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Abstract

We consider the standard two-party communication model. The central problem studied in
this article is how much one can save in information complexity by allowing an error of ε.

• For arbitrary functions, we obtain lower bounds and upper bounds indicating a gain that
is of order Ω(h(ε)) and O(h(

√
ε)). Here h denotes the binary entropy function.

• We analyze the case of the two-bit AND function in detail to show that for this function
the gain is Θ(h(ε)). This answers a question of Braverman et al. [BGPW13a].

• We obtain sharp bounds for the set disjointness function of order n. For the case of the dis-
tributional error, we introduce a new protocol that achieves a gain of Θ(

√
h(ε)) provided

that n is sufficiently large. We apply these results to answer another of question of Braver-
man et al. regarding the randomized communication complexity of the set disjointness
function.

• Answering a question of Braverman [Bra12], we apply our analysis of the set disjointness
function to establish a gap between the two different notions of the prior-free information
cost. In light of [Bra12], this implies that amortized randomized communication complexity
is not necessarily equal to the amortized distributional communication complexity with
respect to the hardest distribution.

As a consequence, we show that the ε-error randomized communication complexity of the
set disjointness function of order n is n[CDISJ − Θ(h(ε))] + o(n), where CDISJ ≈ 0.4827 is the
constant found by Braverman et al. [BGPW13a].
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1 Introduction

Communication complexity studies the amount of communication needed to compute a function
whose inputs are spread among several parties. It has many applications to different areas of
complexity theory and beyond, mostly as a technical tool used for proving lower bounds. Tradi-
tionally, communication complexity has been studied through a combinatorial lens. Recently, a
new approach to communication complexity via information theory has arisen, forming the area
of information complexity [CSWY01, BYJKS04, BBCR10]. While communication complexity is
concerned with minimizing the amount of communication required for two players to evaluate a
function, information complexity is concerned with the amount of information that the communi-
cated bits reveal about the players’ inputs.

The study of information complexity is motivated by fundamental questions regarding com-
pressing communication [BBCR10, BR14, Bra12, GKR15] that extend the seminal work of Shan-
non [Sha48] to the setting where interaction is allowed. Moreover, it has important applications to
communication complexity, and in particular to the study of the direct-sum problem [BYJKS04,
CSWY01, Jai15, BRWY13b, BRWY13a], a problem that has been studied extensively in the
past [FKNN95, CSWY01, JRS03, HJMR10, BBCR10, Kla10, Jai15, JPY12, BRWY13b, BRWY13a].
For example, the only known direct-sum result for general randomized communication complexity
is proven via information-theoretic techniques in [BBCR10].

One of the most spectacular applications of information complexity, due to Braverman et
al. [BGPW13a], is determining the exact first order communication complexity of set disjoint-
ness. Set disjointness is one of the most important functions in communication complexity, and as
a result it has been studied extensively in the past four decades (see the surveys [CP10, She14] and
the references therein). In this communication problem, which is denoted by DISJn, Alice and Bob
each receives a subset of {1, . . . , n} and their goal is to determine whether their sets are disjoint
or not. The goal is to determine the asymptotc rate of growth of the randomized communication
complexity Rε(DISJn) of set disjointness, defined as the smallest number of bits exchanged by the
two players in a protocol which computes the function correctly with probability at least 1 − ε
on every input. The correct asymptotic Rε(DISJn) = Θ(n) was first proved by Kalyanasundaram
and Schnitger [KS92]. Although later Razborov [Raz92] gave a shorter proof, still despite several
decades of research in this area, all known proofs for this fact are intricate and sophisticated. It was
thus a great breakthrough when Braverman et al. determined the exact constant in the asymptotics
of Rε(DISJn) as ε→ 0 by employing several recent results from the area of information complexity.
They proved that as the error parameter ε tends to 0, the quantity limn→∞Rε(DISJn)/n tends to
a constant CDISJ ≈ 0.4827.

Our major result determines the asymptotic rate of growth of Rε(DISJn) for constant ε 6 1/2:

lim
n→∞

Rε(DISJn)

n
= CDISJ −Θ(h(ε)). (1)

As in the work of Braverman et al., we obtain our result by analyzing the information complexity
of the 2-bit AND function (in which each player gets one bit). Roughly speaking, the information
complexity ICµ(f, ε) of a function f with respect to a distribution µ on the inputs is the minimal
amount of information that the players need to leak in any protocol that computes f correctly
with probability at least 1− ε on every input1. The asymptotic estimate on Rε(DISJn) follows by

1There are two different ways to measure information leakage. The usual notion, internal information complexity,
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analyzing IC0(AND, ε) := min ICµ(AND, ε), where the minimum is taken over all distributions µ
such that µ(1, 1) = 0. Specifically, we prove the following bound:

IC0(AND, ε) = CDISJ −Θ(h(ε)), (2)

where the upper bound is attained by a protocol having one-sided error (only allowed to make a
mistake on the input (1, 1)). The upper bound follows from a black-box modification of the optimal
protocol for AND found by Braverman et al. The lower bound is significantly harder, requiring
several novel ideas which could have wider applicability. We sketch these ideas later on in the
introduction.

It is natural to ask whether a bound of the form (2) holds for arbitrary functions f . Braverman
et al. [BGPW13a] considered this question in the context of distributional information complexity2.
The distributional information complexity ICµ(f, µ, ε) of a function f with respect to a distribution
µ on the inputs is the minimal amount of information that the players need to leak in any protocol
that computes f correctly with probability at least 1 − ε when the inputs are drawn according to
µ. They showed that ICµ(f, µ, ε) > ICµ(f, µ, 0)−O(h(ε1/8)) (here and below, the hidden constant
depends on f and µ). We significantly improve this lower bound, and obtain the first non-trivial
upper and lower bounds for general functions:

ICµ(f, µ, 0)−O(h(
√
ε)) 6 ICµ(f, µ, ε) 6 ICµ(f, µ, 0)− Ω(h(ε)),

ICµ(f, 0)−O(h(
√
ε)) 6 ICµ(f, ε) 6 ICµ(f, 0)− Ω(h(ε)).

Our results hold in both the non-distributional and distributional settings, as well as in the prior-
free settings explained below. The upper bounds use the same black-box technique used to prove
the upper bound in (2). The lower bounds use protocol completion, a novel technique which also
figures in the proof of the lower bound in (2).

In classical communication complexity, the distributional setting arises from an application
of Yao’s minimax principle: Rε(f) is the maximum over µ of the communication complexity of
deterministic protocols which compute f correctly with probability at least 1− ε when the inputs
are drawn according to µ. This connection suggests searching for an analog of Rε(f) in the setting
of information complexity. Braverman [Bra12] defined two such notions of prior-free information
complexity : IC(f, ε) = maxµ ICµ(f, ε), and ICD(f, ε) = maxµ ICµ(f, µ, ε). Using the minimax
theorem, he showed that the two notions coincide when ε = 0. He conjectured that the two notions
coincide for all ε, but he could only prove the following bound, for 0 < α < 1:

ICD(f, ε) 6 IC(f, ε) 6
ICD(f, αε)

1− α
.

We separate the two notions of prior-free information complexity, thus showing that this tradeoff
is essentially optimal for set disjointness:

ICD(DISJn, ε)

n
. CDISJ −Θ(

√
h(ε)),

measures how much each player learns about the other player’s input. External information complexity, studied in
this paper only in passing, measures how much an external observer learns about the players’ input.

2Information complexity and distributional information complexity are often confused in the literature. One reason
might be that they are the same in the zero-error prior-free setting, as shown by Braverman [Bra12] and explained
further below.
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IC(DISJn, ε)

n
> CDISJ −Θ(h(ε)),

where . hides a on(1) term. The upper bound on ICD(DISJn, ε) follows from a novel protocol for
set disjointness which is asymptotically optimal in the distributional prior-free setting, while the
lower bound on IC(DISJn) follows from the proof of (1).

Since information complexity is amortized communication complexity, we can also state our
separation in terms of communication complexity. Let Rmε (fm) denote the randomized commu-
nication complexity of computing m copies of f with an error of at most ε on each of the m
inputs. Similarly, let Dµ,m

ε (fm) denote the corresponding distributional notion, where the er-
ror is measured when the inputs are drawn according to µ. Braverman [Bra12] showed that
IC(f, ε) = limm→∞R

m
ε (fm)/m and ICD(f, ε) = limm→∞maxµD

µ,m
ε (fm)/m, and so our separation

of IC(DISJn, ε) and ICD(DISJn, ε) also separates maxµD
µ,m
ε (DISJmn ) and Rmε (DISJmn ).

Finally, given a function f we characterize all measures µ such that ICµ(f, 0) = 0. We also prove
a few results about external information complexity ICext (which we do not define here). Given a
function f we characterize all measures µ such that ICext

µ (f, 0) = 0. We also show that the upper
bound ICµ(f, ε) 6 ICµ(f, 0) − Ω(h(ε)) fails for external information complexity: ICext

µ (XOR, ε) >
ICext

µ (XOR, 0)− 3ε, where the distribution µ is given by µ(0, 0) = µ(1, 1) = 1/2.

1.1 Techniques

Stability for the buzzer protocol At the heart of the lower bound IC0(AND, ε) > CDISJ −
O(h(ε)) lies a stability result for almost-optimal protocols for AND.

Braverman et al. [BGPW13a] gave an optimal protocol for the AND function, which they call
the buzzer protocol. They also showed that this protocol is essentially the unique optimal protocol
for the AND function. We prove a stability version of this result: any ε-error protocol for AND
whose information cost is close to that of the buzzer protocol must be similar to the buzzer protocol.

There are many possible notions of similarity, and ours (for reasons that will become clear
below) focuses on the leaf distribution of the protocol, which is the distribution of the terminal
point of the protocol. Our stability result roughly states that any ε-error protocol for AND whose
information cost is close to that of the buzzer protocol must have a leaf distribution which is similar
to the leaf distribution of the buzzer protocol.

We prove our stability result by strengthening the technique of local concavity constraints in-
troduced by Braverman et al. On the way, we also simplify the arguments of Braverman et al. by
replacing the discrete second derivatives used by Braverman et al. with their continuous counter-
parts.

The buzzer protocol as a random walk One of our main insights is an alternative description
of the buzzer protocol as a random walk.

As part of their analysis of the AND function, Braverman et al. introduced a new perspective
on communication protocols, viewing a communication protocol as a random walk on the space of
distributions. Given an initial distribution over the inputs, they associate with each node in the
protocol tree the a posteriori distribution of the inputs, which is the distribution of the inputs given
that the protocol arrives at the node. Instead of walking down the protocol tree, we can think of
the protocol as a random walk on these a posteriori input distributions.

Braverman et al. describe the buzzer protocol as a continuous time protocol which ends abruptly
when one of the players buzzes. We give an alternative description of the buzzer protocol, as a
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random walk on the space of distributions. Consider the case in which the input distribution µ
is a product distribution given by Pr[X = 1] = p and Pr[Y = 1] = q, where X,Y are the input
bits of Alice and Bob, respectively; we denote this distribution succinctly by (p, q). The buzzer
protocol is the limit ε → 0 of a random walk which starts at (p, q), and at each step moves either
vertically or horizontally depending on the current distribution (a, b): if a > b it moves to (a, b+ ε)
or to (a, b − ε), with probability 1/2 each, and if a < b it moves to (a + ε, b) or to (a − ε, b), with
probability 1/2 each. In both cases we clip the protocol to [0, 1]2. The random walk terminates
when a = 0 or b = 0, in which case it outputs 0, and when a = b = 1, in which case it outputs 1.

Our description of the buzzer protocol has two main advantages over the original one. First, the
a posteriori distribution varies continuously in our protocol. In contrast, in the original description
the a posteriori distribution “collapses” when one of the players presses the buzzer. Second, our
protocol is the same for all distributions, whereas the original buzzer protocol has an additional
symmetrization step to handle asymmetric initial distributions. Both of these properties simplify
our analysis.

Product parametrization Our most important technical innovation is a way of analyzing non-
product distributions as if they were product distributions. Since product distributions are often
much easier to analyze, we believe this idea could have many further applications, which we hope
to explore in future work.

So far we have described the buzzer protocol as a random walk only when the initial distribution
is a product distribution. In that case, the random walk is supported on the manifold of product
distributions. More generally, for any initial distribution µ, all reachable a posteriori distributions
can be obtained from µ by scaling the rows and columns. Therefore the manifold of distributions
reachable from µ, which we call the µ-manifold, can be parametrized by product distributions. This
key idea allows us to treat any initial distribution µ as if it were a product distribution, as we now
explain in detail.

The information cost of a protocol equals the difference between the amount of information not
known to the players before it begins, and the expected information not known after it ends. The
information cost can easily be calculated given the second term, which is known as the concealed
information. The concealed information can be viewed as the expected reward (corresponding to
unrevealed information) obtained at the leaves of the protocol. Finding a protocol that minimizes
the information cost is thus equivalent to finding a random walk that maximizes the expected
reward.

