
Matrix Multiplication I

Yuval Filmus

February 2, 2012

These notes are based on a lecture given at the Toronto Student Seminar on February 2, 2012.
The material is taken mostly from the book Algebraic Complexity Theory [ACT] and the lecture
notes by Bläser and Bendun [Blä]. Starred sections are the ones I didn’t have time to cover.

1 Problem statement

This lecture discusses the problem of multiplying two square matrices. We will be working in the
algebraic complexity model. For us, an algorithm for multiplying two n × n matrices will mean a
sequence of steps, where step l is a statement of the form

• tl ← r for any r ∈ R

• tl ← aij or tl ← bij for i, j ∈ {1, . . . , n}

• tl ← tp ◦ tq, where p, q < l and ◦ ∈ {+,−, ·, /}

• cij ← tp for p < l

We will say that such an algorithm computes the product C = AB if at the end of the program,
cik =

∑
j aijbjk. The running-time or complexity of the algorithm is the total number of steps,

disregarding input and output steps. Our model is non-uniform.
As an example, consider Strassen’s algorithm for multiplying two 2×2 matrices, as copied from

Wikipedia:

m1 = (a11 + a22)(b11 + b22)
m2 = (a21 + a22)b11

m3 = a11(b12 − b22)
m4 = a22(b21 − b11)
m5 = (a11 + a12)b22

m6 = (a21 − a11)(b11 + b12)
m7 = (a12 − a22)(b21 + b22)
c11 = m1 +m4 −m5 +m7

c12 = m3 +m5

c21 = m2 +m4

c22 = m1 −m2 +m3 +m6

1



In our model (using some benign shortcuts), it will look like this:

t1 ← a11 + a22

t2 ← b11 + b22

t3 ← a21 + a22

t4 ← b12 − b22

t5 ← b21 − b11

t6 ← a11 + a12

t7 ← a21 − a11

t8 ← b11 + b12

t9 ← a12 − a22

t10 ← b21 + b22

t11 ← t1 · t2
t12 ← t3 · b11

t13 ← a11 · t4
t14 ← a22 · t5
t16 ← t6 · b22

t17 ← t7 · t8
t18 ← t9 · t10

t19 ← t11 + t14

t20 ← t19 − t15

c11 ← t20 + t17

c12 ← t13 + t15

c21 ← t12 + t14

t21 ← t11 − t12

t22 ← t21 + t13

c22 ← t22 + t16

The total complexity of this algorithm is 26 operations. Later we will write such algorithms in a
much better way.

Strassen’s algorithm can be used to multiply two 2n × 2n matrices. The key is to write the
matrices in block form: [

A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=
[
C11 C12

C21 C22

]
Each of the blocks is a 2n−1×2n−1 matrix. Applying Strassen’s algorithm to the big matrices, there
are some additions and subtractions that we already know how to do, and 7 multiplications of two
2n−1×2n−1 matrices. For the latter, we apply the algorithm recursively. Eventually, everything will
reduce to 7n scalar multiplications, and countless1 additions and subtractions. This construction,
called tensoring, is the basic tool used in matrix multiplication algorithms.

1Not really countless, as we show in the sequel.

2



Once we show that the running-time is dominated by the number of scalar multiplications, we
can conclude that two matrices can be multiplied in time O(nlog2 7). This shows that ω ≤ log2 7 ≈
2.81. Here ω, also known as the exponent of matrix multiplication, is defined as the infimum of all
α such that two n× n matrices can be multiplied in time O(nα) (the constant can depend on α).

2 Normal form

We spent much of the previous section on defining the algebraic complexity model. Now it’s time
to show that we can forget about it and concentrate on algorithms of a very specific form. This is
the result of the following two theorems.

Theorem 1. Suppose one can multiply two n × n matrices in running-time T . Then there is an
algorithm in the following normal form, for M = 2T :

• For 1 ≤ i ≤M , compute αi, a linear combination of entries of A.

