, we assume that
the DFA operates over the binary alphabet Σ = {0, 1}. The language accepted
by the DFA is L(A).

Fix some standard encoding of DFAs with the property that the encoding
of a DFA with n states has length poly(n). PC is the language consisting of all
DFAs A such that L(A) is power-closed.

For n ≥ 1, [n] = {1, . . . , n}. For a function f on a set S, f (k) is the kth
composition of f on itself. So f (1)(x) = f(x), f (2)(x) = f(f(x)), and so on.
The length of a string w is denoted |w|. The empty string is ε. We say that w
is a power if w = zk for some word z and k > 1.

For n ≥ 1 and 0 ≤ x ≤ 2n − 1, Bn(x) is a string of length n which is the
binary encoding of x. For a string w and i ∈ [|w|], bit(w, i) is the ith bit of w.
The first bit of w is bit(w, 1), and so on.

3 PSPACE algorithm

Our algorithm for deciding whether a regular language is power-closed uses the
fact that the syntactic congruence has at most nn congruence classes, where
n is the size of the minimal DFA. This fact implies that if a language is not
power-closed, then there is a counterexample of length at most nn.

Lemma 3.1. Let A = 〈Q, q0, F, δ〉 be a DFA with n states. If L(A) is not
power-closed then there is a word w of length at most nn and 2 ≤ k ≤ n such
that w ∈ L(A) and wk /∈ L(A).

2

Proof. Let Λ be the set of congruence classes of the syntactic congruence of A.
Each congruence class L ∈ Λ has a representation

L = {w : ∀q ∈ Q, δ(q, w) = λ(q)}, λ : Q→ Q.

Since L is determined by λ, |Λ| ≤ nn. We can construct a DFA with set of
states Λ that upon reading a word w, reaches the unique state L ∈ Λ such that
w ∈ L. This shows that each congruence class contains a word of length at most
nn.

It is easy to see that L(A) is power-closed if and only if for all congruence
classes L, the following property holds for their representing function λ: if
λ(q0) ∈ F then λ(k)(q0) ∈ F for all k ≥ 1. Hence L(A) is not power-closed if for
some congruence class L with corresponding function λ it is true that λ(q0) ∈ F
but λ(k)(q0) /∈ F for some k > 1. Since the domain of λ has size n, we can
assume k ≤ n.

Theorem 3.2. The language PC is in PSPACE.

Proof. According to Savitch’s theorem [10], NPSPACE = PSPACE. Therefore it
is enough to give an NPSPACE algorithm for PC. Given a DFA A = 〈Q, q0, F, δ〉
with n states, the algorithm guesses a word w of length at most nn, and
calculates the function λ : Q → Q given by λ(q) = δ(q, w). This requires
space O(n log n). It then verifies that λ(q0) ∈ F while λ(k)(q0) /∈ F for some
2 ≤ k ≤ n.

4 PSPACE hardness

In order to show that PC is PSPACE-hard, we will reduce a variant of TQBF to
PC.

Definition 4.1. An instance of TQBF consists of a totally quantified Boolean
formula

ψ = Q1x1 · · ·Qnxnφ(x1, . . . , xn),

where Qi ∈ {∀,∃}. The language TQBF consists of all true totally quantified
Boolean formulas. The language cTQBF consists of all true totally quantified
Boolean formulas in which φ is in conjunctive normal form.

Lemma 4.2. The language cTQBF is PSPACE-complete.

Proof sketch. It is well-known that TQBF is PSPACE-complete. Clearly cTQBF ∈
PSPACE, and it remains to reduce TQBF to cTQBF. Given a formula φ in the
variables x1, . . . , xn, one can construct a formula σ in conjunctive normal form
with extra variables ~y such that φ ⇔ ∃~yσ ↔ ∀~yσ. Moreover, σ can be con-
structed in size which is polynomial in the size of φ. Since

Q1x1 · · ·Qnxnφ⇔ Q1x1 · · ·Qnxn∃~yσ,

this reduces TQBF to cTQBF.

3

The general idea of the reduction is given by the following lemma, whose
proof will occupy most of the section.

Lemma 4.3. Let ψ = Q1x1 · · ·Qnxnφ(x1, . . . , xn) be an instance of cTQBF,
where φ consists of m clauses. Let p ≥ 3n be prime. There is an algorithm
running in time poly(n,m, p) which constructs a DFA A with the following prop-
erties:

(a) There is a word zψ /∈ L(A) such that zpψ ∈ L(A), and furthermore zpψ is the
only power in L(A).