Using the product parametrization, we can convert a random walk on the µ-manifold to a
random walk on the manifold of product distributions. The concealed information is replaced
by the scaled concealed information, which also equals some expected reward over the leaves of
the protocol. The concealed information, hence the information cost, can easily be extracted
from this parameter. This allows us to analyze protocols on general input distributions as if the
input distribution were a product distribution, the only difference being the scaling of concealed
information at the leaves.

While we only use this technique for analyzing the AND function, it applies to general func-
tions on general input domains. We believe that this technique has wide applicability in the area
of information complexity, since product distributions are often easier to analyze than general
distributions.
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Protocol completion We prove the lower bounds on ICµ(f, ε) and on IC0(AND, ε) using the
technique of protocol completion. Given an ε-error protocol for f , we complete it to a zero-error
protocol for f in a natural way: when the protocol terminates at a posterior distribution ν (which
is the distribution of the inputs given the transcript of the protocol and the initial distribution µ),
we run a zero-error protocol for f which is information-efficient for the distribution ν. Using the
buzzer protocol, we give a protocol for f whose information cost is O(h(

√
α)), where 1 − α is the

probability of the most probable output given ν. Since E[α] = ε, this shows that we can complete
the given ε-error protocol to a zero-error protocol for f at a cost of O(h(

√
ε)) in the information

cost, implying the bound ICµ(f, ε) +O(h(
√
ε)) > ICµ(f, 0).

For the case f = AND, we are able to improve on this result, tightening the gap from O(h(
√
ε))

to O(h(ε)), using the stability result for the buzzer protocol. The product parametrization allows
us to consider the posterior distribution ν as a product distribution (a, b). If max(a, b) = Ω(1) then
the buzzer protocol has information cost O(h(α)) rather than just O(h(

√
α)) (recall that 1 − α is

the probability of the most probable output given ν). Suppose now that we are given an ε-error
protocol π for AND. Our goal is to prove that ICµ(π) > ICµ(AND, 0) − Cµh(ε) for some Cµ > 0
(here ICµ(π) is the information cost of π). We can complete π to a zero-error protocol π0 at a cost
of O(h(

√
ε)). We can assume that ICµ(π0) 6 ICµ(AND, 0) − Cµh(ε) + O(h(

√
ε)), and so π0 is an

almost-optimal protocol for AND. Our stability result shows that a random leaf (a, b) of π0 satisfies
max(a, b) > cµ with high probability, for some cµ > 0. It follows that the same holds for π, and so
the cost of completion is only O(h(ε)).

Black-box modification We prove the upper bounds on ICµ(f, ε) and (as a special case) on
IC0(AND, ε) using a simple black-box argument, which modifies an optimal zero-error protocol to
a slightly more information-efficient ε-error protocol. Given a zero-error protocol π for f , one way
to create an ε-error protocol for f is to run π with probability 1 − ε, and output some constant
value with probability ε. However, this only saves O(ε) bits of information. Our modification is
different: we identify a player P and two inputs z0, z1, and run the following protocol π′:

• With probability ε (sampled privately by P), if the input of P is z1 then P changes its input
to z0.

• The players run π on their possibly modified inputs.

This is also an ε-error protocol, and for a suitable choice of the parameters, it turns out that it
saves Ω(h(ε)) bits of information compared to π.

When the input distribution µ has full support, it is easy to choose the parameters, by finding
two inputs (x0, y0), (x1, y1) which differ on a single coordinate such that f(x0, y0) 6= f(x1, y1). Such
a choice might not exist when µ doesn’t have full support, and instead we rely on a rather delicate
binary search argument on the set of transcripts.

We can apply this argument to the AND function, showing that ICµ(AND, ε) 6 CDISJ−Ω(h(ε)).
However, when using this result to obtain a protocol for set disjointness, we encounter a difficulty:
in order to obtain an ε-error protocol for DISJn, it seems at first that we need a protocol for AND
having error ε/n. This would result in a saving of O(h(ε/n)) rather than O(h(ε)) per coordinate.
A similar difficulty was encountered by Molinaro et al. [MWY13] in a similar context, and they
overcame it using protocols that abort. In our case there is a simpler solution: we consider ε-error
protocols for AND which only make one-sided error, outputing 0 when the correct answer is 1 (the
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black-box argument can be modified to produce such protocols). If we apply such a protocol coor-
dinatewise to compute the intersection of X,Y , then we always compute the intersection correctly
when X,Y are disjoint, and we mistakenly compute the intersection to be empty when X,Y are not
disjoint with probability at most ε|X∩Y | 6 ε. The resulting protocol thus computes set disjointness
correctly with probability at least 1− ε on every input.

Computing set disjointness with error The lower bound IC0(AND, ε) > CDISJ − O(h(ε))
implies a similar lower bound on the information complexity of set disjointness: IC(DISJn, ε)/n >
CDISJ − O(h(ε)). In contrast, we can save more than h(ε) in the distributional prior-free setting:
ICD(DISJn, ε)/n 6 CDISJ−Θ(

√
h(ε))+o(1). A minimax argument of Braverman [Bra12] shows that

this bound is tight. We prove this upper bound using a novel protocol for set disjointness. Given
a distribution µ, we describe a protocol π which has error ε with respect to µ, whose information
cost satisfies

ICµ(π) 6 n[CDISJ − Ω(
√
h(ε))] +O(log n).

Let p be the probability the input sets X,Y are not disjoint, when (X,Y ) ∼ µ. The protocol
proceeds as follows:

• Using public randomness, Alice and Bob sample a permutation σ on 1, . . . , n.

• For i = 1, . . . , n, Alice and Bob run a protocol for AND on Xσ(i), Yσ(i) which has one-sided
error ε/2p with respect to the conditional distribution of Xσ(i), Yσ(i), declaring X,Y to be
not disjoint (and halting the protocol) if the AND protocol answers Xσ(i) = Yσ(i) = 1.

• Declare X,Y to be disjoint.

The protocol only makes an error when the inputs are not disjoint, and in that case it makes an
error with probability (ε/2p)|X∩Y | 6 ε/2p. Since the inputs are non-disjoint with probability p, the
overall error probability is ε/2 < ε. A tricky but standard argument shows that this protocol saves
roughly Ω(n

√
h(ε)) bits of information.

2 Preliminaries

In this section we introduce some basic notation and facts, and review the necessary background
for the paper.

2.1 Notation and basic estimates

We typically denote random variables by capital letters (e.g A,B,C,Π). For the sake of brevity, we
shall write A1 . . . An to denote the random variable (A1, . . . , An) and not the product of the Ai’s.
We use [n] to denote the set {1, . . . , n}, and suppµ to denote the support of a measure µ.

For a finite set Ω, we denote by ∆(Ω), the set of all discrete probability distributions on Ω. For
µ, ν ∈ ∆(Ω), we denote their total variation distance with

|µ− ν| := 1

2

∑
x∈Ω

|µ(x)− ν(x)|.

For every ε ∈ [0, 1], h(ε) = −ε log ε− (1− ε) log(1− ε) denotes the binary entropy, where here
and throughout the paper log(·) is in base 2, and 0 log 0 = 0.
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2.2 Communication complexity

The notion of two-party communication complexity was introduced by Yao [Yao79] in 1979. In this
model there are two players (with unlimited computational power), often called Alice and Bob, who
wish to collaboratively perform a task such as computing a given function f : X × Y → Z. Alice
receives an input x ∈ X and Bob receives y ∈ Y. Neither of them knows the other player’s input,
and they wish to communicate in accordance with an agreed-upon protocol π to compute f(x, y).
The protocol π specifies as a function of (only) the transmitted bits whether the communication is
over, and if not, who sends the next bit. Furthermore π specifies what the next bit must be as a
function of the transmitted bits, and the input of the player who sends the bit. We will assume that
when the protocol terminates Alice and Bob agree on a value as the output of the protocol. We
denote this value by π(x, y). The communication cost of π is the total number of bits transmitted
on the worst case input. The transcript of an execution of π is a string Π consisting of a list of all
the transmitted bits during the execution of the protocol. As protocols are defined using protocol
trees, transcripts are in one-to-one correspondence with the leaves of this tree.

In the randomized communication model, the players might have access to a shared random
string (public randomness), and their own private random strings (private randomness). These
random strings are independent, but they can have any desired distributions individually. In
the randomized model the transcript also includes the public random string in addition to the
transmitted bits. Similar to the case of deterministic protocols, the communication cost is the total
number of bits transmitted on the worst case input and random strings. The average communication
cost of the protocol is the expected number of bits transmitted on the worst case input.

For a function f : X × Y → Z and a parameter ε > 0, we denote by Rε(f) the communication
cost of the best randomized protocol that computes the value of f(x, y) correctly with probability
at least 1− ε for every (x, y).

2.3 Information complexity

The setting is the same as in communication complexity, where Alice and Bob (having infinite
computational power) wish to mutually compute a function f : X ×Y → Z. To be able to measure
information, we also need to assume that there is a prior distribution µ on X × Y.

For the purpose of communication complexity, once we allow public randomness, it makes no
difference whether we permit the players to have private random strings or not. This is because
the private random strings can be simulated by parts of the public random string. On the other
hand, for information complexity, it is crucial to permit private randomness, and once we allow
private randomness, public randomness becomes inessential. Indeed, one of the players can use her
private randomness to generate the public random string, and then transmit it to the other player.
Although this might have very large communication cost, it has no information cost, as it does not
reveal any information about the players’ inputs.

Probably the most natural way to define the information cost of a protocol is to consider the
amount of information that is revealed about the inputs X and Y to an external observer who
sees the transmitted bits and the public randomness. This is called the external information cost
and is formally defined as the mutual information between XY and the transcript of the protocol
(recall that the transcript also contains the public random string). While this notion is interesting
and useful, it turns out there is a different way of defining the information cost that enjoys certain
desirable properties that the external information cost lack. This is called the internal information
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cost or just the information cost for short, and is equal to the amount of information that Alice and
Bob learn about each other’s inputs from the communication. Note that Bob knows Y , the public
randomness R, and his own private randomness RB, and thus what he learns about X from the
communication can be measured by the conditional mutual information I(X; Π|Y RRB). Similarly,
what Alice learns about Y from the communication can be measured by I(Y ; Π|XRRA) where RA is
Alice’s private random string. It is not difficult to see [BBCR10] that conditioning on the public and
private randomness does not affect these quantities. In other words I(X; Π|Y RRB) = I(X; Π|Y )
and I(Y ; Π|XRRA) = I(Y ; Π|X). We summarize these in the following definition.

Definition 2.1. The internal information cost and the external information cost of a protocol π
with respect to a distribution µ on inputs from X × Y are defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

and
ICext

µ (π) = I(Π;XY ),

respectively, where Π = ΠXY is the transcript of the protocol when it is executed on XY ∼ µ.

We will be interested in certain communication tasks. Let [f, ε] denote the task of computing
the value of f(x, y) correctly with probability at least 1 − ε for every (x, y). Thus a protocol π
performs this task if

Pr[π(x, y) 6= f(x, y)] 6 ε, ∀ (x, y) ∈ X × Y.

Given another distribution ν on X ×Y, let [f, ν, ε] denote the task of computing the value of f(x, y)
correctly with probability at least 1 − ε if the input (x, y) is sampled from the distribution ν. A
protocol π performs this task if

Pr
(x,y)∼ν

[π(x, y) 6= f(x, y)] 6 ε.

Note that a protocol π performs [f, 0] if it computes f correctly on every input while performing
[f, ν, 0] means computing f correctly on the inputs that belong to the support of ν.

We will also need a one-sided version of the task [f, ε]. Let [f, ε, z1 → z0] denote the task of
computing the value of f(x, y) correctly with probability at least 1 − ε for every (x, y), allowing
the protocol to err only if it outputs z0 instead of z1. Thus a protocol π performs this task if it
performs the task [f, ε], and additionally

π(x, y) 6= f(x, y) =⇒ f(x, y) = z1 and π(x, y) = z0.

The information complexity of a communication task T with respect to a measure µ is defined
as

ICµ(T ) = inf
π: π performs T

ICµ(π).

It is essential here that we use infimum rather than minimum as there are tasks for which there
is no protocol that achieves ICµ(T ) while there is a sequence of protocols whose information cost
converges to ICµ(T ). The external information complexity of a communication task T is defined
similarly. We will abbreviate ICµ(f, ε) = ICµ([f, ε]), ICµ(f, ν, ε) = ICµ([f, ν, ε]), etc. It is important
to note that when µ does not have full support, ICµ(f, µ, 0) can be strictly smaller than ICµ(f, 0).
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Remark 2.2 (A warning regarding notation). In the literature of information complexity it is com-
mon to use “ICµ(f, ε)” to denote the distributional error case, i.e. what we denote by ICµ(f, µ, ε).
Unfortunately this has become the source of some confusions in the past, as sometimes “ICµ(f, ε)”
is used to denote both of the distributional error and the point-wise error cases. To avoid ambiguity
we distinguish the two cases by using the different notations ICµ(f, µ, ε) and ICµ(f, ε).

