
DEMONSTRATION

OF A

THEOREM OF ARITHMETIC.

(New Memoirs of the royal Academy of Sciences and Belles-Lettres of Berlin, year 17701.)

It is a Theorem known for a long time that every whole number not a square can be always decomposed into
two, or three, or four whole squares; yet no-one, that I know of, has ever produced a demonstration. Mr. Bachet
de Méziriac is the first who has mentioned this Theorem; it seems he was guided by the 31st question of the IVth

book of Diophantus, where the Theorem we are discussing is to some extent tacitly supposed; yet Mr. Bachet was
contented to assure himself the truth of this Theorem by induction, checking successively all whole numbers from 1
to 325; and as for the general demonstration, he confessed he had not yet been able to find one. “The ability (he says
in his Commentary regarding the cited question) to produce a complete proof has not yet been granted to me, so I
will have high esteem for anyone who will produce more about it, especially but by no means only about this question
but also and likewise about some in the fifth book of Diophantus where it is seen to be put down.” I know of no two
Authors, up till now, who have applied themselves to this research, as Mr. Fermat and Mr. Euler. In the Notes that
the first has added to the Commentary of Bachet about Diophantus, he announces a great Work he has decided to
compose about the theory of numbers, and he promises to prove in it this general proposition : that any number
is, either triangular, or composed of two or of three triangular numbers; that it is, either square, or composed of
two, or of three, or of four squares, and so on; yet this Work never showed up, and in all that is left of the works of
this great Geometer, one finds absolutely nothing that can shed the weakest light on the demonstration in question.
Regarding Mr. Euler, while his work on this subject has not met the success one should desire, one must be obliged
to him for having opened the way that is followed in this sort of research. We must look in volume V of the New
Commentaries of St. Petersburg at the result of the tentative ingenuities that the great Geometer has produced in
order to reach the proof of Mr. Bachet’s Theorem.

Mr. Euler has shown that the product of two, or of more numbers, each of them composed of four whole squares,
are too always composed of four, or of a lesser number of whole squares; he also notes there that if the proposed
Theorem could be proven for all prime numbers, it will be also true for all other numbers. Mr. Euler proved, in
addition, that given any prime number, one can always find two or three square numbers whose sum is divisible by
that number without any of the squares in particular being divisible by it, and that these square numbers can always
be supposed to be such that the quotient of the division of their sum by the given prime number is less than that
same number. From this Mr. Euler concludes, reasonably, that the Theorem in question will be proven for all prime
numbers if one could only prove this other proposition, that is, that whenever the product of two numbers is the
sum of four or less squares, and one of the multiplied numbers is similarly the some of four or less squares, the other
multiplier is also the same sum. “If a sum of four squares (he says, page 55 of the cited volume) a2 + b2 + c2 + d2

is divisible by a sum of four squares p2 + q2 + r2 + s2, then the quotient which is not only in fraction but also now
integral is a sum of four squares; this is a most elegant Theorem of Fermat, whose demonstration has been hidden
from me; I have not thus far been able to shed light upon this demonstration which captured me, etc.”

It is therefore only this last proposition that we need to prove. But for this we need not suppose that the divisor
is also represented by a sum of four squares, and we prove, generally, that each prime number that is a divisor of
some number composed of four or less squares, but not of any of them in particular, is necessarily also composed of
four or less squares; after which nothing more is left to be desired for the complete demonstration of Bachet’s general
Theorem, that we have proposed to give in this Memoir.

Lemma.

The numbers which are the sum of two relatively prime squares do not admit other divisors than those that are
similarly the sum of two squares.

This proposition, belonging to Mr. Fermat, has been proved by Mr. Euler in a Memoir printed in volume IV of
the New Commentaries of St. Petersburg.

Corollary I. — If two numbers equaling each a sum of two squares, like p2 + q2 and r2 + s2, are divisible by
the same number ρ, such that the four squares p2, q2, r2, s2 have no common divisor, I claim that the two quotients
p2+q2

ρ and r2+s2

ρ also equal each a sum of two squares.
1Works of Lagrange, v. III, p. 189.