(b) For some k, bit(zψ, k) is the truth value of ψ.

In the rest of the section, whenever we say “polysize”, we mean an object
whose size is poly(n,m, p). The main theorem of this section follows directly
from the lemma.

Theorem 4.4. The language PC is PSPACE-hard.

Proof. We reduce cTQBF to PC. Let ψ = Q1x1 · · ·Qnxnφ(x1, . . . , xn) be an
instance of cTQBF. Bertrand’s postulate shows that there is a prime p ≥ 3n
such that p ≤ 6n. We find such a prime in time poly(n). Construct the polysize
DFA A of Lemma 4.3. Using A, construct another polysize DFA B such that

L(B) = L(A) ∩ Σk−10Σ∗.

We claim that L(B) is power-closed if and only if ψ is true. Indeed, if ψ is false
then zψ ∈ L(B) while zpψ /∈ L(B), and so L(B) is not power-closed. Conversely,

if L(B) is not power-closed then there is a power w = zk /∈ L(B) such that
z ∈ L(B). Since w ∈ L(A), necessarily w = zpψ. Since bit(w, k) = 0, we
conclude that ψ is false.

The idea behind the proof of Lemma 4.3 is that while a polysize DFA cannot
recognize zψ using one pass, it can recognize it using multiple passes. We proceed
to define zψ.

Definition 4.5. The word zψ is a concatenation zψ = Mψyψ ofMψ = 102n(m+1)1
and

yψ = Bn(0)mvBn(0) · · ·Bn(2n − 1)mvBn(2n−1),

and vx1...xn
is defined as follows, for i ∈ [n]:

bit(vx1...xn
, i) =

{
Qiyi · · ·Qnynφ(x1, . . . , xi−1, yi, . . . , yn) if xi = · · · = xn = 1,

0 otherwise.

We divide the string yψ into blocks of size n and superblocks of size (m+ 1)n.

The word Mψ serves as a marker, and the actual data appears in yψ. We
start by showing how to recognize yψ using 3n passes.

4

Lemma 4.6. There are 3n efficiently constructible polysize DFAs A1, . . . , A3n

such that
3n⋂
i=1

L(Ai) = {yψ}.

Proof. For each i ∈ [n] we will construct three DFAs Ai, An+i, A2n+i which are
in charge of checking the ith bit in each input block.

The DFA Ai accepts the language

(((Σi−10Σn−i)m + (Σi−11Σn−i)m)Σn)∗.

Together, the DFAsA1, . . . , An verify that each superblock is of the formBn(x)mv.
The DFA An+i checks that the first superblock is of the form Bn(0)mv, that

the last superblock is of the form Bn(2n − 1)mv, and that any two consecutive
superblocks conform to the pattern

Σi−10(Σn−i \ 1n−i)ΣnmΣi−10Σn−iΣnm + Σi−101n−1ΣnmΣi−11Σn−iΣnm

+Σi−11(Σn−i \ 1n−i)ΣnmΣi−11Σn−iΣnm + Σi−111n−1ΣnmΣi−10Σn−iΣnm.

In words, if two consecutive superblocks are of the form x1 · · ·xnΣnm and
x′1 . . . x

′
nΣnm, then xi+1 = · · ·xn = 1 implies x′i = xi, and otherwise x′i = xi.

Together, the DFAs A1, . . . , A2n verify the structure of yψ up to the value of
vB(0), . . . , vB(2n−1).

Before defining A2n+i, we define a helper function oi : {0, 1}2 → {0, 1}:

oi(b, c) =

{
b ∧ c if Qi = ∀,
b ∨ c if Qi = ∃.

In order to define A2n+i, consider first the case i = n. The automaton has
one bit of memory b. It operates one superblock x[1] . . . x[m]v at a time (here
|x[1]| = · · · = |x[m]| = |v| = n). While reading x[j], it computes the truth value
cj of the jth clause of φ. After reading x[m], it calculates c = c1∧· · ·∧cm. Now
there are two cases: if x[m]n = 0 then the automaton stores c at memory b and
verifies that bit(v, n) = 0. If x[m]n = 1, it verifies that bit(v, n) = on(b, c).

The case i < n is similar. Again, the automaton has one bit of memory
b, and operates one superblock x[1] . . . x[m]v at a time. This time there are
three cases. If x[m]i+1 . . . x[m]n 6= 1n−i then the automaton simply verifies
that bit(v, i) = 0. If x[m]i+1 . . . x[m]n = 1n−i then the automaton calculates
c = bit(v, i + 1). If x[m]i = 0 then it stores c at memory b and verifies that
bit(v, i) = 0. If x[m]n = 1, it verifies that bit(v, i) = oi(b, c).