Similar to the fact that the maximal distributional communication complexity over all measures
equals the public coin randomized communication complexity (see e.g., [KN97, Section 3.4]), below
we prove a lemma that establishes a similar relation between ICµ(f, ν, ε) and ICµ(f, ε).

Lemma 2.3. ICµ(f, ε) = maxν ICµ(f, ν, ε) holds for all ε > 0.

Note that the maximum exists due to continuity of ICµ(f, ν, ε) with respect to ν, a fact that is
discussed later in Section 2.4 (For ε = 0 one can take any full-support ν).

Proof. We only need to show ICµ(f, ε) 6 maxν ICµ(f, ν, ε) as the other direction is obvious. The
proof is an application of von Neumann’s minimax theorem.

Pick a small δ > 0, let Cδ = {π : ICµ(π) 6 ICµ(f, ε) − δ}. Although Cδ is an infinite set, we
can approximate it by a finite set by considering only the protocols with bounded communication
cost that use only a bounded number of unbiased random bits. This process does not affect the
validity of the proof, and hence the minimax theorem is still applicable.

Consider a two-player zero-sum game in which Alice chooses a protocol π ∈ Cδ and Bob chooses
an input (x, y) ∈ X × Y, and define the utility for Alice to be Pr[π(x, y) = f(x, y)]. Note that
a mixed strategy for Alice is still just a protocol, and a mixed strategy for Bob corresponds to a
probability measure on X × Y. By our definition of Cδ and the minimax theorem, we have

min
ν

max
π

E
(x,y)∼ν

Pr[π(x, y) = f(x, y)] = max
π

min
ν

E
(x,y)∼ν

Pr[π(x, y) = f(x, y)] = 1− ε− t(δ) < 1− ε,

where t(δ) > 0 is a positive quantity. This means that there exists a measure ν∗δ such that for all
π ∈ Cδ, E(x,y)∼ν∗δ Pr[π(x, y) 6= f(x, y)] > ε. Letting δ → 0 gives maxν ICµ(f, ν, ε) > ICµ(f, ε) as
desired. �

Finally let us recall the two definitions of the prior-free notions of information complexity
introduced in [Bra12]. The max-distributional information complexity of a function f : X ×Y → Z
is defined as

ICD(f, ε) = max
µ

ICµ(f, µ, ε).

The information complexity of f with error ε is defined as

IC(f, ε) = inf
π

max
µ

ICµ(π),

where the infimum is over all protocols π that perform the task [f, ε]. It is possible [Bra12] to use
a minimax argument and the concavity of ICµ(π) with respect to µ to show that

IC(f, ε) = inf
π

max
µ

ICµ(π) = max
µ

inf
π

ICµ(π) = max
µ

ICµ(f, ε) = max
µ,ν

ICµ(f, ν, ε),

where the last equality follows from Lemma 2.3.
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2.4 The continuity of information complexity

It is shown in [BGPW13b, Lemma 4.4] that for every communication task T , ICµ(T ) is uniformly
continuous with respect to µ. More precisely, for every two measures µ1 and µ2 with |µ1 − µ2| 6 δ
(the distance is in total variation distance), we have

| ICµ1(T )− ICµ2(T )| 6 2 log(|X × Y|)δ + 2h(2δ). (3)

The information complexity functions ICµ(f, ε) and ICµ(f, ν, ε) are both continuous with respect
to ε. The following simple lemma from [Bra12] proves continuity for ε ∈ (0, 1]. The continuity at 0
is more complicated and is proven in [BGPW13a] (See also Theorem 3.5 and Theorem 3.6 below).

Lemma 2.4. [Bra12] For every f : X ×Y → Z, ε2 > ε1 > 0 and measures µ, ν on X ×Y, we have

ICµ(f, ν, ε1)− ICµ(f, ν, ε2) 6 (1− ε1/ε2) log |X × Y|, (4)

and
ICµ(f, ε1)− ICµ(f, ε2) 6 (1− ε1/ε2) log |X × Y|. (5)

Proof. Consider a protocol π with information cost I, and error ε2 > 0. Here we can consider the
distributional error as in (4) or the point-wise error as in (5). Set δ = 1 − ε1/ε2, and let τ be the
protocol that with probability 1 − δ runs π, and with probability δ Alice and Bob exchange their
inputs and compute f(x, y) correctly. The theorem follows as the new protocol has error at most
(1− δ)ε2 = ε1, and information cost at most I + δ log |X × Y|. �

Note that ICµ(f, µ, 0) is not always continuous with respect to µ. For example, let the matrices

µε =

(
1−ε

3
1−ε

3
1−ε

3 ε

)
, µ = lim

ε→0
µε =

(
1
3

1
3

1
3 0

)
. (6)

represent distributions on {0, 1}2. Here the entry at the i-th row and j-th column corresponds
to the measure of the point (i − 1, j − 1) ∈ {0, 1}2. Now for the 2-bit AND function, we have
ICµ(AND, µ, 0) = 0, while ICµε(AND, µε, 0) = ICµε(AND, 0) as µε has full support. Thus

lim
ε→0

ICµε(AND, µε, 0) = lim
ε→0

ICµε(AND, 0) = ICµ(AND, 0),

which is known to be bounded away from 0.
Finally, note that Lemma 2.4 also implies the continuity of ICµ(f, ν, ε) with respect to ν when

ε > 0. Indeed if |ν1 − ν2| 6 δ 6 ε, then a protocol that has distributional error ε with respect to
ν2, will have error at most ε+ δ and at least ε− δ with respect to ν1. Thus

ICµ(f, ν1, ε+ δ) 6 ICµ(f, ν2, ε) 6 ICµ(f, ν1, ε− δ). (7)

which establishes the desired continuity. A similar example to (6) shows that ICµ(f, ν, 0) is not
necessarily continuous with respect to ν.
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2.5 Communication protocols as random walks on ∆(X × Y)

Recall that ∆(X ×Y) denotes the set of probability distributions on X ×Y. Consider a protocol π
and a prior distribution µ on the set of inputs X ×Y. Suppose that in the first round Alice sends a
random signal B to Bob. We can interpret this as a random update of the prior distribution µ to
a new distribution µ0 = µ|B=0 or µ1 = µ|B=1 depending on the value of B. It is not difficult to see

that µb(x, y) = pb(x)µ(x, y) for b = 0, 1, where pb(x) = Pr[B=b|x]
Pr[B=b] . In other words, µb is obtained by

multiplying the rows of µ by non-negative numbers. From the law of total expectation,

µ = E
B

[µ|B] = Pr[B = 0]µ0 + Pr[B = 1]µ1. (8)

Similarly if Bob is sending a message, then µb is obtained by multiplying the columns of µ by
the numbers pb(y) = Pr[B=b|y]

Pr[B=b] . That is µb(x, y) = µ(x, y)pb(y).
The opposite direction is also true: given a distribution µ, distributions µ0, µ1, and 0 6 p0, p1 6

1 such that

• p0 + p1 = 1,

• µ0 and µ1 are obtained from µ by scaling its rows,

• µ = p0µ0 + p1µ1,

one can define a random bit B that can be sent by Alice such that µb is µ conditioned on B = b
for b ∈ {0, 1}, and pb = Pr[B = b]. A similar statement holds for the case where µ0 and µ1 are
obtained from µ by scaling its columns and B is a signal that will be sent by Bob.

Therefore, we can think of a protocol as a random walk on ∆(X ×Y) that starts at µ, and every
time that a player sends a message, it moves to a new distribution. Equation (8) implies that this
random walk is without drift.

Let Π denote the transcript of the protocol. Note that when the protocol terminates, the
random walk stops at µΠ := µ|Π. Since Π itself is a random variable, µΠ is a random variable that
takes values in ∆(X × Y). Interestingly, both the internal and external information costs of the
protocol depend only on the distribution of µΠ (this is a distribution on the set ∆(X × Y), which
itself is a set of distributions) [BS15]. It does not matter how different the steps of two protocols
are, and as long as they both yield the same distribution on ∆(X ×Y), they have the same internal
and external information cost. Consequently, one can directly work with this random walk, instead
of working with the actual protocols.

In order to study the relation between the information complexity and the distribution of µΠ,
define the concealed information and external concealed information of a protocol π with respect
to µ, respectively, as

CIµ(π) = H(X|ΠY ) +H(Y |ΠX) = H(X|Y ) +H(Y |X)− ICµ(π), (9)

and
CIextµ (π) = H(XY |Π) = H(XY )− ICext

µ (π).

With this definition it is easy to see that the information cost of a protocol π with transcript
Π only depends on the distribution of µΠ. Indeed

CIµ(π) = HXY∼µ(X|ΠY ) +HXY∼µ(Y |ΠX) = E
Π
HXY∼µΠ

(X|Y ) + E
Π
HXY∼µΠ

(Y |X).
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Another nice property of concealed information is that if π0 and π1 are the two branches of the
protocol π corresponding respectively to B = 0 and B = 1 where B is the first bit sent, then

CIµ(π) = Pr[B = 0] CIµ|B=0(π0) + Pr[B = 1] CIµ|B=1(π1).

Thus, the expected value of CI is preserved throughout the execution of the protocol. Similar
results hold for CIextµ (π).

3 Main Results

In this section, we state and discuss our main results in full detail. Simpler proofs are presented in
this section, but the proofs of the more involved results are postponed to later sections.

We will use the following simple estimate:

x ∈ [0, 1/2] =⇒ x log
1

x
6 h(x) 6 2x log

1

x
, (10)

which holds since in that range −x log x > −(1− x) log(1− x).
Denote

h(x) = h(min(x, 1/2)). (11)

It satisfies h(x) > h(x) and x 6 h(x). It is easy to see that h is concave. Therefore, h is also concave
as it is piecewise differentiable with non increasing derivative. Additionally, h(0) = h(0) = 0. We
will next show how to utilize these two properties of h and h: for any concave function g : R+ → R
for which g(0) = 0, and for any x > 0 and 0 < q < 1, it holds that

g(qx) > qg(x) + (1− q)g(0) = qg(x). (12)

This implies the subadditivity of g: for all a1, a2 > 0, g(a1 + a2) 6 g(a1) + g(a2), as g(ai) >
ai

a1+a2
g(a1 + a2), for all i = 1, 2.

3.1 Information complexity with point-wise error

Consider a communication problem f : X × Y → Z, and a distribution µ. How close can ICµ(f, ε)
be to ICµ(f, 0)? A simple argument shows that ICµ(f, ε) 6 ICµ(f, 0)− Ω(ε).

Proposition 3.1. Let f : X × Y → Z, and let µ be a measure on X × Y. Denoting c = ICµ(f, 0),
we have

ICµ(f, ε) 6 (1− ε) ICµ(f, 0) = ICµ(f, 0)− cε.

Proof. Let π be a zero-error protocol for f . Consider a protocol π′ in which Alice and Bob use their
public randomness to run with probability 1− ε the protocol π, or to terminate with an arbitrary
output with probability ε. Let Π and Π′ be respectively the transcripts of π and π′ on the random
input (X,Y ). We have

I(X; Π′|Y ) = H(X|Y )−H(X|Π′Y ) = H(X|Y )− εH(X|Y )− (1− ε)H(X|ΠY ) = (1− ε)I(X; Π|Y ).

The same holds for I(Y ; Π′|X), and the statement follows. �
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Our first major theorem shows that this trivial bound can be improved to ICµ(f, ε) 6 ICµ(f, 0)−
Ω(h(ε)).

Theorem 3.2. Consider a function f : X ×Y → Z and a probability measure µ on X ×Y such that
ICµ(f, 0) > 0. There exist positive constants τ, ε0, depending on f and µ (and thus on |X |, |Y|, |Z|),
such that for every ε 6 ε0,

ICµ(f, ε) 6 ICµ(f, 0)− τh(ε).

Moreover:

Non-constant case: Suppose that f(a) 6= f(b) for two points a, b in the support of µ, and on
the same row or column. Then one can take τ = µ(a)2µ(b)/32, and ε0 depends only on
min(µ(a), µ(b)) and |X × Y|.

AND case: Let x0, x1 ∈ X and y0, y1 ∈ Y. Suppose that f(x0y0) = f(x0y1) = f(x1y0) = z0

and f(x1y1) = z1 6= z0, and that x0y0, x0y1, x1y0 ∈ suppµ. Then one can take τ =
µ(x0y0)2

64 min(µ(x0y1), µ(x1y0)), and ε0 depends only on |X ×Y| and the minimum of µ(x0y0),
µ(x0y1), µ(x1y0).