1



For let m be the greatest common divisor of p and q, and n the greatest common divisor of r and s, such that
they are written

p = mp′, q = mq′, r = nr′, s = ns′

the numbers p′ and q′ are relatively prime, as are also the numbers r′ and s′; we have therefore the two numbers
m2(p′2 + q′2) and n2(r′2 + s′2) that are at once divisible by ρ. Yet I remark firstly that m and n are relatively prime;
otherwise the four numbers p, q, r and s have a common divisor, which is contrary to the hypothesis. Now let µ be
the greatest common divisor of m2 and ρ, such that we have ρ = µρ′, and that ρ′ is relatively prime to m2

µ ; hence
m2 is divisible by µ, and p′2 + q′2 must divide ρ′, such that we have

p2 + q2

ρ
=

m2

µ
p′2 + q′2

ρ′
;

yet p′ and q′ are relatively prime, and it follows from the preceding Lemma that the divisor ρ′ is such that the
quotient is the some of two squares; thus we have

p′2 + q′2

ρ′
= α2 + β2.

Moreover, let ν2 be the greatest square factor of the number µ, such that µ = ν2µ′, µ′ is a number which is
divisible by no square, and it is clear that m2 cannot be divisible by µ unless m divides νµ′; let therefore m = Kνµ′,
and we have

m2

µ
= K2µ′.

But n2(r′2 + s′2) must also be divisible by ρ = µρ′; hence µ divides n2(r′2 + s′2); yet µ already divides m2; hence,
since m2 and n2 are relatively prime, it follows that µ is also prime relative to n2; consequentially, µ must divide
r′2 + s′2; and as µ = ν2µ′, µ′ must also be a divisor of r′2 + s′2; thus, since r′ and s′ are relatively prime, the divisor
µ′ must equal a sum of two squares by the Lemma. Hence writing µ′ = γ2 + δ2, we get

m2

µ
= K2(γ2 + δ2);

and so
p2 + q2

ρ
= K2(γ2 + δ2)(α2 + β2) = K2(γα + δβ)2 + K2(γβ − δα)2,

that is equal to a sum of two squares. One proves the same way that the quotient r2+s2

ρ also equals a sum of two
squares.

Corollary II. — If a sum of two squares is divisible by another sum of two squares, the quotient always equals
a sum of two squares.

For let a2 + b2 be divisible by c2 + d2, and if the numbers a, b, c, d have a common divisor, let us denote it by l,
such that we have

a = lp, b = lq, c = lr, d = ls,

and that p, q, r, s have no common divisor; thus we have

a2 + b2

c2 + d2 =
p2 + q2

r2 + s2 ,

such that p2 + q2 is divisible by r2 + s2; yet, writing r2 + s2 = ρ, we get by the preceding Corollary that p2+q2

ρ equals
a sum of two squares; hence, etc.

Theorem I.

If a sum of four squares is divisible by a prime number greater that the square root of the same sum, that number
necessarily equals a sum of four squares.

For let p2 + q2 + r2 + s2 be divisible by A, A a prime number, such that we have

Aa = p2 + q2 + r2 + s2,
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and as we suppose that the divisor A is greater than
√

p2 + q2 + r2 + s2,

it is clear that the quotient a is smaller than the same root, such that we have a < A.
This assumed, if the numbers p, q, r and s have a common divisor d, it is clear that the sum of their squares is

divisible by d2, and so it must be that Aa also is; but d2 being smaller than Aa, d is smaller than
√

Aa < A, because
A < a; thus, since A is prime (hypothesis), it is clear that A and d are relatively prime; from which it follows that
Aa cannot be divisible by d2 unless a is; so, dividing the number a as well as each of the squares p2, q2,... by d2, we
get an equation of the same form as the preceding one, where the coefficient a is always smaller than A and where
the four squares p2, q2, r2, s2 have no common divisor.

