Regular Languages Closed Under Kleene Plus

Yuval Filmus
January 2011

1 Introduction

Vincenzo Ciancia defined the following class of regular languages, which he called circular languages.

Definition 1.1. A regular language L is $+$-closed if whenever $w \in L$ then $w^+ \in L$.

In this note we lay some of the theory of regular $+$-closed languages.

2 Normal Form

At first glance, it might seem that a $+$-closed language is always of the form L^+, what we call a $+$-language.

Definition 2.1. A regular language L is a $+$-language if $L = M^+$ for some regular language M.

However, the language a^+b^+ is $+$-closed but not a $+$-language. Our goal in this section is to prove the following theorem, which shows that every $+$-closed regular language is a finite union of regular $+$-languages.

Theorem 2.2. A regular language is $+$-closed if and only if it is the finite union of regular $+$-languages.

Proof. Any union of $+$-languages is clearly $+$-closed. To prove the converse, let L be a regular $+$-closed language over some alphabet Σ given by some DFA with state-set S, accepting states A and starting state s, and let $q: S \times \Sigma^* \to S$ be the transition function. Denote the number of states by $n = |S|$.

For any word w in the language, define its trace $\tau(w): \mathbb{N}_+ \to S$ by $\tau(w)(k) = q(s, w^k)$, i.e. $\tau(w)(k)$ is the state the DFA is after reading w^k. Since L is $+$-closed, $w \in L$ iff ran $\tau(w) \subset A$. Furthermore, for any w the trace $\tau(w)$ is eventually periodic, so there are only finitely many traces.

Define $T = \{ \tau(w) : w \in L \}$. Note that T is a finite set. For $\tau \in T$ define $L(\tau) = \{ w : \tau(w) = \tau \}$. We claim that $L(\tau)$ is regular. Indeed, let m be the minimal position in τ which is repeated, i.e. $\tau(m) = \tau(r)$ for some $r < m$.

1
Thus $w \in L$ iff $\tau(w)(k) = \tau(k)$ for all $k \leq m$. In other words, $w \in L$ iff $q(\tau(k-1), w) = \tau(k)$ for $k \leq m$, where $\tau(0) = s$. We can check all these finitely many conditions in parallel using a single DFA.

Clearly $L = \bigcup_{\tau \in T} L(\tau)$. Since L is +-closed, moreover $L = \bigcup_{\tau \in T} L(\tau)^+$. Since T is finite, this is the required representation.

\section{Inherent Ambiguity}

In the previous section we have shown that every regular +-closed language is the finite union of regular +-languages. Can the union be disjoint? Consider, for example, the language $(a+b)^+ + (a+c)^+ + (b+c)^+$. Words which contain only one of a, b, c will belong to two summands. We call this phenomenon ambiguity.

\textbf{Definition 3.1.} A union of regular +-languages is ambiguous if the union is not disjoint. A +-closed regular language is inherently ambiguous if it cannot be written as a disjoint union of regular +-languages.

The language considered above has an unambiguous representation:

$$(a+b)^+ + (a+c)^+ + (b+c)^+.$$

However, other languages are inherently ambiguous.

\textbf{Lemma 3.2.} A language L is a +-language if and only if whenever $a, b \in L$ then $ab \in L$, i.e. L is closed under concatenation.

\textbf{Proof.} If L is closed under concatenation then it is certainly closed under taking positive powers. Conversely, let $L = M^+$. If $a, b \in L$ then $a = \alpha^+$ and $b = \beta^+$ for some $\alpha, \beta \in M$. Thus $ab = \alpha^+ \beta^+ \in M^{i+j} \subset M^+$. \hfill \Box

\textbf{Theorem 3.3.} The language L of words over $\{a, b\}$ containing either an even number of as or an even number of bs (or both) is an inherently ambiguous regular +-closed language.

\textbf{Proof.} The language L is clearly regular. It is +-closed since if a word contains an even number of as then all its powers will also contain an even number of as.