Proof. See Section 4.1.1. �

Remark 3.3. We prove Theorem 3.2 by taking a zero-error protocol for f , and turning it into an
ε-error protocol that has an Ω(h(ε)) gain in the information cost over the original protocol. The
high-level idea is that one of the players checks her/his input and if it is equal to a certain value x1,
then with probability ε changes to a different value x0. This obviously creates an error of at most ε.
In the Non-constant case of Theorem 3.2, the points a and b are used to determine x0 and x1, and
in the AND case, the same x0 and x1 as they are described in the statement of the theorem can be
used. Note that this modification can only create errors that erroneously output f(x0, y) instead
of f(x1, y) for some values of y. This allows us to obtain a one-sided error for many functions. We
shall use this later in Corollary 3.9 to obtain an upper bound on the information complexity of the
AND function when only one-sided error is allowed.

Despite the simplicity of the idea described in Remark 3.3, the proof is rather involved, and
uses some of our other results such as characterization of internal-trivial measures. The heart of
the proof is of course showing the existence of appropriate values of x0 and x1 that can lead to the
desired gain of Ω(h(ε)).

Let XOR denote the 2-bit XOR function. The next result shows that the analogue of Theo-
rem 3.2 does not hold for the external information complexity.

Proposition 3.4. Let µ be the distribution defined as

µ =
1/2 0

0 1/2
.

Then ICext
µ (XOR, ε) > ICext

µ (XOR, 0)− 3ε.

Proof. See Section 4.1.3. �

For the lower bound we prove the following theorem.
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Theorem 3.5. For all f, µ, ε, we have

ICµ(f, ε) > ICµ(f, 0)− 4|X ||Y|h(
√
ε).

Proof. See Section 4.1.2. �

Theorem 3.5 is obtained by taking an ε-error protocol and completing it to a zero-error protocol.
Here Alice and Bob first run the protocol that performs [f, ε], but when this protocol terminates,
instead of returning the output, they continue their interaction to verify that the value that they
have obtained is correct. We will be able to show that these additional interactions can be performed
at a small information cost, and thus the total information complexity of the new protocol is not
going to be much larger than that of the original protocol. This method, that we call protocol
completion, is used in the proofs of other results such as Theorem 3.7 as well.

Finally let us remark that we do not know whether the bound in Theorem 3.5 is tight. In
fact we are not aware of any examples of f and µ that refutes the possibility that ICµ(f, ε) =
ICµ(f, 0)−Θ(h(ε)) for every f and µ satisfying ICµ(f, 0) > 0.

3.2 Information complexity with distributional error

In Section 3.1 we considered the amount of gain one can obtain by allowing point-wise error.
Next we turn to distributional error. How much can one gain in information cost by allowing a
distributional error of ε? Small modifications in the proofs of Theorem 3.2 and Theorem 3.5 imply
the following bounds.

Theorem 3.6. Let µ be a probability measure on X×Y, and let f : X×Y → Z satisfy ICµ(f, µ, 0) >
0. We have

ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) 6 ICµ(f, µ, ε) 6 ICµ(f, µ, 0)− α2

4
h (εα/4) + 3ε log |X × Y|,

where α = minxy∈suppµ µ(x, y).

Proof. See Section 4.2. �

It is also possible to prove the upper bound of Theorem 3.6 using a different approach by
“truncating” a zero-error protocol. Unfortunately this approach requires some assumptions on the
support of µ. Nevertheless we sketch this proof, as the idea seems to be new, and it might have
other applications.

Let ∆0 ⊆ ∆(X ×Y) be the set of all measures ν such that ICν(f, ν, ε) = 0. Consider a protocol
π that performs [f, µ, 0]. First we simulate π with another protocol π′ such that no signal of π′

jumps from outside of ∆0 to the interior of ∆0. In other words if some partial transcript t satisfies
µt 6∈ ∆0, then when the next signal B is sent, µtB is either still outside of ∆0 or it is on the boundary
∂∆0. The simulation can be done in a perfect manner so that if Π and Π′ denote, respectively,
the transcripts of π and π′, then µΠ′ has the same distribution as µΠ. The new protocol π′ might
not necessarily have bounded communication, but it will terminate with probability 1. We refer
the reader to [FHLY16, Signal Simulation Lemma] and [BGPW13a, Claim 7.14] for more details
on such simulations.

We will truncate π′ in the following manner to obtain a new protocol π0 that performs [f, µ, ε].
Whenever the corresponding random walk of π′ reaches a distribution ν that is on the boundary
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∂∆0, the two players stop the random walk, and use ICν(f, ν, ε) = 0 to output a value that
creates a distributional error of at most ε with respect to ν at no information cost. Obviously the
distributional error of the protocol π0 is at most ε. To analyze its information cost, denote the
transcript of π0 by P , and note that P is a partial transcript for π′. Let π′P be the continuation of
π′ when one starts at this partial transcript. It is not difficult to see that

ICµ(π) = ICµ(π′) = ICµ(π0) + E
P

[ICµP (π′P )].

Since π′ performs [f, µ, 0], the tail protocol πP must perform [f, µP , 0]. Hence in order to finish
the proof, it suffices to show that ICν(f, ν, 0) = Ω(h(ε)) for every ν ∈ ∂∆0, as this would imply
the desired ICµ(π) > ICµ(π0) + Ω(h(ε)). This can be proven with some work when µ is of full
support, however it is not true for general measures. For example, consider the AND function, and
let µ be the distribution on {0, 1}2 defined as µ(0, 0) = 1 − 2ε and µ(1, 0) = µ(1, 1) = ε. Note
that although µ is on the boundary of ∆0, we have ICµ(AND, µ, 0) 6 2ε. Indeed, since µ(0, 1) = 0,
Bob with probability 1 knows the correct output by looking at his own input Y , and so if he sends
his bit to Alice, they will both know the correct output. This will have information cost at most
H(Y |X) = Pr[X = 1]H(Y |X = 1) = 2ε.

3.3 Information complexity of the AND function with error

Building upon the previous works of Ma and Ishwar [MI11, MI13], Braverman et al. [BGPW13a]
developed a method for proving the optimality of information complexity and applied it to de-
termine the internal and external information complexity of the two-bit AND function. They
introduced a “continuous-time” protocol for this task, and proved that it has optimal internal and
external information cost for any underlying distribution. Although this protocol is not a conven-
tional communication protocol as it has access to a continuous clock, it can be approximated by
conventional communication protocols through dividing the time into finitely many discrete units.
Then in [BGPW13a, Problem 1.1] they considered the case where error is allowed, and conjectured
a gain of IC(AND) − IC(AND, ε) = Θ(h(ε)). In this section, we conduct a thorough analysis of
the information complexity of the AND function when error is permitted, and among other results,
prove the aforementioned conjecture.

Applying our general bounds from in Section 3.1 and Section 3.2 (i.e. Theorems 3.2, 3.5, and 3.6)
we already obtain that for small enough ε > 0,

(i). For every distribution µ satisfying ICµ(AND, 0) > 0, we have

ICµ(AND, 0)−Oµ(h(
√
ε)) 6 ICµ(AND, ε) 6 ICµ(AND, 0)− Ωµ(h(ε));

(ii). For every distribution µ satisfying ICµ(AND, µ, 0) > 0, we have

ICµ(AND, µ, 0)−Oµ(h(
√
ε)) 6 ICµ(AND, µ, ε) 6 ICµ(AND, µ, 0)− Ωµ(h(ε)).

We show that under some conditions on the support of µ, the above lower bounds can be
improved to match the upper bounds.

Theorem 3.7. For small enough ε > 0, the following hold,
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(i). For every distribution µ which is full support, except perhaps for µ(1, 1), we have

ICµ(AND, ε) = ICµ(AND, 0)−Θ(h(ε)),

where the hidden constants can be fixed if µ(0, 0), µ(0, 1), µ(1, 0) are bounded away from 0.

(ii). In particular for every distribution µ of full support, we have

ICµ(AND, µ, ε) = ICµ(AND, µ, 0)−Θ(h(ε)).

Note that for every distribution µ of full support, we have ICµ(AND, µ, 0) = ICµ(AND, 0) > 0,
and ICµ(AND, ε/α) 6 ICµ(AND, µ, ε) 6 ICµ(AND, ε) where α = minxy µ(xy). Thus Theo-
rem 3.7 (ii) follows from (i).

From a technical point of view, Theorem 3.7 is perhaps our most involved result in this article,
and its proof occupies the bulk of Section 6. The first idea that facilitates the proof substantially
is developed by the first two authors in [DF16]. They showed that it is possible to parametrize the
space of the distributions ∆(X ×Y) so that the changes that occur in the prior distribution by the
players’ interactions can be captured by product measures. This idea, that is discussed in details
in Section 5, allows us to first prove the lower bound of Theorem 3.7 for the product measures, and
then add minor adjustments to adopt it for non-product distributions. The second component of
the proof is a stability result. Recall from Section 2.5 that the information cost of every protocol
π depends only on its “leaf distribution”, i.e. the distribution of µΠ, where Π is the transcript of π
or equivalently µ` where ` is a random leaf of the protocol tree. Our stability result, Theorem 6.2,
shows that the leaf distribution of every almost optimal protocol π for [AND, 0] shares certain
similarities with that of the buzzer protocol. Note that since π does not make any errors, by the
end of the protocol, either both players know that the input is (1, 1), or one of them has revealed
that her input is 0. Theorem 6.2 formalizes the intuition that in this latter case, the other player
must not have revealed that his input is very likely to be 0. This is achieved through defining a
potential function that depends only on the distribution of µΠ and proving that it is bounded by
the so called information wastage ICµ(π) − ICµ(AND, 0). With these results in hand, in order to
complete the lower bound of Theorem 3.7, we start with a protocol π performing [AND, ε] with
almost optimal information complexity. First we show that π can be completed to a protocol that
performs [AND, 0] at a small additional information cost, though possibly larger than the desired
O(h(ε)). Then we apply the stability result to deduce certain properties for the leaf distribution
of π. This will imply that one indeed needs only an additional cost of O(h(ε)) to extend π to a
protocol that solves [AND, 0].

Braverman et al. [BGPW13a] showed that IC(AND, 0) = maxµ ICµ(AND, 0) is attained on a
distribution having full support. This enables us to derive the following corollary on prior-free
information complexity.

Corollary 3.8. When ε > 0 is sufficiently small, we have

(i). IC(AND, ε) = IC(AND, 0)−Θ(h(ε));

(ii). ICD(AND, ε) = IC(AND, 0)−Θ(h(ε));

Proof. The measure µ that maximizes ICµ(AND, 0) has full support [BGPW13a], and thus IC(AND, 0) =
ICµ(AND, 0) = ICµ(AND, µ, 0). By Theorem 3.7 (ii),

IC(AND, ε) > ICD(AND, ε) > ICµ(AND, µ, ε) > ICµ(AND, µ, 0)−O(h(ε)) = IC(AND, 0)−O(h(ε)).
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Moreover by a general upper bound that we prove later in Theorem 3.15, we have

ICD(AND, ε) 6 IC(AND, ε) 6 IC(AND, 0)− Ω(h(ε)).

Both items in the corollary follow. �

Since the difficult distributions for the set disjointness function are the ones in which the inputs
typically have small or no intersections at all, the distributions for the AND function that assign a
very small or 0 mass to the point (1, 1) are of particular importance. Let

ICδ(AND, ε, 1→ 0) = sup
µ : µ(1,1)6δ

ICµ(AND, ε, 1→ 0).

The following corollary is used in Section 3.4 to analyze the information complexity of the set
disjointness problem.

Corollary 3.9. When ε > 0 is sufficiently small, we have

(i). IC0(AND, ε) = IC0(AND, 0)−Θ(h(ε));

(ii). IC0(AND, ε, 1→ 0) = IC0(AND, 0)−Θ(h(ε)).

(iii). There exist universal constants C1 and C2 such that for every ε, δ > 0,

ICδ(AND, ε, 1→ 0) 6 IC0(AND, 0)− C1h(ε) + C2h(δ).

Proof. Let µ be the distribution maximizing ICµ(AND, 0) under the constraint µ(1, 1) = 0; This
measure, which is described in [BGPW13a], has full support except for µ(1, 1) = 0. Thus by
Theorem 3.7 (i),

IC0(AND, ε) > ICµ(AND, ε) > ICµ(AND, 0)−O(h(ε)) = IC0(AND, 0)−O(h(ε)).