• For 1 ≤ i ≤M , compute βi, a linear combination of entries of B.

• For 1 ≤ i ≤M , compute pi = αiβi.

• For 1 ≤ j, k ≤ n, compute cjk as a linear combination of the pi.

All these linear combinations are fixed (don’t depend on A,B).

Our original presentation of Strassen’s algorithm is in this form. You might ask what’s the point
of using this transformation. After all, for each original operation we now have two multiplications,
and there are also lots of linear combinations to compute, each requiring up to n2 multiplications
and additions. This is explained by the following theorem.

Theorem 2. Suppose there is an algorithm in normal form that multiplies two n×n matrices with
M = nα. Then ω ≤ α.

So asymptotically, all the extra additions and multiplications don’t really count. Coppersmith
and Winograd [CW] showed that in fact ω < α (we will comment on this later on).

Together, the two theorems show that we can forget about the algebraic complexity model and
concentrate on normal-form algorithms, trying to reduce M .

2.1 Proofs*

The idea of the proof of Theorem 1 is that it’s enough to keep track of the linear and quadratic
parts of all computations involved, since higher degree parts don’t matter.

Proof of Theorem 1. 1. Divisions are confusing, so let’s ignore them for now. We will prove
something very similar to the statement of the theorem, with M = T and αi, βi both linear
combinations of both input matrices.

If there are no divisions, then each quantity ti computed during the algorithm is a multivariate
polynomial in the input variables. We can group it into its homogeneous parts. The dth homoge-
neous part P (d) of a polynomial P consists of all those monomials with total degree exactly d. For

3



example, if P = 1 + 2a+ b+ a2 + 3ab then

P (0) = 1

P (1) = 2a+ b

P (2) = a2 + 3ab

Every polynomial is the sum of its homogeneous parts. The outputs cij are all quadratic, i.e.
homogeneous of degree 2. So we’re not really interested in t

(d)
i for d > 2. In order to compute

t
(2)
i for all i, it is enough to compute the constant, linear and quadratic parts of everything (i.e.
t
(0)
i , t

(1)
i , t

(2)
i ). We will convert an arbitrary program into a new program computing these parts for

all of the original variables.
Replace a statement ti ← r with

t
(0)
i ← r

t
(1)
i ← 0

t
(2)
i ← 0

Replace a statement ti ← ajk with

t
(0)
i ← 0

t
(1)
i ← ajk

t
(2)
i ← 0

Replace a statement ti ← tj ± tk with

t
(0)
i ← t

(0)
j ± t

(0)
k

t
(1)
i ← t

(1)
j ± t

(1)
k

t
(2)
i ← t

(2)
j ± t

(2)
k

Replace a statement ti ← tj · tk with

t
(0)
i ← t

(0)
j t

(0)
k

t
(1)
i ← t

(0)
j t

(1)
k + t

(1)
j t

(0)
k

t
(2)
i ← t

(0)
j t

(2)
k + t

(1)
j t

(1)
k + t

(2)
j t

(0)
k

These statements are not basic, but that’s not going to matter.
Finally, replace an output statement cij ← tk with

cij ← t
(2)
k .

It’s easy to prove by induction that the new program also computes matrix multiplication.
Another induction shows that:

4



• All constant parts t(0)
i are constant (don’t depend on the inputs).

• All linear parts t(1)
i are linear combinations of inputs.

• All quadratic parts t(2)
i are linear combinations of products t(1)

j t
(1)
k appearing up to step i in

the original program.

