
Regular Languages Closed Under Kleene Plus

Yuval Filmus

January 2011

1 Introduction

Vincenzo Ciancia defined the following class of regular languages, which he
called circular languages.

Definition 1.1. A regular language L is +-closed if whenever w ∈ L then
w+ ∈ L.

In this note we lay some of the theory of regular +-closed languages.

2 Normal Form

At first glance, it might seem that a +-closed language is always of the form
L+, what we call a +-language.

Definition 2.1. A regular language L is a +-language if L = M+ for some
regular language M .

However, the language a++b+ is +-closed but not a +-language. Our goal in
this section is to prove the following theorem, which shows that every +-closed
regular language is a finite union of regular +-languages.

Theorem 2.2. A regular language is +-closed if and only if it is the finite union
of regular +-languages.

Proof. Any union of +-languages is clearly +-closed. To prove the converse,
let L be a regular +-closed language over some alphabet Σ given by some DFA
with state-set S, accepting states A and starting state s, and let q : S×Σ∗ → S
be the transition function. Denote the number of states by n = |S|.

For any word w in the language, define its trace τ(w) : N+ → S by τ(w)(k) =
q(s, wk), i.e. τ(w)(k) is the state the DFA is after reading wk. Since L is +-
closed, w ∈ L iff ran τ(w) ⊂ A. Furthermore, for any w the trace τ(w) is
eventually periodic, so there are only finitely many traces.

Define T = {τ(w) : w ∈ L}. Note that T is a finite set. For τ ∈ T define
L(τ) = {w : τ(w) = τ}. We claim that L(τ) is regular. Indeed, let m be the
minimal position in τ which is repeated, i.e. τ(m) = τ(r) for some r < m.

1

Thus w ∈ L iff τ(w)(k) = τ(k) for all k ≤ m. In other words, w ∈ L iff
q(τ(k− 1), w) = τ(k) for k ≤ m, where τ(0) = s. We can check all these finitely
many conditions in parallel using a single DFA.

Clearly L =
⋃
τ∈T L(τ). Since L is +-closed, moreover L =

⋃
τ∈T L(τ)+.

Since T is finite, this is the required representation.

3 Inherent Ambiguity

In the previous section we have shown that every regular +-closed language is
the finite union of regular +-languages. Can the union be disjoint? Consider,
for example, the language

(a+ b)+ + (a+ c)+ + (b+ c)+.

Words which contain only one of a, b, c will belong to two summands. We call
this phenomenon ambiguity.

Definition 3.1. A union of regular +-languages is ambiguous if the union is
not disjoint. A +-closed regular language is inherently ambiguous if it cannot
be written as a disjoint union of regular +-languages.

The language considered above has an unambiguous representation:

a++b++c++(a+b+a∗)++(b+a+b∗)++(a+c+a∗)++(c+a+c∗)++(b+c+b∗)++(c+b+c∗)+.

However, other languages are inherently ambiguous.

Lemma 3.2. A language L is a +-language if and only if whenever a, b ∈ L
then ab ∈ L, i.e. L is closed under concatenation.

Proof. If L is closed under concatenation then it is certainly closed under taking
positive powers. Conversely, let L = M+. If a, b ∈ L then a = αi and b = βj

for some α, β ∈M . Thus ab = αiβj ∈M i+j ⊂M+.

Theorem 3.3. The language L of words over {a, b} containing either an even
number of as or an even number of bs (or both) is an inherently ambiguous
regular +-closed language.

Proof. The language L is clearly regular. It is +-closed since if a word contains
an even number of as then all its powers will also contain an even number of as.

Suppose that L =
⋃
i L

+
i is an unambiguous representation of the language.

Choose an odd number n larger than the sizes of all DFAs for all L+
i . Since

anbn! ∈ L, it must be generated by some L+
i . Using the pumping lemma, we see

that L+
i also generates an!bn!. Similarly, an!bn is generated by some L+

j which
also generates an!bn!. Finally, if i = j then anbn!+nbn! ∈ L+

i , since L+
i is closed

under concatenation. However, since n+ n! is odd this word doesn’t belong to
L. So i 6= j, and an!bn! ∈ L+

i ∩ L
+
j .

Open Question 1. When is a +-closed language inherently ambiguous?

2

4 Decidability

In this section we show how to decide whether a regular language is +-closed.
On the negative side, we show that this problem is coNP-hard.

Theorem 4.1. Given a DFA for a language L with n states, one can decide
whether L is +-closed in time nO(n).

Proof. The following uses some notations defined during the proof of Theo-
rem 2.2.

Construct a new DFA which is the p’th power of the DFA for L, where
p = |A| + 1. Denote the transition function of this new DFA by Q. For any
word w with trace τ(w) we have

Q(sτ(w)(1) · · · τ(w)(p− 1), w) = τ(w)(1) · · · τ(w)(p).

The language is not +-closed iff there is a word w whose trace τ(w) satisfies
τ(w)(1) ∈ A but τ(w)(k) /∈ A for some k > 1. By the pigeon-hole princi-
ple, the minimal such k satisfies k ≤ p. There are at most np such “illegal”
traces, and for each such trace it is straightforward to check whether the state
τ(w)(1) · · · τ(w)(p) is reachable from the state sτ(w)(1) · · · τ(w)(p− 1).

The proof shows that if a language with DFA size n is not +-closed, then
there is a witness of size nO(n).

Open Question 2. What is the best upper bound on the size of the smallest
witness for a language not being +-closed?

Given a DFA, it is coNP-hard to decide whether the corresponding language
is +-closed.

Theorem 4.2. It is coNP-hard to decide whether a regular language is +-closed,
given its DFA.

Proof. The reduction is from SAT. Let us be given a SAT instance. We can
assume that the instance has p variables and clauses, for some prime p (this
results in at most quadratic blowup over the original instance). Define a regular
language L over {0, 1} as follows. An input ~x1 · · · ~xp, where ~xi ∈ {0, 1}p, is not
in L if ~xi is a satisfying assignment for clause i. One can easily construct a DFA
for L with p2 + 2 states.

We claim that the SAT instance is satisfiable if and only if L is not +-closed.
Indeed, suppose that the instance is satisfied by some assignment ~x. Then ~x ∈ L
whereas ~xp /∈ L. Conversely, suppose that L is not +-closed. Then there is some
w ∈ L such that wn /∈ L for some n > 1. Thus |wn| = p2, and so either |w| = 1
or |w| = p; in the former case, replace w by wp, which is also a witness. The
word w then represents a satisfying assignment for the SAT instance.

Open Question 3. Determine the complexity of deciding +-closedness.

3