Consequently, since IC0(AND, ε) 6 IC0(AND, ε, 1 → 0), both (i) and (ii) will follow if we prove
IC0(AND, ε, 1→ 0) 6 IC0(AND, 0)−Ω(h(ε)). To prove this, we would like to apply the AND case
of Theorem 3.2, however to be able to obtain a uniform upper bound on IC0(AND, ε, 1 → 0), we
need to have a uniform lower bound on the probabilities µ(0, 0), µ(0, 1), µ(1, 0). Let α > 0 to be
determined later, and consider any distribution µ with µ(1, 1) = 0 and µ(a) < α for some input
a 6= (1, 1). Pick b ∈ {0, 1}2 \ {a, (1, 1)}, and obtain the distribution µ′ from µ by transferring all
the probability mass on a to b. That is µ′(b) = µ(a) + µ(b) and µ′(a) = 0, and otherwise µ and µ′

are identical. Obviously |µ− µ′| = α. Now (3) and (12) imply

ICµ(AND, ε, 1→ 0) 6 ICµ(AND, 0) 6 ICµ′(AND, 0)+4α+2h(2α) = 4α+2h(2α) 6 4h(2α), (13)

where we used the fact that ICµ′(AND, 0) = 0 as suppµ′ contains only two points. Setting α = 0.001
for example yields ICµ(AND, 0) 6 4h(2α) < 0.1 < IC0(AND, 0) ≈ 0.4827. It remains to prove
the statement for the distributions µ with µ(0, 0), µ(0, 1), µ(1, 0) > α. In this case Theorem 3.2
(See Remark 3.3 regarding the one-sidedness) implies that exists a constant C > 0 such that
ICµ(AND, ε, 1→ 0) 6 IC0(AND, 0)− Ch(ε). This finishes the proof (i) and (ii).

To prove (iii), consider an arbitrary distribution µ with µ(1, 1) 6 δ, and let µ′ be the distribution
that is obtained from µ by moving the probability mass on (1, 1) to a different point so that
µ′(1, 1) = 0 and |µ− µ′| = δ. Similar to (13), we obtain

ICµ(AND, ε, 1→ 0) 6 ICµ′(AND, ε, 1→ 0) + 4h(2δ) 6 IC0(AND, ε, 1→ 0) + 4h(2δ),

and thus (iii) follows from (ii). �
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3.4 Set disjointness function with error

In this section we focus on the set disjointness function. Firstly it is not hard to obtain the following
result.

Corollary 3.10. For ε > 0 small enough,

IC(DISJn, ε) > n[IC0(AND, 0)−Θ(h(ε))],

where the hidden constant is independent of n.

Proof. By the argument that proves the additivity of information complexity (see e.g. [BR14]),
one can prove that IC(DISJn, ε) > n IC0(AND, ε). Then apply Corollary 3.8. The essential idea is
the following. Consider a distribution µ on {0, 1}2 with µ(1, 1) = 0, and let (a, b) ∈ {0, 1}2 be an
input for the AND function. Let XY ∈ {0, 1}n × {0, 1}n be such that for some randomly selected
J ∈ {1, . . . , n} we have (Xj , Yj) = (a, b), and for i ∈ {1, . . . , n} \ {J}, the pairs (Xi, Yi) are i.i.d.
random variables, each with distribution µ. Since µ(1, 1) = 0, we have DISJn(X,Y ) = 1−AND(a, b)
with probability 1. Thus one can take a protocol π for DISJn and use it to solve AND(a, b) correctly
for every (a, b). By sampling XY in a clever way, using both public and private randomness, one
can guarantee that the information cost of the new protocol that solves AND(a, b) will be the
information cost of π divided by n. �

As a result one also obtains that Rε(DISJn) > n[IC0(AND, 0)−Θ(h(ε))]. It turns out that by
using techniques from [BGPW13a] and [Bra12], one can prove the following theorem.

Theorem 3.11. For the set disjointness function DISJn on inputs of length n, we have

Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))].

Proof. See Section 7.1. �

We conjecture that in fact the exact constant is given by IC0(AND, ε, 1→ 0). In other words:

Conjecture 3.12. For the set disjointness function DISJn on inputs of length n, we have

Rε(DISJn) = n IC0(AND, ε, 1→ 0) + o(n).

Braverman [Bra12] proved that for all 0 < α < 1 and for all functions f ,

ICD(f, ε) > (1− α) IC(f,
ε

α
).

When f = DISJn, Corollary 3.10 gives

ICD(DISJn, ε)

n
> (1− α)(IC0(AND, 0)−Θ(h(ε/α))) > IC0(AND, 0)−Θ(α+ h(ε/α)).

Substituting α =
√
ε log(1/ε) yields

ICD(DISJn, ε)

n
> IC0(AND, 0)−Θ(

√
h(ε)). (14)

In Theorem 3.13 below, which is one of our main contributions, we show that this bound is sharp.
The proof relies on introducing a new protocol for set disjointness problem, and analyzing its
information cost.
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Theorem 3.13. For the set disjointness function DISJn on inputs of length n, we have

ICD(DISJn, ε) = n[IC0(AND, 0)−Θ(
√
h(ε))] +O(log n).

Proof. See Section 7.2. �

3.5 Prior-free Information Cost

Theorem 3.13 shows that for α =
√
ε log(1/ε) = Θ(

√
h(ε)), and sufficiently large n, we have

ICD(DISJn, ε)

1−Θ(α)
= IC(DISJn, ε/α) < IC(DISJn, ε),

and thus proves a separation between distributional and non-distributional prior-free information
complexity. As we discussed in the introduction this has the important implication that amortized
randomized communication complexity is not necessarily equal to the amortized distributional
communication complexity with respect to the hardest distribution. More precisely, there are
examples for which maxµD

µ,n
ε (fn) 6= Rnε (fn).

Next we turn to proving general lower bounds and upper bounds for the prior-free informa-
tion complexity. Theorem 3.5 immediately implies a lower bound for non-distributional prior-free
information complexity.

Corollary 3.14 (corollary of Theorem 3.5). For every function f and 0 6 ε 6 1, we have

IC(f, ε) > IC(f, 0)− 4|X × Y|h(
√
ε).

Since unless µ satisfies certain conditions, Theorem 3.2 does not provide an upper bound on
ICµ(f, ε) that is uniform on µ, we cannot apply it directly to bound IC(f, ε). However, we will get
around this problem by proving that the “difficult distributions” satisfy these conditions and hence
we obtain the desired upper bound.

Theorem 3.15. If f : X × Y → Z is non-constant, then

IC(f, ε) 6 IC(f, 0)− Ω(h(ε)),

where the hidden constant depends on f .

Proof. See Section 4.3. �

The same upper bound and lower bound hold for ICD(f, ε).

Theorem 3.16. If f : X × Y → Z is non-constant, then

ICD(f, 0)−O(h(
√
ε)) 6 ICD(f, ε) 6 ICD(f, 0)− Ω(h(ε)),

where the hidden constants depend on f .

Proof. It is shown in [Bra12] that ICD(f, 0) = IC(f, 0), and thus the upper bound follows from
Theorem 3.15 as ICD(f, ε) 6 IC(f, ε).

To prove the lower bound, choose a measure µ that maximizes ICµ(f, µ, 0), and let α =
minxy∈suppµ µ(x, y). Applying Theorem 3.6, we get

ICD(f, ε) > ICµ(f, µ, ε) > ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) = ICD(f, 0)−O(h(

√
ε)). �
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3.6 A characterization of trivial measures

We start with a few of definitions. Let f : X ×Y → Z be an arbitrary function, and µ a distribution
on X × Y. We say that µ is external-trivial if ICext

µ (f, 0) = 0. We say that µ is strongly external-
trivial if there exists a protocol π computing f correctly on all inputs satisfying ICext

µ (π) = 0. We
say that µ is structurally external-trivial if f is constant on SA × SB, where SA is the support of
the marginal of µ on Alice’s input and SB is the support of the marginal of µ on Bob’s input.

Similarly we say that µ is internal-trivial if ICµ(f, 0) = 0. We say that µ is strongly internal-
trivial if there exists a protocol π computing f correctly on all inputs satisfying ICµ(π) = 0. We
say that µ is structurally internal-trivial if the marginals of µ can be partitioned as SA =

⋃
iXi and

SB =
⋃
i Yi so that the support of µ is contained in

⋃
iXi ×Yi, and f is constant on each Xi ×Yi.

Theorem 3.17 below shows that all our definitions of internal triviality are equivalent. In
particular, if ICµ(f, 0) = 0, then the infimum in the definition of ICµ is achieved by a finite
protocol.

Theorem 3.17. Let f : X × Y → Z be an arbitrary function, and µ a distribution on X × Y.
The distribution µ is internal-trivial iff it is strongly internal-trivial iff it is structurally internal-

trivial.

Proof. See Section 4.4. �

In order to prove Theorem 3.17, we first obtain a characterization of measures that are not
structurally internal-trivial, by defining a graph Gµ on the support of every distribution µ on
X × Y.

Definition 3.18. Let G be the graph whose vertex set is X × Y, and two vertices are connected
if they agree on one of their coordinates. That is, (x, y), (x, y′) are connected for every x ∈ X and
y 6= y′ ∈ Y, and (x, y), (x′, y) are connected for every x 6= x′ ∈ X and y ∈ Y. In short, G is the
Cartesian product of the complete graphs KX and KY . Let Gµ be the subgraph of G induced by
the support of µ. For every connected component C of Gµ, define

CA = {x ∈ X : xy ∈ C for some y ∈ Y},
CB = {y ∈ Y : xy ∈ C for some x ∈ X}.

The following lemma shows that if µ is not structurally internal-trivial, then there exists a
connected component C of Gµ such that f is not constant on CA ×CB. We will use this fact later
in Section 4.1.1 in the proof of Theorem 3.2.

Lemma 3.19. Let f : X × Y → Z be an arbitrary function, and µ a distribution on X × Y. Then
the distribution µ is structurally internal-trivial iff for every connected component C of Gµ, the
function f is constant on CA × CB.

Proof. Suppose first that µ is structurally internal-trivial. Thus there exist partitions SA =
⋃
iXi

and SB =
⋃
i Yi such that the support of µ is contained in

⋃
iXi ×Yi and f is constant on Xi ×Yi

on each i. Any connected component C of Gµ must lie in some Xi × Yi. Indeed, if (for example)
xjyj , xjyk ∈ C where xj ∈ Xj , yj ∈ Yj , yk ∈ Yk, then xjyk /∈

⋃
iXi × Yi. As C ⊆ Xi × Yi, we must

have CA × CB ⊆ Xi × Yi, hence f is constant on CA × CB for every connected component C.
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Conversely, suppose that for every connected component C of Gµ, the function f is constant
on CA × CB. If C,C ′ are two different connected components then CA, C

′
A are disjoint: oth-

erwise, if (say) (x, y) ∈ C and (x, y′) ∈ C ′ then (x, y) is connected to (x, y′) and so C = C ′.
Thus {CA : C a connected component of Gµ} partitions a subset X ′ of X . Similarly, {CB :
C a connected component of Gµ} partitions a subset Y ′ of Y. We can obtain partitions of X and
Y by adding the parts X \X ′ and Y \Y ′. These partitions serve as a witness that µ is structurally
internal-trivial. �

Finally we note that the analogue of Theorem 3.17 holds for the external case as well.

Theorem 3.20. Let f : X × Y → Z be an arbitrary function, and µ a distribution on X × Y.
The distribution µ is external-trivial iff it is strongly external-trivial iff it is structurally external-

trivial.

Proof. See Section 4.4. �

4 Proofs for general functions

In this section we present the proofs of the main results on general functions presented in Section 3.

4.1 Information complexity with point-wise error

4.1.1 Proof of Theorem 3.2

We discuss some notation before the proof. Consider a protocol π. For an input xy, let Πxy denote
the random variable corresponding to the transcript of π when it is executed on the input xy. Let
Π denote the random variable for transcripts of π, whose distribution is given as

Pr[Π = t] = E
xy

Pr[Πxy = t] =
∑
xy

Pr[xy] Pr[Πxy = t],

where Pr[Πxy = t] = Pr[Π = t|XY = xy]. As usual we abbreviate Pr[xy] = Pr[XY = xy], and
Pr[x|y] = Pr[X = x|Y = y], and so on.

The next lemma shows that under some conditions, if we modify a protocol π to a new protocol
π′ according to Figure 1, then the information cost will have a significant drop.

On input XY :

• Alice privately samples a Bernoulli random variable B with parameter ε.

• If X = x1 and B = 1, Alice sets X ′ = x0, otherwise she sets X ′ = X.

• The players run π on X ′Y .

Figure 1: The protocol π′ is obtained from a protocol π using x0, x1 ∈ X .
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Lemma 4.1. Let µ be a distribution on X ×Y, and π be a protocol with input set X ×Y. Suppose
there is a set L of transcripts of π that satisfies, for some C1 ∈ [0, 1],

(1) Pr[Π ∈ L] > C1;

and there are x0y, x1y, both in the support of µ, and C2 ∈ (0, 1], δ ∈ [0, 1] with C2 > 2δ, such that
for every t ∈ L,

(2) Pr[XY = x0y|Π = t] > C2;

(3) Pr[XY = x1y|Π = t] 6 δ.