The DFAs A1, . . . , A3n together verify the exact structure and contents of
yψ, and they are all polysize.

The automata A1, . . . , A3n are pasted together using the following lemma.

Lemma 4.7. Let B1, . . . , Bq be DFAs of maximal size S, and M a word. There
is an efficiently constructible DFA B whose size is poly(S, q, |M |), such that

L(B) = {w1Mw2M · · ·Mwq : wi ∈ L(Bi) ∩ Σ∗MΣ∗}.

5

In other words, L(B) consists of M -free words from L(B1), . . . , L(Bq), separated
by M .

Proof. Let C be a DFA such that L(C) = {M}. For i ∈ [q − 1], construct a
DFA Ci with a single accepting state such that

L(Ci) = {wM : wi ∈ L(Bi) ∩ Σ∗MΣ∗}.

The DFA Ci keeps track of the current state of both Bi and C, as well as the
state that Bi were in |M | symbols ago. Also, construct a DFA Cq such that

L(Cq) = {w : wi ∈ L(Bq) ∩ Σ∗MΣ∗}.

Finally, the required DFA B is constructed by taking the DFAs C1, . . . , Cq, and
for i ∈ [q − 1], identifying the accepting state of Ci and the initial state of
Ci+1.

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Let A0 be a DFA accepting the language {ε}, and let
A1, . . . , A3n be the DFAs constructed by Lemma 4.6. Construct a DFA A using
Lemma 4.7 from A0, A1, . . . , A3n, A1, . . . , Ap−3n (assuming p ≤ 6n), using M =
Mψ. It is easy to check that A is polysize, and it remains to verify the properties
of A claimed in the lemma. For the second claim, the truth value of ψ is equal
to bit(v1n , 1).

For the first claim, it is easy to check that yψ does not contain Mψ, and
therefore zpψ ∈ L(A) while zψ /∈ L(A). On the other hand, suppose w = zk ∈
L(A) is a power. If Mψ appears l times in z then it appears kl times in w, hence
kl = p. Since k > 1, we conclude that k = p and l = 1. Also, z must be of the
form z = Mψy. The definition of L(A) implies that y ∈ L(A1) ∩ · · · ∩ L(A3n),
hence y = yψ and z = zψ.

5 Acknowledgments

This paper answers a question posed on cstheory.stackexchange.com by Vin-
cenzo Ciancia. The proof of Theorem 4.4 was inspired by [5].

References

[1] Terry Anderson, Narad Rampersad, Nicolae Santean, and Jeffrey Shallit.
Finite automata, palindromes, powers, and patterns. In Carlos Mart́ın-
Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata
Theory and Applications, pages 52–63. 2008.

[2] Thierry Cachat. The power of one-letter rational languages. In DLT’01,
pages 145–154, 2002.

6

[3] Hugues Calbrix. Mots ultimement periodiques des langages rationnels de
mots infinis. PhD thesis, Université Denis Diderot-Paris VII, 1996.

[4] Hugues Calbrix and Maurice Nivat. Prefix and period languages of rational
ω-languages. In Developments in Language Theory 1995, pages 341–349,
1996.

[5] Keith Ellul, Benny Krawetz, Jeffrey Shallit, and Ming-wei Wang. Regular
expressions: new results and open problems. J. Autom. Lang. Comb.,
10(4):407–437, 2005.

[6] Szilrd Fazekas. Powers of regular languages. In Developments in Language
Theory, volume 5583 of LNCS, pages 221–227. 2009.

[7] Sándor Horváth, Peter Leupold, and Gerhard Lischke. Roots and powers
of regular languages. DLT’02, pages 220–230, 2003.

[8] Dexter Kozen. Lower bounds for natural proof systems. In FOCS’77, pages
254–266, 1977.

[9] Gerhard Lischke. The root of a language and its complexity. In Werner
Kuich, Grzegorz Rozenberg, and Arto Salomaa, editors, Developments in
Language Theory, volume 2295 of Lecture Notes in Computer Science, pages
57–64. Springer Berlin / Heidelberg, 2002.

[10] Walter J. Savitch. Relationships between nondeterministic and determin-
istic tape complexities. J. Comp. Syst. Sci., 4(2):177–192, 1970.

7