From this it’s easy to extract the (modified) normal form.
2. We’ve almost reached our normal form. The only problem is that αi and βi may each depend

on both parts of the input. We can always write αi = αAi + αBi , βi = βAi + βBi , separating the two
parts. Since

αiβi = αAi β
A
i + αAi β

B
i + αBi β

A
i + αBi β

B
i ,

we can separate the two inputs at the cost of quadrupling M . Nothing bad would happen if we drop
αAi β

A
i and αBi β

B
i , since at the end we don’t need these terms which are quadratic in the entries of

one of the matrices. So it’s really enough only to double M .
3. Now it’s time to handle divisions. Every rational function can be extended to a formal power

series (given that the denominator is not zero at the origin2). So it’s natural to do the same thing
as before, adding the following rule for statements tj ← ti/tk:

t
(0)
j ← t

(0)
i /t

(0)
k

t
(1)
j ← (t(1)

i − t
(0)
j t

(1)
k )/t(0)

k

t
(2)
j ← (t(2)

i − t
(0)
j t

(2)
k + t

(1)
j t

(1)
k )/t(0)

k .

We got these statements from reversing what we got for multiplication above. The rest of the proof
goes through.

To prove Theorem 2, we follow the same technique we used to show that Strassen’s algorithm
applied recursively to 2n × 2n matrices results in 7n scalar multiplications, only this time we also
account for the rest of the operations. We get a recurrence whose solution is O(nα).

Proof of Theorem 2. Like we did for Strassen’s algorithm, we can extend the given algorithm to an
algorithm for multiplying two nk × nk matrices. Denote its running time by T (k), so T (1) = nα.
What is T (k + 1)? The first thing we have to do is compute M linear combinations in the entries
of A, namely the αi. Each linear combination takes roughly 3n2k operations, for a total of 3Mn2k.
The same number of operations is needed to compute the M linear combinations βi. Next, we
multiply these using MT (k) operations. Finally, we compute n2 linear combinations, one for each
entry in the target matrix. So

T (k + 1) ≤ nαT (k) + (6M + n2)n2k.

One can show that necessarily α > 2 (in other words, you cannot multiply two n×n matrices with
M = n2), and so the solution to the implicit recurrence is

T (k) = O(nαk).

In terms of the matrix size N = nk, this is T (k) = O(Nα).
2That happens in our case since the algorithm should correctly compute the product of two zero matrices.

5



3 Tensor notation

There’s a neat way to write algorithms in normal form. Start by writing αt as a sum of aij and βt
as a sum of bij . For Strassen’s algorithm, for example, we’d have α1 = a11 + a22, β1 = b11 + b22,
and so on. Next, each cij is a linear combination

cij =
M∑
t=1

Cijt αtβt.

Define γt =
∑

tC
ij
t cij , where we think of cij as formal variables. For example, in Strassen’s

algorithm we have γ1 = c11 + c22. Let’s look at the expression
∑M

t=1 αtβtγt. What is the coefficient
of cij? It’s the value that cij gets at the end of the algorithm, i.e.

∑
k aikbkj . So in a formal sense,

M∑
t=1

αtβtγt =
n∑

i,j,k=1

aikbkjcij .

Here’s Strassen’s algorithm in this form:

2∑
i,j,k=1

aikbkjcij =

(a11 + a22)(b11 + b22)(c11 + c22)+
(a21 + a22)b11(c21 − c22)+
a11(b12 − b22)(c12 + c22)+
a22(b21 − b11)(c11 + c21)+
(a11 + a12)b22(−c11 + c12)+
(a21 − a11)(b11 + b12)c22+
(a12 − a22)(b21 + b22)c11

We denote the left-hand side by 〈2, 2, 2〉. In general,

〈n,m, p〉 =
n∑
i=1

m∑
j=1

p∑
k=1

aijbjkcik

corresponds to multiplying an n ×m matrix by an m × p matrix, obtaining an n × p matrix as a
result. We call these new objects tensors. They are generalizations of matrices (see below).

The minimal M such that a tensor T can be represented as a sum
∑M

i=1 αiβiγi, where αi, βi, γi
are linear combinations of entries of A,B,C (respectively) is known as the rank of T , denoted R(T ).
Strassen’s algorithm shows that R(〈2, 2, 2〉) ≤ 7 (we actually have equality in this case). In earlier
literature, the rank is also called the number of essential multiplications.