Let us consider therefore the equation
Aa = p2 + q2 + r2 + s2

as if already reduced to that state, and if the number p2 + q2 is not relatively prime to a, let ρ be their greatest
common divisor, such that we have

a = bρ and p2 + q2 = tρ,

b and t being relatively prime; we have therefore

Abρ = tρ + r2 + s2,

from which we see that r2 + s2 must also be divisible by ρ, such that, naming the quotient u, the equation becomes

Ab = t + u;

but, since ρ divides p2 +q2 as well as r2 +s2, and since p, q, r and s have no common divisor, it follows by Corollary I
of the preceding Lemma that the quotients p2+q2

ρ = t and r2+s2

ρ = u are one and another the sum of two squares; so
we have

t = m2 + n2 and u = h2 + l2;

therefore, multiplying all the equation by t, we get

Abt = t2 + tu,

or better, writing x = mh + nl and y = ml − nh, such that tu = x2 + y2, we get the following equation

Abt = t2 + x2 + y2.

Now, as b and t are relatively prime, one can always find two multiples of b and t such that their some or their
difference is equal to any given number, and moreover one can suppose that one of these multiples is smaller than
bt
2 [see Lemma I of the Memoir on the indeterminate problems, that is printed in volume XXIV of the Memoirs of
the royal academy of Sciences and Belles-Lettres of Berlin, of the year 17682]; so we can put

x = αt + γb et y = βt + δb,

α, β, γ and δ are positive or negative whole numbers, and one can suppose the same time that α and β, taken
positively, are one and another smaller than b

2 . Performing this substitution in the preceding equation, it becomes

Abt = t2(1 + α2 + β2) + 2αγtb + 2βδtb + γ2b2 + δ2b2,

where we see that all the terms are multiplied by b, except the following

t2(1 + α2 + β2);

so, to make it possible to substitute in this equation whole numbers as is the case, it is necessary that t2(1+α2 +β2)
be also divisible by b; yet b and t are relatively prime, hence b must divide 1+α2 +β2, such that naming the quotient
a′ we get

a′b = 1 + α2 + β2;

and as α and β are each smaller than b
2 , 1 + α2 + β2 is smaller than b2

2 + 1; consequentially a′ is smaller than b
2 + 1

b .
But, putting in the equation above a′b in place of 1 + α2 + β2, and dividing afterwards by b, we get

At = a′t2 + 2αγt + 2βδt + (γ2 + δ2)b,
2Works of Lagrange, v. II, p. 659.
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where I remark again that all the terms are multiplied by t, except the following

(γ2 + δ2)b,

the number (γ2 + δ2)b must be divisible by t, and as b and t are relatively prime, γ2 + δ2 must be divisible by t.
If one multiplies the equation we have found by a′, it can be brought under this form

Aa′t = (a′t + αγ + βδ)2 + (γ2 + δ2)a′b− (αγ + βδ)2,

or better under the following

Aa′t = (a′t + αγ + βδ)2 + γ2(a′b− α2) + δ2(a′b− β2)− 2αβγδ;

but we have
a′b = 1 + α2 + β2,

hence the previous equation becomes

Aa′t = (a′t + αγ + βδ)2 + γ2(1 + β2) + δ2(1 + α2)− 2αβγδ,

that is
Aa′t = (a′t + αγ + βδ)2 + (βγ − αδ)2 + γ2 + δ2.

Yet we have said above that γ2 + δ2 must be divisible by t, hence the number

(a′t + αγ + βδ)2 + (βγ − αδ)2

must also be; but we have
t = m2 + n2,

thus, by Corollary II of the Lemma, each of the two quotients must be a sum of two squares; such that we have

γ2 + δ2 = t(p′2 + q′2) and (a′t + αγ + βδ)2 + (βγ − αδ)2 = t(r′2 + s′2).

Hence we get, after having divided all the equation by t,

Aa′ = p′2 + q′2 + r′2 + s′2.