Let K = log |X × Y|. Then for sufficiently small ε > 0 (depending on µ,C2, δ), the protocol π′

defined in Figure 1 satisfies

ICµ(π′) 6 ICµ(π)− C1C2h

(
ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

})
+ 3εK + h(δ/C2).

Explicitly, the upper bound holds as long as Pr[x1y]
Pr[x0y]ε+ (1− ε)δ/C2 6 1/2.

Intuitively, this condition says that π has a set of transcripts L that happen with significant
probability, and every transcript in L probabilistically differentiates between x0y and x1y. In other
words, if we we see a transcript in L, then we know that the input was much more likely to be x0y
than to be x1y. One point to note here is that we require the two points x0y and x1y to be in the
same column. By symmetry, if there are two points in the same row satisfying the same properties,
then the claim of Lemma 4.1 also holds.

Proof. Consider the protocols π and π′ as described in Figure 1. Note that ΠX′Y is the transcript
of π′. We shorthand Π′ = ΠX′Y . The information cost of π′ is given by

ICµ(π′) = I(X; Π′|Y ) + I(Y ; Π′|X) = H(X|Y ) +H(Y |X)−H(X|Π′Y )−H(Y |Π′X),

while

ICµ(π) = I(X; Π|Y ) + I(Y ; Π|X) = H(X|Y ) +H(Y |X)−H(X|ΠY )−H(Y |ΠX).

Hence
ICµ(π)− ICµ(π′) = H(X|Π′Y )−H(X|ΠY ) +H(Y |Π′X)−H(Y |ΠX).

Note that

H(Y |Π′X) > H(Y |Π′XB) > (1− ε)H(Y |Π′X, (B = 0)) = (1− ε)H(Y |ΠX) > H(Y |ΠX)− εK.
(15)

Similarly, for every y ∈ Y and every possible transcript t, we have

H(X|Π′Y = ty) > H(X|ΠY = ty)− εK. (16)

We will show that for Y = y and every transcript t ∈ L,

H(X|Π′Y = ty) > H(X|ΠY = ty) + h

(
ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

})
− h(δ/C2)− εK. (17)
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Note that Condition (2) implies that for t ∈ L,

Pr[ΠY = ty] > Pr[ΠXY = tx0y] = Pr[XY = x0y|Π = t] Pr[Π = t] > C2 Pr[Π = t].

Hence
Pr[Π ∈ L, Y = y] > C2 Pr[Π ∈ L] > C1C2.

This together with (16) and (17) would show that

H(X|Π′Y ) =
∑
t

∑
y∈Y

Pr[Π′Y = ty]H(X|Π′Y = ty) >
∑
t

∑
y∈Y

(1− ε) Pr[ΠY = ty]H(X|Π′Y = ty)

>
∑
t

∑
y∈Y

Pr[ΠY = ty]H(X|ΠY = ty)

+ Pr[Π ∈ L, Y = y]

(
h

(
ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

})
− h(δ/C2)

)
− 2εK

> H(X|ΠY ) + C1C2h

(
ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

})
− 2εK − h(δ/C2).

Applying (15) would immediately give the claimed bound.
Our aim, then, is to show (17). From now on we consider exclusively t ∈ L.
The idea is to consider the indicator variable C := 1[X 6=x1]. Since C is a deterministic function

of X, we have

H(X|Π′Y = ty) = H(XC|Π′Y = ty) = H(X|C, (Π′Y = ty)) +H(C|Π′Y = ty). (18)

Since Pr[XY = x0y|Π = t] = Pr[Y = y|Π = t] Pr[X = x0|ΠY = ty], by Condition (2) we obtain

Pr[X = x0|ΠY = ty] > Pr[XY = x0y|Π = t] > C2, (19)

and Pr[Y = y|Π = t] > C2. Similarly, as Pr[XY = x1y|Π = t] = Pr[Y = y|Π = t] Pr[X =
x1|ΠY = ty], we obtain by Condition (3) that

Pr[X = x1|ΠY = ty] =
Pr[XY = x1y|Π = t]

Pr[Y = y|Π = t]
6

δ

C2
. (20)

Hence using (20), the first term in (18) can be bounded as

H(X|C, (Π′Y = ty)) > (1− ε)H(X|C, (BΠ′Y = 0ty))

> H(X|C, (ΠY = ty))− εK
= H(XC|ΠY = ty)−H(C|ΠY = ty)− εK
> H(X|ΠY = ty)− h(δ/C2)− εK. (21)

To bound the second term H(C|Π′Y = ty) in (18), we must study Pr[X = x1|Π′Y = ty]. We
will use

Pr[C = 0|Π′Y = ty] = Pr[X = x1|Π′Y = ty] =
Pr[Π′XY = tx1y]

Pr[Π′Y = ty]
. (22)

Consider the numerator first. By the definition of π′,

Pr[Π′XY = tx1y] = Pr[Π′ = t|XY = x1y] Pr[x1y]
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= (εPr[Π = t|XY = x0y] + (1− ε) Pr[Π = t|XY = x1y]) Pr[x1y]

= εPr[ΠXY = tx0y]
Pr[x1y]

Pr[x0y]
+ (1− ε) Pr[ΠXY = tx1y]. (23)

For the denominator of (22), we have

Pr[Π′Y = ty] > Pr[Π′XY = tx0y] = Pr[ΠXY = tx0y]. (24)

By Conditions (2) and (3),

Pr[ΠXY = tx1y]

Pr[ΠXY = tx0y]
=

Pr[XY = x1y|Π = t]

Pr[XY = x0y|Π = t]
6 δ/C2. (25)

Combining (22), (23), (24) and (25), we obtain the following upper bound on (22):

Pr[X = x1|Π′Y = ty] 6
Pr[x1y]

Pr[x0y]
ε+ (1− ε)δ/C2. (26)

To obtain a lower bound for (22) note

Pr[Π′Y = ty] =
∑
x

Pr[Π′XY = txy] =
∑
x6=x1

Pr[Π′XY = txy] + Pr[Π′XY = tx1y]

=
∑
x6=x1

Pr[ΠXY = txy] + εPr[ΠXY = tx0y]
Pr[x1y]

Pr[x0y]
+ (1− ε) Pr[ΠXY = tx1y]

6
∑
x

Pr[ΠXY = txy] + εPr[ΠXY = tx0y]
Pr[x1y]

Pr[x0y]

= Pr[ΠY = ty] + εPr[ΠXY = tx0y]
Pr[x1y]

Pr[x0y]

6 2 max

{
Pr[ΠY = ty],Pr[ΠXY = tx0y]

Pr[x1y]

Pr[x0y]

}
. (27)

Hence by (22), (23) and (27),

Pr[X = x1|Π′Y = ty] >
εPr[ΠXY = tx0y]Pr[x1y]

Pr[x0y]

2 max{Pr[ΠY = ty],Pr[ΠXY = tx0y]Pr[x1y]
Pr[x0y]}

>
ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

}
. (28)

where we used Pr[ΠXY = tx0y]/Pr[ΠY = ty] = Pr[X = x0|ΠY = ty] > C2 by (19). Thus we
have shown that

ε

2
min

{
1, C2

Pr[x1y]

Pr[x0y]

}
6 Pr[X = x1|Π′Y = ty] 6

Pr[x1y]

Pr[x0y]
ε+

(1− ε)δ
C2

. (29)

This together with (18) and (21) gives (17) as desired, as long as ε > 0 is small enough such that
the upper bound in (29) is at most 1/2. �
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Theorem 3.2 (restated). Consider a function f : X × Y → Z and a probability measure µ on
X × Y such that ICµ(f, 0) > 0. There exist positive constants τ, ε0, depending on f and µ, such
that for every ε 6 ε0,

ICµ(f, ε) 6 ICµ(f, 0)− τh(ε).

Moreover:

Non-constant case: Suppose that f(a) 6= f(b) for two points a, b in the support of µ, and on
the same row or column. Then one can take τ > µ(a)2µ(b)/32, and ε0 depends only on
min(µ(a), µ(b)) and |X × Y|.

AND case: Let x0, x1 ∈ X and y0, y1 ∈ Y. Suppose that f(x0y0) = f(x0y1) = f(x1y0) =
z0 and f(x1y1) = z1 6= z0, and that x0y0, x0y1, x1y0 ∈ suppµ. Then one can take τ >
µ(x0y0)2

64 min(µ(x0y1), µ(x1y0)), and ε0 depends only on |X ×Y| and the minimum of µ(x0y0),
µ(x0y1), µ(x1y0).

Proof. In order to apply the assumption ICµ(f, 0) > 0, we will need to use our characterization of
internal-trivial measures. Consider the graph Gµ defined on X ×Y as given in Definition 3.18. By
Theorem 3.17 and Lemma 3.19, the assumption ICµ(f, 0) > 0 implies the existence of a connected
component C of Gµ such that f is not constant on CA ×CB. Note that C ⊆ suppµ, and CA ×CB
is the corresponding rectangle given by C.

Case I: f is not constant on C.
As C is connected, there must be two adjacent points a, b ∈ C such that f(a) 6= f(b). By

our definition of adjacency in Definition 3.18, without loss of generality we can assume that a, b
are in the same column. Now consider any protocol π that solves [f, 0]. Let L0 be the set of the
transcripts that can occur when π runs with input a; formally,

L0 = {t : Pr[Πa = t] > 0}.

Clearly Pr[Π ∈ L0] > µ(a). As f(a) 6= f(b) and π has no error, for every t ∈ L0,

Pr[XY = b|Π = t] = 0. (30)

Let
L = {t ∈ L0 : Pr[XY = a|Π = t] > µ(a)/2}. (31)

We claim
Pr[Π ∈ L] > µ(a)/2. (32)

Indeed, note∑
t∈L0

Pr[Π = t] Pr[XY = a|Π = t] =
∑
t

Pr[Π = t] Pr[XY = a|Π = t] = µ(a),

use the trivial bound Pr[XY = a|Π = t] 6 1, we have

µ(a) =
∑
t∈L

Pr[Π = t] Pr[XY = a|Π = t] +
∑

t∈L0\L

Pr[Π = t] Pr[XY = a|Π = t]
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6
∑
t∈L

Pr[Π = t] +
µ(a)

2

∑
t∈L0\L

Pr[Π = t] = Pr[Π ∈ L] +
µ(a)

2
(1−Pr[Π ∈ L]),

which gives Pr[Π ∈ L] > µ(a)/(2 − µ(a)) > µ(a)/2, as claimed. For small enough ε, the set L
and the points a, b satisfy the three conditions in Lemma 4.1 with C1 = C2 = µ(a)/2 and δ = 0,
respectively from (32), (31) and (30). We conclude that

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2

4
h

(
µ(b)

4
ε

)
+ 3εK whenever

µ(b)

µ(a)
ε 6 1/2,

where K = log |X × Y|. Hence when ε 6 1/2, by (12) we have

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2µ(b)

16
h(ε) + 3εK.

We can thus find ε0 > 0, depending only on µ(a), µ(b),K, such that for ε 6 ε0,

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2µ(b)

32
h(ε).

Case II: f is constant on C but not on CA × CB.
We first make a simple observation:

Property A: For any protocol π that performs [f, 0], and for every transcript t of π, there exists
at least one point b ∈ C (which can depend on t) such that Pr[XY = b|Π = t] = 0.

Indeed, otherwise f would be constant on CA × CB by the rectangle property of protocols (i.e.
Pr[Π = t|x1y1] Pr[Π = t|x2y2] = Pr[Π = t|x1y2] Pr[Π = t|x2y1] for all x1, x2, y1, y2).

Given a protocol π that performs [f, 0] and a point a ∈ C, let the set L(π, a) of transcripts be
defined as

L(π, a) = {t : Pr[XY = a|Π = t] > µ(a)/2}.

The same argument as in Case I shows that Pr[Π ∈ L(π, a)] > µ(a)/2. For any other point b ∈ C,
define

L(π, a, b) = {t ∈ L(π, a) : Pr[XY = b|Π = t] = 0}.

Let k := |C|; necessarily k > 3. By Property A, we have

L(π, a) =
⋃
b∈C
L(π, a, b).

This implies the existence of a point b ∈ C with Pr[Π ∈ L(π, a, b)] > Pr[Π ∈ L(π, a)]/k > µ(a)/2k.
To sum up, we have shown that there exist two different points a, b ∈ C ⊆ suppµ such that the set
of transcripts L(π, a, b) satisfies the following properties:

(1’) Pr[Π ∈ L(π, a, b)] > µ(a)/2k;

(2’) Pr[XY = a|Π = t] > µ(a)/2 for every t ∈ L(π, a, b);

(3’) Pr[XY = b|Π = t] = 0 for every t ∈ L(π, a, b).
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Now consider a sequence of protocols πn that all perform [f, 0] and limn→∞ ICµ(πn) = ICµ(f, 0).
Fix (arbitrarily) a point a ∈ C. For every protocol πn we construct L(πn, a, bπn) as above. Since
there are only k − 1 different values of b, by picking a subsequence of πn if necessary, without loss
of generality, we may assume that for some point b ∈ C, bπn = b for all πn. Hence for every πn we
have a set of transcripts L(πn, a, b) such that properties (1’), (2’) and (3’) are all satisfied.