How does tensor rank generalize matrix rank? Encode a matrix A of dimension n×m as

n∑
i=1

m∑
j=1

aijxiyj .

6



The rank of this tensor is the minimal R such that

n∑
i=1

m∑
j=1

aijxiyj =
R∑
k=1

(
n∑
i=1

bikxi

) m∑
j=1

cjkyj

 .

In terms of matrices, this corresponds to a representation

A =
R∑
k=1

bkck,

where bk is a column vector and ck is a row vector (so these are all outer products). This expresses
each row of A as a linear combination of the row vectors ck, and so R is the row rank of A. Switching
the roles, we see that R is also the column rank of A. The symmetric form of this representation
thus immediately implies that the row rank equals the column rank.

We can rephrase Theorem 2 using our new terminology:

ω ≤ lognR(〈n, n, n〉). (1)

As we’ve already commented, the inequality is actually strict.
Why did we bother describing this tensor notation? The new notation shows the symmetry

among the variables aij , bij , cij . Starting with the tensor for 〈n,m, p〉, if we switch a with b then we
get the tensor 〈p,m, n〉 (we also need to switch some of the indices). Going over all permutations,
we find out that

R(〈n,m, p〉) = R(〈n, p,m〉) = R(〈m,n, p〉) = R(〈m, p, n〉) = R(〈p, n,m〉) = R(〈p,m, n〉). (2)

Suppose we know that R(〈n1,m1, p1〉) ≤ R1 and R(〈n2,m2, p2〉) ≤ R2. What can we say about
R(〈n1n2,m1m2, p1p2〉)? We can think of the n1n2 ×m1m2 matrix A as an n1 × n2 matrix whose
entries are n2 ×m2 matrices. The matrices B,C can be decomposed analogously. We then apply
the algorithm showing that R(〈n1,m1, p1〉) ≤ R1. Each time we have to multiply two elements,
which are now matrices, we use the algorithm showing R(〈n2,m2, p2〉) ≤ R2. This will reduce
everything to computations of R1R2 matrix products. So

R(〈n1n2,m1m2, p1p2〉) ≤ R(〈n1,m1, p1〉)R(〈n2,m2, p2〉). (3)

Let’s apply this together with the symmetry relations:

R(〈nmp, nmp, nmp〉) ≤ R(〈n,m, p〉)3.

This has the implication that
ω ≤ 3 lognmpR(〈n,m, p〉). (4)

This generalizes (1).
We’ll see (and use) even more general forms below.

7



4 Border rank

Bini came up with the following identity:

ε(a11b11c11 + a11b12c21 + a12b21c11 + a12b22c21 + a21b11c12 + a21b12c22)+

ε2(a11b22c21 + a11b11c12 + a12b21c22 + a21b21c22) =
(a12 + εa11)(b12 + εb22)c21+
(a21 + εa11)b11(c11 + εc12)−
a12b12(c11 + c21 + εc22)−
a21(b11 + b12 + εb21)c11+
(a12 + a21)(b12 + εb21)(c11 + εc22).

On the left-hand side, we have ε times the tensor corresponding to the following partial matrix
multiplication: [

a11 a12

a21 0

] [
b11 b12

b21 b22

]
=
[
c11 c12

c21 c22

]
.

From a computational point of view, here’s how you’d use this identity to compute this partial
matrix multiplication approximately (if you could calculate with infinite precision). Pick ε > 0
very small, and use the identity. Divide the result by ε. We obtain roughly the result. By picking
ε infinitesimal, we can compute the matrix multiplication exactly. But there’s a way to do it even
without nonstandard analysis, as we’ll see below.

First, let’s see how you’d use the identity for multiplying large square matrices. Putting together
two copies of the identity, we get an identity equating ε〈3, 2, 2〉 + O(ε2) with a sum of 10 terms
(the big-O notation hides terms which grow like ε3 or smaller). Symmetrizing, we get an identity
equating ε3〈12, 12, 12〉 + O(ε4) with a sum of 103 terms. Taking the Nth tensor power, we get an
identity equating ε3N 〈12N , 12N , 12N 〉+O(ε3N+1) with a sum of 103N terms.