It follows from this that if Aa is a sum of four squares, Aa′ is also a sum of four squares, a′ being smaller than b
2 + 1

b
and a = bρ; so if a is greater than 1, a′ is necessarily smaller than a; and, if a′ is also greater than 1, one proves
the same way that Aa′′ is also a sum of four squares, a′′ being smaller than a′; and so on; hence as the numbers
a, a′, a′′,... are whole numbers, none of them equal to zero (because these numbers are divisors of the numbers
1 + α2 + β2, 1 + α′2 + β′2,... that, as one sees, can never become null), and as these numbers are diminishing, it is
clear that we reach necessarily one of these numbers which is equal to unity, and therefore we have that A equals to
a sum of four whole squares.

Corollary. — If some prime number is a divisor of a sum of four squares having no common divisor, that
number is also the sum of four squares.

For naming, as above, A the given prime number and p2 + q2 + r2 + s2 the number composed of four squares
which is divisible by A, it is clear that, if each of the roots p, q, r, s is smaller than A

2 , we have

p2 + q2 + r2 + s2 < 4
(

A
2

)2

< A2;

such that A is greater than
√

p2 + q2 + r2 + s2 as is supposed in the preceding Theorem; hence, etc.
Yet I claim that whatever are the numbers p, q,..., one can always reduce them to be smaller than A

2 ; since let,
for example, p > A

2 , it is visible that if p2 + q2 + r2 + s2 is divisible by A, (p−mA)2 + q2 + r2 + s2 is also, the same
for (mA − p)2 + q2 + r2 + s2, whatever is the number m; but one can always take m such that p −mA or mA − p
is smaller than A

2 ; hence one need only put in place of p the number p −mA or mA − p; and one can do the same
with respect to any other number found to be greater than A

2 .
If p is divisible by A we have

p−mA = 0;

such that in that case one must put 0 in place of p; one must do the same regarding q if it also is divisible by A,
and so for the others; yet as we suppose that p, q, r and s have no common divisor, it cannot happen that all are

4



divisible at the same time by A, and the same cannot happen for more than two; otherwise all the four must divide
it; such that we should not fear that, during these reductions, the dividend p2 + q2 + r2 + s2 will become null.

Remark — In the rest it is clear that the demonstration of the preceding Theorem is no less true if one supposes
that one or two of the four squares that compose the dividend are null; whereas conversely it can also happen that
one or two of the four squares that one finds for the divisor A are null; thus, in general, any prime number that
divides a sum of four or less whole squares, provided they have no common divisor, necessarily equals a sum of four
or less whole squares.

Theorem II.

If A is a prime number and if B and C are some positive or negative numbers not divisible by A, I claim that one
can always find two numbers p and q such that the number p2 − Bq2 − C is divisible by A.

For : 1◦ If we can find a number q such that Bq2 + C is divisible by A, we need then only take a p divisible by
A, or better p = 0;

2◦ If no number chosen for q renders Bq2 + C divisible by A, write, for brevity, Bq2 + C = b, and supposing

P = pA−3 + bpA−5 + b2pA−7 + . . . + b
A−3

2 ,

we get
(p2 − Bq2 − C)P = pA−1 − b

A−1
2 = pA−1 − 1−

(

b
A−1

2 − 1
)

;

multiplying this equation by b
A−1

2 + 1 that we suppose equals Q, we get

(p2 − Bq2 − C)PQ = Q(pA−1 − 1)− (bA−1 − 1).

But, by a well-known Theorem of Fermat, that Mr. Euler proved in the Commentaries of St. Petersburg, we know
that if A is some prime number and a some other number not divisible by A, aA−1−1 is always divisible by A. Hence,
if we suppose that p is not divisible by A, we get that the two numbers pA−1 − 1 and bA−1 − 1 are simultaneously
divisible by A, because b is never divisible by A, whatever is q (hypothesis). Thus the number (p2 − Bq2 − C)PQ
is divisible by A, such that, if neither P nor Q is divisible by A, p2 − Bq2 − C must divide it, because A is a prime
number by the hypothesis. So the difficulty is reduced to showing that one can always take a p and a q such that
neither P nor Q is divisible by A, p not being so also.