If we compare these three conditions with the conditions in Lemma 4.1, we find that the only
issue is that we do not know whether a and b are in the same row or column (in terms of the graph
Gµ, whether a and b are adjacent).

Case IIa: a, b are adjacent in Gµ. As we expand on below, we can guarantee that this case
happens in the AND case (see theorem statement) by choosing a = x0y0.

For small enough ε, the set L(π, a, b) and the points a, b satisfy the three conditions in Lemma 4.1
with C1 = µ(a)/2k, C2 = µ(a)/2 and δ = 0, respectively from (1’), (2’) and (3’). We conclude that

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2

4k
h

(
µ(b)

4
ε

)
+ 3εK whenever

µ(b)

µ(a)
ε 6 1/2,

where K = log |X × Y|. Repeating the calculations of Case I, we can find ε0 > 0, depending only
on µ(a), µ(b),K, such that for ε 6 ε0,

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2µ(b)

32k
h(ε).

Suppose now that we are in the AND case. Choosing a = x0y0, we see that Property A must
hold for some b ∈ {x0y1, x1y0}, since a transcript having positive probability on both x0y1 and x1y0

also has positive probability on x1y1, whereas f(x0y1) 6= f(x1y1) by assumption. Property (1’)
thus holds with k = 2, and we conclude that for ε 6 ε0,

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)2µ(b)

64
h(ε).

Case IIb: a, b are not adjacent in Gµ. To handle this case, we run a binary search along a
shortest path connecting a and b in C.

Pick an arbitrary point c ∈ C in some shortest path connecting a and b. For every πn, sort the
transcripts in L(πn, a, b) according to pn,t,c := Pr[XY = c|Πn = t] in increasing order, where Πn is
the random variable representing the transcript of πn. Let mn be the median of the sequence pn,t,c
according to the conditional probability measure νn(t) := Pr[Πn = t|t ∈ L(πn, a, b)], i.e.,

νn({t ∈ L(πn, a, b) : pn,t,c 6 mn}), νn({t ∈ L(πn, a, b) : pn,t,c > mn}) > 1/2. (33)

Such a median always exists: if mn is the smallest value such that νn({t ∈ L(πn, a, b) : pn,t,c 6
mn}) > 1/2 then νn({t ∈ L(πn, a, b) : pn,t,c > mn}) = 1− νn({t ∈ L(πn, a, b) : pn,t,c < mn}) > 1/2.

As trivially mn ∈ [0, 1], the sequence mn must have a convergent subsequence. Again by picking
a subsequence from mn if necessary, we may assume that the sequence mn itself is convergent,
say limn→∞mn = m; moreover, if m > 0, by picking another subsequence we can assume that
mn > m/2 for all n. The binary search algorithm is then given as:
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• If m = 0, update the set of transcripts to

L(πn, a, c) := {t ∈ L(πn, a, b) : pn,t,c 6 mn}, (34)

and continue the algorithm with b replaced by c;

• If m > 0, update the set of transcripts to

L(πn, c, b) := {t ∈ L(πn, a, b) : pn,t,c > mn}, (35)

and continue the algorithm with a replaced by c.

We argue that the three properties are roughly preserved. In the case m = 0, Property (2’) is kept,
while Properties (1’) and (3’) change to

Pr[Πn ∈ L(πn, a, c)] > µ(a)/4k and Pr[XY = c|Πn = t] 6 mn, ∀ t ∈ L(πn, a, c),

respectively. In the case m > 0, Property (3’) is preserved while Properties (1’) and (2’) change to

Pr[Πn ∈ L(πn, c, b)] > µ(a)/4k and Pr[XY = c|Πn = t] > m/2, ∀ t ∈ L(πn, c, b).

In either case, we have seen that the new set of transcripts L(πn, a, b) together with the new two
points a and b satisfy Condition (1), (2) and (3) in Lemma 4.1 with proper constants (e.g., δn in
Condition (3) is at most mn for protocol πn, and mn → 0). After finitely many steps, the binary
search algorithm has to stop and return two adjacent points a and b. Suppose that it stops after s
steps; note that s 6 dlog ke. Lemma 4.1 then gives the upper bound

ICµ(f, ε) 6 ICµ(πn)− µ(a)

2s+1k
C2h

(ε
2

min{1, C2R}
)

+ 3εK + h(δn/C2). (36)

for some C2, R,K > 0 (where C2, R depend on µ) and a sequence δn tending to zero, assuming that

Rε+ (1− ε)δn/C2 6 1/2 and δn/C2 6 1/2.

By picking a subsequence, we can assume that δn 6 C2/4 for all n. Lemma 4.1 then applies for all
ε 6 1/(4R). Taking the limit of the right-hand side of (36) as n→∞, we obtain

ICµ(f, ε) 6 ICµ(f, 0)− µ(a)

2s+1k
C2h

(ε
2

min{1, C2R}
)

+ 3εK = ICµ(f, 0)− Ω(h(ε)). �

4.1.2 Proof of Theorem 3.5

Theorem 3.5 (restated). For all f, µ, ε, we have

ICµ(f, ε) > ICµ(f, 0)− 4|X ||Y|h(
√
ε).

Proof of Theorem 3.5. Without loss of generality assume that µ is a full-support distribution as
otherwise we can approximate it by a sequence of full-support distributions and appeal to the
continuity of ICν(f, ε) with respect to ν. Consider a protocol π that performs [f, ε]. For every leaf
` of π, let z` and µ` respectively denote the output of the leaf, and the distribution of the inputs
conditioned on the leaf `. We will complete it into a protocol π′ that performs [f, 0], as follows.
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On input (X,Y ):

• Alice and Bob run the protocol π and reach a leaf `;

• For every (x, y) ∈ Ω` := {(x, y) : f(x, y) 6= z`}, Alice and Bob verify whether XY = xy,
as follows:

– If µ`(x) 6 µ`(y), Alice reveals whether X = x to Bob, and if yes, Bob reveals whether
Y = y to Alice. If XY = xy, they terminate.

– If µ`(x) > µ`(y), Bob initiates the verification process.

Clearly, in the end, either both Alice and Bob already revealed their inputs to each other, or
otherwise they know XY /∈ Ω`, and hence z` is the correct output. Therefore π′ performs the task
[f, 0].

Next we analyze ICµ(π′). Let π`,xy denote the sub-protocol that starts with the distribution µ`
and verifies whether XY = xy. In the case when Alice initiates the verification procedure, we have

ICµ`(π`,xy) = h(µ`(x)) + µ`(x)h

(
µ`(x, y)

µ`(x)

)
6 h(µ`(x)) + µ`(x) 6 2h(µ`(x)),

where by an abuse of notation we are denoting by µ`(x) the marginal of µ` on x. We can obtain a
similar bound for the case where Bob initiates the process, and hence

ICµ`(π`,xy) 6 2 min{h(µ`(x)), h(µ`(y))}

= 2h
(
µ`(x, y) + min{Pr

µ`
[X 6= x, Y = y],Pr

µ`
[X = x, Y 6= y]}

)
6 2h(µ`(x, y)) + 2h

(
min{Pr

µ`
[X 6= x, Y = y],Pr

µ`
[X = x, Y 6= y]}

)
by the subadditivity of h. Using the monotonicity of h together with min{a, b} 6

√
ab, we obtain

that
ICµ`(π`,xy) 6 2h(µ`(x, y)) + 2h

(√
Pr
µ`

[X = x, Y 6= y] Pr
µ`

[X 6= x, Y = y]
)

(37)

holds for every leaf ` and (x, y) ∈ Ω`. Let Π`,xy denote the transcript of π`,xy. Since π`,xy is a
deterministic protocol, we have Hµ`(Π`,xy|XY ) = 0, and thus

ICµ`(π`,xy) = I(Π`,xy;Y |X) + I(Π`,xy;X|Y ) = Hµ`(Π`,xy|X) +Hµ`(Π`,xy|Y ).

Thus the sub-additivity of entropy implies that the information cost of running all the protocols
π`,xy (for all x, y ∈ Ω`) is bounded by the sum of their individual information cost. Let ` be a leaf
of π sampled by running π on a random input. By (37),

ICµ(π′)− ICµ(π) 6 E
`

∑
xy∈Ω`

ICµ`(π`,xy) =
∑

(x,y)∈X×Y

E
`

1z` 6=f(x,y) ICµ`(π`,xy)

6
∑

(x,y)∈X×Y

2E
`

1z` 6=f(x,y)h(µ`(x, y)) +
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∑
(x,y)∈X×Y

2E
`

1z` 6=f(x,y)h
(√

Pr
µ`

[X = x, Y 6= y] Pr
µ`

[X 6= x, Y = y]
)

6
∑

(x,y)∈X×Y

2h
(
E
`

1z` 6=f(x,y)µ`(x, y)
)

+

∑
(x,y)∈X×Y

2h
(
E
`

√
1z` 6=f(x,y) Pr

µ`
[X = x, Y 6= y] Pr

µ`
[X 6= x, Y = y]

)
(38)

where we used the concavity of h in the last step.
For the first summand, we have that for every (x, y),

E
`

1z` 6=f(x,y)µ`(x, y) =
∑
`

Pr[XY = xy, π reaches `]1z` 6=f(x,y)

=
∑
`

Pr[π reaches ` | XY = xy]µ(xy)1z` 6=f(x,y)

= µ(xy)
∑
`

Pr[πx,y reaches `]1z` 6=f(x,y) = µ(xy) Pr[π(x, y) 6= f(x, y)]

6 µ(xy)ε 6 ε, (39)

where we used that by definition µ`(xy) = Pr[XY = xy | π reaches `], and the fact that the
protocol π performs the task [f, ε].

For the second summand in (38), since µ` is obtained by scaling rows and columns of µ, we
have

Prµ[X = x, Y = y] Prµ[X 6= x, Y 6= y]

Prµ[X = x, Y 6= y] Prµ[X 6= x, Y = y]
=

Prµ` [X = x, Y = y] Prµ` [X 6= x, Y 6= y]

Prµ` [X = x, Y 6= y] Prµ` [X 6= x, Y = y]

Define (recall that we assumed µ is of full support)

a` = 1z` 6=f(x,y)
Prµ` [X = x, Y = y]

Prµ[X = x, Y = y]
, b` =

Prµ` [X 6= x, Y 6= y]

Prµ[X 6= x, Y 6= y]
,

and note that

1z` 6=f(x,y) Pr
µ`

[X = x, Y 6= y] Pr
µ`

[Y = y,X 6= x] = a`b` Pr
µ

[X = x, Y 6= y] Pr
µ

[X 6= x, Y = y] 6 a`b`.

(40)

Since

E
`
a` =

1

µ(xy)
E
`

1z` 6=f(x,y)µ`(x, y) = Pr[π(x, y) 6= f(x, y)] 6 ε

by (39), and E` b` = 1, we can bound the second summand in (38) using the Cauchy-Schwarz
inequality by

E
`

√
a`b` 6

√
E
`
a` E

`
b` 6

√
ε. (41)

Using (38), (39), (41), and the monotonicity of h, we have

ICµ(f, 0)− ICµ(π) 6 ICµ(π′)− ICµ(π) 6 2|X × Y|h(ε) + 2|X × Y|h(
√
ε) 6 4|X × Y|h(

√
ε). �
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4.1.3 Proof of Proposition 3.4

Proposition 3.4 (restated). Let µ be the distribution defined as

µ =
1/2 0

0 1/2
.

Then ICext
µ (XOR, ε) > ICext

µ (XOR, 0)− 3ε.

Proof of Proposition 3.4. The distribution µ is supported on the inputs (0, 0), (1, 1), on which the
output is 0. It is easy to check (and follows from the analysis below) that ICext

µ (XOR, 0) = 1, since
at the end of any protocol that performs [XOR, 0], we know whether the input is (0, 0) or (1, 1).

Consider a protocol π having at most ε error on every input, where ε 6 1/3. Let Lz be the set
of transcripts on which the output is z; Every transcript is either in L0 or L1.

For each transcript t achievable from the initial distribution, the distribution of XY |t is of the

form
p 0

0 1− p for some p = p(t). Bayes’ law shows that

Pr[t|00] =
Pr[00|t] Pr[t]

Pr[00]
= 2p(t) Pr[t], Pr[t|11] =

Pr[11|t] Pr[t]

Pr[11]
= 2(1− p(t)) Pr[t].