What do we do with the new identity? We’re only really interested in all terms with coefficient
ε3N . How do we isolate them? Consider the product

(a12 + εa11)(b12 + εb22)c21.

If we wanted to compute only the coefficient of ε, we would need to compute a11b12c21 + a12b22c21.
The general situation is similar. For each given term αiβiγi, in order to compute the coefficient
of ε3N , we will take terms corresponding to coefficients dα, dβ, dγ from αi, βi, γi (respectively) such
that dα + dβ + dγ = 6N , and sum all of these. There are at most

(
3N+2

2

)
= O(N2) such terms. So

ω ≤ log12N O(N2103N )→ 3 log12 10 ≈ 2.78.

The polynomial factor O(N2) doesn’t really make any difference in the limit. In other words, the
fact that the identity was only approximate makes no difference.

Bini’s identity (after taking two copies of it) shows that R(〈3, 2, 2〉) ≤ 10. The border rank R(T )
of a tensor T is exactly the minimum M such that εdT + O(εd+1) =

∑
i αiβiγi for some d. Our

argument shows in general that

ω ≤ 3 lognmp R(〈n,m, p〉). (5)

8



Border rank satisfies many of the properties of rank. For example, it’s symmetric 2 and sub-
multiplicative 3. We can think of it as a generalization of rank which is “good enough” to obtain
bounds on ω.

Bini’s particular identity can be leveraged even more, showing that ω ≤ 3 log6 5 ≈ 2.70, using
the methods of §6.

In earlier literature, these identities are known as λ-computations (so ε is replaced with λ).
Also, negative powers of λ are used so that the left-hand side has an error term of magnitude O(λ).

5 Schönhage’s τ theorem

Schönhage discovered the following surprising identity:

ε2

 4∑
i=1

4∑
j=1

AiBjCji +
3∑
i=1

3∑
j=1

X3i+jY3i+jZ

+O(ε3) =

3∑
i=1

3∑
j=1

(Ai + εX3i+j)(Bj + εY3i+j)(ε2Cji + Z)+

3∑
i=1

Ai(B4 − ε
3∑
j=1

Y3i+j)(ε2C4i + Z) +
3∑
j=1

(A4 − ε
3∑
i=1

X3i+j)Bj(ε2Cj4 + Z)+

A4B4(ε2C44 + Z)−

(
4∑
i=1

Ai

) 4∑
j=1

Bj

Z.

This identity shows that
R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17.

(In fact there is equality.) The identity shows how to compute the outer product 〈4, 1, 4〉 of two
vectors of length 4 along with the inner product 〈1, 9, 1〉 of two other vectors of length 9 (the
symbol ⊕ emphasizes the fact that the two products concern different variables) with only 42 + 1
multiplications. This is surprising, since easy arguments show that R(〈4, 1, 4〉) = 16, and with one
more multiplication it is suddenly possible to compute along an extra (long) inner product.

How do we use this identity? Schönhage invented his τ -theorem (also: asymptotic sum inequal-
ity) to answer this question. We will approach his solution through a series of simple steps. For
simplicity, we will only explicitly consider rank, but everything we do also works with border rank,
which is how we state our results.

1. Suppose we had an identity showing that R(k � 〈n, n, n〉) ≤ M (here k � 〈n, n, n〉 is the
direct sum of k copies of 〈n, n, n〉 with disjoint variables). How would we use it to multiply square
matrices? Suppose we wanted to multiply two nT × nT matrices, where T is very large. We apply
our new algorithm recursively. In the first level we can’t really take advantage of the full abilities of
our algorithm, since we only have one matrix product to compute. In the second level, we already
have M of these, so we need to apply our algorithm recursively only dM/ke times. As we go along,
we will be able to group the products we need to compute at each level to groups of size k, and
leverage our algorithm almost perfectly. So asymptotically, our algorithm behaves as if we had a
way to multiply two n × n matrices using M/k products (note that M/k need not be integral).