For this I remark firstly that, whatever is the value of q, one can always find a value of p smaller than A and
consequentially not divisible by A, such that P is not divisible by A. For if one substitutes successively in the
expression of P the numbers 1, 2, 3,... up to A − 2 inclusively in place of p, and names P′, P′′, P′′′,..., P (A−2) the
resulting values of P, one gets, by the well-known theory of differences,

P′ − (A− 3)P ′′ +
(A− 3)(A− 4)

2
P ′′′ − . . . + P(A−2) = 1.2.3.4 . . . (A− 3).

But, if all the numbers P ′, P ′′, P ′′′,... up to P(A−2) were divisible by A, the number 1.2.3 . . . (A− 3) would also have
to be; that cannot happen because A is prime, and it follows that among the numbers P ′, P ′′,..., P (A−2) one can
necessarily find some number that is not divisible by A; hence, etc.

So it remains only to show that one can always take a q such that Q or (Bq2 + C)
A−1

2 + 1 is not divisible by A.
Let, for simplicity, A−1

2 = m, and we get

Q = BmqA−1 + mBm−1qA−3C +
m(m− 1)

2
Bm−2qA−5C2 + . . . + mBq2Cm−1 + Cm + 1.

But if Cm + 1 is not divisible by A, it is clear that one need only take a q divisible by A, or better q = 0; for then Q
is not divisible by A.

Yet if Cm + 1 is divisible by A, then for Q not to divide it, q must not too, and the quantity

BmqA−3 + mBm−1qA−5C +
m(m− 1)

2
Bm−2qA−7C2 + . . . + mBCm−1

must also not; but we can show, as before, that there must exist a value of q smaller than A and consequentially not
divisible by A, such that the quantity in question does not divide it. For naming R this quantity, and designating by
R′, R′′, R′′′,..., R(A−2) the values of R that result from substituting the numbers 1, 2, 3,..., A−2 in place of q, we get

R′ − (A− 3)R′′ +
(A− 3)(A− 4)

2
R′′′ − . . . + R(A−2) = 1.2.3 . . . (A− 3)Bm.
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But as A is prime and as B is not divisible by A, it is clear that the number 1.2.3 . . . (A − 3)Bm is not also; hence,
etc.

Corollary I. — If one puts B = −1 and C = −1, one gets a number p2 + q2 + 1 that is divisible by A; from
which it follows that given any prime number one can always find a number equal to a sum of three squares one of
which is the same as unity, that is divisible by the given prime number.

This Theorem has already been proved by Mr. Euler in a different manner, in volume V of the New Commentaries
of St. Petersburg; yet in order to leave nothing to be desired for our lecturers we believed we must prove it anew,
and moreover our demonstration has the advantage of having a very great generality.

Corollary II. — Combining thus the preceding Theorem with the remark following Theorem I, we deduce :
that each prime number necessarily equals a sum of four or less whole squares. From which it is straightforward to
conclude that each whole number is also equal to a sum of four or less squares; for one knows that the product of
two, or of more numbers equaling each a sum of four or less squares, also necessarily equals a sum of four or less
squares; actually, one has

(p2 + q2 + r2 + s2)(p′2 + q′2 + r′2 + s′2)

= (pp′ − qq′ − rr′ + ss′)2

+ (pr′ + qs′ + rp′ + sq′)2
+ (pq′ + qp′ − rs′ − sr′)2

+ (qr′ − ps′ + sp′ − rq′)2,

and also more generally

(p2 − Bq2 − Cr2 + BCs2)(p′2 − Bq′2 − Cr′2 + BCs′2)

=[pp′ + Bqq′ ± C(rr′ + Bss′)]2 − B[pq′ + qp′ ± C(rs′ + sr′)]2

− C[pr′ − Bqs′ ± (rp′ − Bsq′)]2 + BC[qr′ − ps′ ± (sp′ − rq′)]2.
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