Suppose that $L = \bigcup_i L_i^+$ is an unambiguous representation of the language. Choose an odd number n larger than the sizes of all DFAs for all L_i^+. Since $a^n b^n \in L$, it must be generated by some L_i^+. Using the pumping lemma, we see that L_i^+ also generates $a^{n!} b^{n!}$. Similarly, $a^n b^n$ is generated by some L_j^+ which also generates $a^{n!} b^{n!}$. Finally, if $i = j$ then $a^n b^{n! + n} b^{n!} \in L_i^+$, since L_i^+ is closed under concatenation. However, since $n + n!$ is odd this word doesn’t belong to L. So $i \neq j$, and $a^n b^{n!} \in L_i^+ \cap L_j^+$. \hfill \Box

\textbf{Open Question 1.} When is a +-closed language inherently ambiguous?
4 Decidability

In this section we show how to decide whether a regular language is \(+\)-closed. On the negative side, we show that this problem is coNP-hard.

Theorem 4.1. Given a DFA for a language \(L \) with \(n \) states, one can decide whether \(L \) is \(+\)-closed in time \(n^{O(n)} \).

Proof. The following uses some notations defined during the proof of Theorem 2.2.

Construct a new DFA which is the \(p \)'th power of the DFA for \(L \), where \(p = |A| + 1 \). Denote the transition function of this new DFA by \(Q \). For any word \(w \) with trace \(\tau(w) \) we have

\[
Q(s\tau^{(1)}(w) \cdots \tau^{(p-1)}(w), w) = \tau(w)^{(1)} \cdots \tau(w)^{(p)}.
\]

The language is not \(+\)-closed iff there is a word \(w \) whose trace \(\tau(w) \) satisfies \(\tau(w)(1) \in A \) but \(\tau(w)(k) \notin A \) for some \(k > 1 \). By the pigeon-hole principle, the minimal such \(k \) satisfies \(k \leq p \). There are at most \(n^p \) such “illegal” traces, and for each such trace it is straightforward to check whether the state \(\tau^{(1)}(w) \cdots \tau^{(p)}(w) \) is reachable from the state \(s\tau^{(1)}(w) \cdots \tau^{(p-1)}(w) \).

The proof shows that if a language with DFA size \(n \) is not \(+\)-closed, then there is a witness of size \(n^{O(n)} \).

Open Question 2. What is the best upper bound on the size of the smallest witness for a language not being \(+\)-closed?

Given a DFA, it is coNP-hard to decide whether the corresponding language is \(+\)-closed.

Theorem 4.2. It is coNP-hard to decide whether a regular language is \(+\)-closed, given its DFA.

Proof. The reduction is from SAT. Let us be given a SAT instance. We can assume that the instance has \(p \) variables and clauses, for some prime \(p \) (this results in at most quadratic blowup over the original instance). Define a regular language \(L \) over \(\{0, 1\} \) as follows. An input \(\vec{x}_1 \cdots \vec{x}_p \), where \(\vec{x}_i \in \{0, 1\}^p \), is not in \(L \) if \(\vec{x}_i \) is a satisfying assignment for clause \(i \). One can easily construct a DFA for \(L \) with \(p^2 + 2 \) states.

We claim that the SAT instance is satisfiable if and only if \(L \) is not \(+\)-closed. Indeed, suppose that the instance is satisfied by some assignment \(\vec{x} \). Then \(\vec{x} \in L \) whereas \(\vec{x}^p \notin L \). Conversely, suppose that \(L \) is not \(+\)-closed. Then there is some \(w \in L \) such that \(w^n \notin L \) for some \(n > 1 \). Thus \(|w^n| = p^2 \), and so either \(|w| = 1 \) or \(|w| = p \); in the former case, replace \(w \) by \(w^p \), which is also a witness. The word \(w \) then represents a satisfying assignment for the SAT instance.

Open Question 3. Determine the complexity of deciding \(+\)-closedness.