9



The details work out, showing

ω ≤ logn
R(k � 〈n, n, n〉)

k
. (6)

2. A simple symmetrization argument shows that

ω ≤ 3 lognmp
R(k � 〈n,m, p〉)

k
. (7)

3. Consider now Schönhage’s identity, showing

R(〈4, 1, 4〉 ⊕ 〈1, 9, 1〉) ≤ 17.

Compute the Nth tensor power:

R

(
N⊕
i=0

ci � 〈ni,mi, pi〉

)
≤ 17N ,

where

ci =
(
N

i

)
, ni = pi = 4i, mi = 9N−i.

Our goal is to obtain a bound using (7). If we were aiming at a bound ω ≤ 3τ , then we’d
need 17N ≈ ci(nimipi)τ . It’s natural to define accordingly the volume of a tensor 〈n,m, p〉 by
Vτ (〈n,m, p〉) = (nmp)τ , and extend the definition additively to direct sums. This notion of volume
is multiplicative, i.e. Vτ (T1T2) = Vτ (T1)Vτ (T2), so

Vτ

(
N⊕
i=0

ci � 〈ni,mi, pi〉

)
= Vτ (〈4, 1, 4〉 ⊕ 〈1, 9, 1〉)N = (16τ + 9τ )N .

Since there are only N + 1 terms on the left, there must be some term satisfying

ci(nimipi)τ ≥
(16τ + 9τ )N

N + 1
.

We want this to be roughly equal to 17N , so we choose τ so that

16τ + 9τ = 17.

With this value of τ , formula (7) implies that

ω ≤ 3 lognimipi

17N

ci
≈ 3τ.

In the limit, we actually get ω ≤ 3τ . In our case, τ ≈ 0.85 and 3τ ≈ 2.55.
This proof generalizes to give Schönhage’s τ -theorem:

∑
i

(nimipi)τ = R

(⊕
i

〈ni,mi, pi〉

)
implies ω ≤ 3τ. (8)

10



An alternative form shows why it’s worthy of its other name, the asymptotic sum inequality:

∑
i

(nimipi)ω/3 ≤ R

(⊕
i

〈ni,mi, pi〉

)
. (9)

Coppersmith and Winograd [CW, Corollary 3.2] showed that

R(〈n,m, p〉 ⊕ 〈1, R(〈n,m, p〉)−m(n+ p− 1), 1〉) ≤ R(〈n,m, p〉) +m.

This shows that starting with an algorithm for 〈n,m, p〉, we can always obtain a better algorithm
(yielding a better ω through the asymptotic sum inequality). In other words, no single algorithm
for 〈n,m, p〉 can yield the optimal ω. A similar result of theirs from the same paper (Corollary 3.5)
implies that the inequality in (8) is always strict.

6 Fast multiplication of rectangular matrices*

For this section, we change our focus and concentrate on multiplication problems of the type
〈n, n, nα〉. We want to find a value of α such that R(〈n, n, nα〉) = Õ(n2).

Following Coppersmith’s footsteps [Cop2], we consider another identity due to Schönhage:

ε2(a11b11c11 + a11b12c21 + a12b21c11 + a13b31c11 + a22b21c12 + a23b31c12) +O(ε3) =

(a11 + ε2a12)(b21 + ε2b11)c11+

(a11 + ε2a13)b31(c11 − εc21)+

(a11 + ε2a22)(b21 − εb12)c12+

(a11 + ε2a23)(b31 + εb12)(c12 + εc21)−
a11(b21 + b31)(c11 + c12).

This identity describes a fast way to approximately multiply a partial 2× 3 matrix with a partial
3× 2 matrix using only five multiplications:

(
a11 a12 a13

0 a22 a23

)b11 b12

b21 0
b31 0

 =
(
c11 c12

c21 c22

)
.

It is important here that this identity is tight: there is a trivial matching lower bound for the border
rank, coming from the number of indeterminates in the A matrix.

Take this identity and tensor it N times to get a new identity involving 5N multiplications,
showing how to multiply a partial 2N × 3N matrix with a partial 3N × 2N matrix.

These matrices have a very complicated pattern of zeroes, but we will only be interested in the
number of non-zero entries in each column of the first matrix, and the number of non-zero entries
in each row of the second matrix. There are N + 1 different types of such indices (does that sound
familiar?). Type i involves mi =

(
N
i

)
2i columns of the first matrix with ni = 2i non-zero entries,

and matching rows of the second matrix with pi = 2N−i non-zero entries.
Suppose we group together all indices of type i, and zero all other entries in the two matrices.

We get an identity for approximately computing AB, where A consists of mi columns, each having

11



ni non-zero entries, and B consists of mi rows, each having pi non-zero entries. So it’s morally a
tensor of type 〈ni,mi, pi〉. In fact, we can actually encode 〈ni,mi, pi〉 inside the product AB (see
below). This shows that R(〈ni,mi, pi〉) ≤ 5N . Symmetrize once to get

R(〈nimi, nimi, p
2
i 〉) ≤ 52N .

We would like nimi ≈ 5N . Since nimi =
(
N
i

)
4i, nimi is maximized for i = 4N/5, at which point

nimi = Θ(5N/
√
N). For this i we have p2

i = 4N/5 = 5αN for α = (log5 4)/5 ≈ 0.17227. Concluding,

R
(〈

5N√
N
,

5N√
N
, 5αN

〉)
≤ 52N .

Taking n = 5N/
√
N ,

R(〈n, n, nα〉) = O(n2 log n).

This implies that
R(〈n, n, nα〉) = O(n2 log2 n).

The usual tensoring trick shows that one can multiply an n×nα matrix by an nα×n matrix using
O(n2 log2 n) arithmetic operations. Moreover, as observed by Ryan Williams [Wil], we can describe
all these transformations uniformly. Ryan Williams used fast matrix multiplication to solve SAT
on certain “symmetric” circuits on all inputs very quickly. Later, Andreas Björklund found a more
elementary dynamic programming accomplishing the same task, so that fast matrix multiplication
is no longer needed.

6.1 Proof

It remains to prove that 〈n,m, p〉 matrix multiplication can be embedded in AB matrix multipli-
cation if A consists of m columns, each having n non-zero entries, and B consists of m rows, each
having p non-zero entries.

Let A′ be an n ×m matrix. We will construct a (constant) matrix T translating between A′

and A: given A′, we will be able to find A so that A′ = TA. The same construction will also give
a matrix S translating between an arbitrary m × p matrix B′ and B, in the sense that B′ = BS.
We can then reduce A′B′ to AB using A′B′ = T (AB)S.

How do we find the matrix T? We show one way to do this for small numbers, the general case
being similar. Suppose that n = 2 and that A has three rows, so the matrix T has dimensions
2× 3. Our matrix T will be

T =
[
1 1 0
1 0 1

]
.

The matrix T corresponds to the linear transformation T (x, y, z) = (x + y, x + z). This linear
transformation has the property that, given the constraint that only two of x, y, z are non-zero, we
can still encode any pair (a, b):

T (a, b− a, 0) = (a, b)
T (a, 0, b− a) = (a, b)

T (0, a, b) = (a, b)

Now take each column of the matrix A′, and use the appropriate formula to encode it into a column
of A. This encoding ensures that A′ = TA. More generally, the property we need from the matrix
T is the all square minors are non-zero. This is certainly the case for a random matrix T .

12



6.2 Alternative method

In the same paper describing the preceding construction, Coppersmith also described a slightly
inferior construction giving only α ≈ 0.1402. However, the same method, combined with the
identity and methods of [CW], gives a much better result, α ≈ 0.29462. This has recently been
improved by Le Gall [Gal] to α ≈ 0.30298. These constructions apparently cannot be used for
Williams’ result since they only give O(n2+ε) algorithms for any ε > 0.

The idea is to start with an identity by Schönhage which we have already considered (with
different parameters):

ε2

 3∑
i=1

3∑
j=1

AiBjCji +
2∑
i=1

2∑
j=1

X2i+jY2i+jZ

+O(ε3) =

2∑
i=1

2∑
j=1

(Ai + εX2i+j)(Bj + εY2i+j)(ε2Cji + Z)+

2∑
i=1

Ai(B3 − ε
2∑
j=1

Y2i+j)(ε2C3i + Z) +
2∑
j=1

(A3 − ε
2∑
i=1

X2i+j)Bj(ε2Cj3 + Z)+

A3B3(ε2C33 + Z)−

(
3∑
i=1

Ai

) 3∑
j=1

Bj

Z.

This identity shows that
R(〈3, 1, 3〉 ⊕ 〈1, 4, 1〉) ≤ 10.

Again, this identity is tight. The idea now is to take a high tensor power without symmetrizing :

R

 N∑
j=0

(
N

j

)
〈3j , 4N−j , 3j〉

 ≤ 10N .

The idea now is to choose an appropriate j and zero everything else. Which j should we pick? The
same method used for proving the asymptotic sum inequality shows that for large M ,

R(〈3jM , 4(N−j)M , 3jM 〉) /
10NM(
N
j

)M .

In order to get a tight bound, we would like the right-hand side to be approximately (3jM )2. In other
words, taking the Mth root, we want

(
N
j

)
9j ≈ 10N . When proving the asymptotic sum inequality,

it was enough to comment that such a j can be found by taking the maximum over
(
N
j

)
9j , since

the sum of these N + 1 terms is 10N . In this case we also need to know the value of j, which
is roughly j ≈ 0.9N . This shows that roughly speaking, R(〈30.9NM , 40.1NM , 30.9NM 〉) / 90.9NM .
Putting n = 30.9NM , the other index is 40.1NM = nα for α = 0.1 log 4/0.9 log 3 ≈ 0.1402. When
unrolling the construction, for technical reasons we only get a bound of the form O(n2+ε) rather
than Õ(n2) as before.

13



References

[ACT] Peter Bürgisser, Michael Clausen and M. Amin Shokrollahi, Algebraic Complexity Theory,
Springer, 1997.

[Blä] Markus Bläser, Complexity of bilinear problems (lecture notes scribed by Fabian Bendun),
http://www-cc.cs.uni-saarland.de/teaching/SS09/ComplexityofBilinearProblems/
script.pdf, 2009.

[Cop] Dan Coppersmith, Rapid multiplication of rectangular matrices, SIAM J. Comput. 11:467–
471, 1982.

[Cop2] Dan Coppersmith, Rectangular matrix multiplication revisited, J. Comp. 13:42–49, 1997.

[CW] Dan Coppersmith, Shmuel Winograd, On the asymptotic complexity of matrix multiplica-
tion, SIAM J. Comput. 5:618–623, 1976.

[Gal] Fran cois Le Gall, Faster algorithms for rectangular matrix multiplication, ArXiv, 2012.

[Wil] Ryan Williams, Non-uniform ACC circuit lower bounds, CCC 2011.

14

http://www-cc.cs.uni-saarland.de/teaching/SS09/ComplexityofBilinearProblems/script.pdf
http://www-cc.cs.uni-saarland.de/teaching/SS09/ComplexityofBilinearProblems/script.pdf

	Problem statement
	Normal form
	Proofs*

	Tensor notation
	Border rank
	Schönhage's tau theorem
	Fast multiplication of rectangular matrices*
	Proof
	Alternative method