For each transcript t, the rectangle property says Pr[t|00] Pr[t|11] = Pr[t|10] Pr[t|01]. Hence

Pr[t|01] + Pr[t|10]

2
>
√

Pr[t|01] Pr[t|10] =
√

Pr[t|00] Pr[t|11] = 2
√
p(t)(1− p(t)) Pr[t].

The protocol π has distributional error at most ε, and so

Pr[L1] =
∑
t∈L1

Pr[t] 6 ε, and Pr[L0] =
∑
t∈L0

Pr[t] > 1− ε.

On the other hand, since π has point-wise error at most ε, we have∑
t∈L0

√
p(t)(1− p(t)) Pr[t] 6

1

2

∑
t∈L0

Pr[t|01] + Pr[t|10]

2
6
ε

2
. (42)

Finally,

I(XY ; Π) = H(XY )−H(XY |Π) = 1−
∑
t

Pr[t]h(p(t)).

Let T be a random transcript conditioned on belonging to L0, and consider the random variable
P := p(T ). On the one hand,

1− I(XY ; Π) =
∑
t

Pr[t]h(p(t)) 6 Pr[L0]E[h(P )] + Pr[L1] 6 E[h(P )] + ε.

On the other hand, by (42)

E[
√
P (1− P )] 6

ε

2 Pr[L0]
6

ε

2(1− ε)
6 ε,
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as we assumed ε 6 1/3. Thus it suffices to verify that E[h(P )] 6 2ε for any random variable P
that takes values in [0, 1] and satisfies E[

√
P (1− P )] 6 ε. Indeed this would imply

1− I(XY ; Π) 6 E[h(P )] + ε 6 3ε,

alternatively, ICext
µ (XOR, ε) > 1− 3ε for all ε 6 1/3, which in turn shows that ICext

µ (XOR, 0) = 1.

Apply the change of variable Q =
√
P (1− P ), so that the assumption simplifies to E[Q] 6 ε;

note that 0 6 Q 6 1/2, and P = (1±
√

1− 4Q2)/2. Since h(P ) = h(1− P ), we conclude that

E[h(P )] = E[φ(Q)], where φ(Q) = h

(
1 +

√
1− 4Q2

2

)
.

It is routine to check that the function φ is monotonically increasing and strictly convex. Since
φ is continuous and the domain of Q is restricted to [0, 1/2], the maximum of E[φ(Q)] under
the constraint E[Q] 6 ε is achieved3. Since φ is increasing, the maximum value of E[φ(Q)] is
achieved when E[Q] = ε. Since φ is strictly convex, the maximum value of E[φ(Q)] is achieved on
a measure supported on the endpoints 0, 1/2. Thus this measure must be Pr[Q = 1/2] = 2ε and
Pr[Q = 0] = 1− 2ε. So

E[h(P )] = E[φ(Q)] 6 (1− 2ε)φ(0) + 2εφ(1/2) = 2ε. �

4.2 Information complexity with distributional error

Theorem 3.6 (restated). Let µ be a probability measure on X × Y, and let f : X × Y → Z
satisfy ICµ(f, µ, 0) > 0. We have

ICµ(f, µ, 0)− 4|X ||Y|h(
√
ε/α) 6 ICµ(f, µ, ε) 6 ICµ(f, µ, 0)− α2

4
h (εα/4) + 3ε log |X × Y|,

where α = minxy∈suppµ µ(x, y).

Proof of Theorem 3.6. Lower bound: The proof is almost identical to the proof of Theorem 3.5,
however now we start from a distribution µ that possibly does not have full support. Consider a
protocol π that performs [f, µ, ε], and define z` and µ` as in the proof of Theorem 3.5. Now the
new protocol π′ that performs [f, µ, 0], is defined similar to the one in the proof of Theorem 3.5
with the only difference that the verification is only performed on the set

Ω′` := {(x, y) : f(x, y) 6= z`} ∩ suppµ.

Obviously π′ solves [f, µ, 0]. Note that π has point-wise error at most ε/α on every point in suppµ.
Thus the same analysis of Theorem 3.5 shows

ICµ(f, µ, 0)− ICµ(π) 6 ICµ(π′)− ICµ(π) 6 4|X × Y|h(
√
ε/α).

Upper bound: For every z ∈ Z, let Xz denote the set of all x ∈ X such that for some
xy ∈ suppµ, we have f(x, y) = z. Similarly let Yz denote the set of all y ∈ Y such that for some

3This follows from Prokhorov’s theorem, which implies that the set of probability measures over a [0, 1/2] is
compact with respect to the weak-* topology. The same result also follows from the Riesz representation theorem [Sch].
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xy ∈ suppµ, we have f(x, y) = z. The assumption ICµ(f, µ, 0) > 0 implies the existence of distinct
z1, z2 ∈ Z such that either Xz1 ∩ Xz2 6= ∅ or Yz1 ∩ Yz2 6= ∅, otherwise, Alice and Bob can exchange
the unique values of z determined by their inputs, and since with probability 1, these two values
coincide, they can perform [f, µ, 0] with zero information cost. Hence without loss of generality
assume there exists x0y, x1y ∈ suppµ such that f(x0, y) 6= f(x1, y) and µ(x0y) > µ(x1y). We will
apply Lemma 4.1. Consider a protocol π with transcript Π that performs [f, µ, 0], and define the
set of transcripts

L := {t | Pr[x0y|t] > Pr[x0y]/2},

and note that

Pr[x0y] =
∑
t

Pr[x0y|t] Pr[Π = t] 6 Pr[Π ∈ L] + Pr[Π 6∈ L]
Pr[x0y]

2
,

which implies Pr[Π ∈ L] > Pr[x0y]
2 > α

2 . Note that the protocol π′ defined in Figure 1 performs
[f, µ, ε]. Furthermore we can set C1 = C2 = α/2 and δ = 0, to obtain

ICµ(π′) 6 ICµ(π)− α2

4
h
(εα

4

)
+ 3ε log |X × Y |,

for ε 6 1/2. As −α2

4 h (εα/4) + 3ε log |X × Y| > 0 for ε > 1/2, this finishes the proof for all
0 6 ε 6 1. �

4.3 Non-distributional prior-free information cost

In this section we prove Theorem 3.15, that is

IC(f, ε) 6 IC(f, 0)− Ω(h(ε)).

First we present some lemmas, and the proof of Theorem 3.15 will appear at the end of this section.
While Theorem 3.2 does not give a uniform bound on the parameters C, ε0 for every distribution

µ, it does for distributions in which there exist two elements with different outputs, that are in
the same row or column and whose probabilities are Ω(1). We will show that for any non-constant
function, the worst distribution is of this form; this might be of independent interest.

We start with the following simple lemma.

Lemma 4.2. Let f : X × Y → Z. Suppose that suppµ ⊆
⋃
iXi × Yi, where the Xi and the Yi are

disjoint. Then

ICµ(f, 0) =
∑
i

µ(Xi × Yi) ICµ|Xi×Yi
(f |Xi×Yi).

Proof. The upper bound is easy to see: the players exchange which block they are in, and assuming
that they are in the same block, they run an almost optimal protocol for that block. If they are
not in the same block, then they exchange inputs, but this happens with probability zero.

In the other direction, let J be the block in which Alice’s input lies. Since the value of J is
determined by the value of X, for a protocol π with transcript Π, we have

I(Y ; Π|X) = I(Y ; Π|XJ) =
∑
j

Pr[J = j]I(Y ; Π|X,J = j) =
∑
j

µ(Xj × Yj)I(Y ; Π|X, J = j).
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With probability 1, J is also the block in which Bob’s input lies, and so

ICµ(π) =
∑
j

µ(Xj ×Yj)[I(X; Π|Y, J = j) + I(Y ; Π|X, J = j)] >
∑
j

µ(Xj ×Yj) ICµ|Xj×Yj
(f |Xj×Yj ).

�

We can therefore restrict our attention (for now) to distributions based on a single block. The
crucial observation is the following.

Lemma 4.3. Let f : X ×Y → Z, and let µ be a distribution such that f is constant on its support,
each atom in the support has probability at least α, and the marginals of the support are X ,Y. If f
is not constant then there is a distribution ν such that ICν(f, 0) > ICµ(f, 0)+C(α), where C(α) > 0
depends only on α, |X |, |Y|.

Proof. Let (x0, y0) be any point not in the support of µ such that f(x0y0) is different from the
constant value of f on suppµ. Since the marginals of the support are X ,Y and every atom in the
support has probability at least α, we see that Pr[X = x0],Pr[Y = y0] > α.

Let ν = εδx0y0 + (1 − ε)µ, where ε is a parameter to be determined later, and δx0y0 denotes
the Dirac measure concentrated on the point (x0, y0). Note that X ′Y ′ ∼ ν can be sampled in the
following manner. First we pick XY ∼ µ and an independent Bernoulli random variable B with
Pr[B = 1] = ε. Then

X ′Y ′ =

{
XY if B = 0,

x0y0 if B = 1.

Let π be a protocol that performs the task [f, 0], and let Πxy denote the transcript of this protocol
when it is run on the input xy. Note that with probability 1, the value of B is determined by the
value of X ′Y ′, and thus

I(X ′; ΠX′Y ′ |Y ′) = I(X ′B; ΠX′Y ′ |Y ′) = I(B; ΠX′Y ′ |Y ′) + I(X ′; ΠX′Y ′ |Y ′B)

= I(B; ΠX′Y ′ |Y ′) + (1− ε)I(X; ΠXY |Y ).

Moreover, since f(x0, y0) is different from the constant value of f on the support of µ, the value of
B is determined by ΠX′Y ′ . Thus I(B; ΠX′Y ′ |Y ′) = H(B|Y ′), and

I(X ′; ΠX′Y ′ |Y ′) = H(B|Y ′) + (1− ε)I(X; ΠXY |Y ).

To lower-bound H(B|Y ′), note that

Pr[B = 1|Y ′ = y0] =
Pr[B = 1, Y ′ = y0]

Pr[Y ′ = y0]
=

ε

(1− ε) Pr[Y = y0] + ε
> ε,

and on the other hand,

Pr[B = 1|Y ′ = y0] 6
ε

(1− ε)α+ ε
,

which for ε 6
√
α/2 will be at most 1 − ε. Since Pr[Y ′ = y0] = (1 − ε) Pr[Y = y0] + ε > α, we

conclude that H(B|Y ′) > αh(ε). We deduce that

I(X ′; ΠX′Y ′ |Y ′) > αh(ε) + (1− ε)I(X; ΠXY |Y ) > I(X; ΠXY |Y ) + αh(ε)− ε log |X × Y|.
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The gain is

I(X ′; ΠX′Y ′ |Y ′)− I(X; ΠXY |Y ) > αε log
1

ε
− ε log |X × Y| =

(
α log

1

ε
− log |X × Y|

)
ε,

and so when ε 6 ε0 := |X × Y|−2/α, the gain is at least ε log |X × Y|. Taking ε = min(ε0,
√
α/2),

we obtain a constant C(α) > 0, depending on |X × Y|, such that

I(X ′; ΠX′Y ′ |Y ′) > I(X; ΠXY |Y ) + C(α),

and similarly I(Y ′; ΠX′Y ′ |X ′) > I(X; ΠXY |Y ) + C(α). This shows that

ICν(f, 0) > ICµ(f, 0) + 2C(α). �

We obtain the following important consequence.

Lemma 4.4. Let f : X × Y → Z be a non-constant function. There exist constants c, δ > 0,
depending only on the function f and |X |, |Y|, such that if ICµ(f, 0) > IC(f, 0)− δ then there exist
points P,Q, on the same row or column, such that µ(P ), µ(Q) > c and f(P ) 6= f(Q).

Proof. Call a distribution ν on X ×Y optimal if IC(f, 0) = ICν(f, 0). Braverman et al. [BGPW13b]
showed that ICν(f, 0) is continuous in ν, and this implies that optimal distributions exist, and
moreover the set of optimal distributions is closed. It is also convex, due to the concavity of
ICν(f, 0) (see [BGPW13a]).

For a distribution ν, let β(ν) be the maximal value β such that there exist two points P,Q, on
the same row or column, such that ν(P ), ν(Q) > β and f(P ) 6= f(Q). Note that β(ν) is continuous
in ν.

Suppose that β(ν) = 0. For z ∈ Z, let Xz be the set of rows on which some point P ∈ supp ν
satisfies f(P ) = z, and define Yz analogously. We claim that the sets Xz for z ∈ Z are disjoint,
similarly Yz are disjoint. Indeed, if x ∈ Xz1 ∩ Xz2 , then the row x contains two points P,Q in the
support such that f(P ) 6= f(Q), and so β(ν) > 0. Next we show that supp ν ⊆

⋃
z Xz ×Yz. Indeed

if P ∈ Xz1 ×Yz2 is in the support of ν, and f(P ) 6= z1, then there exists some point Q on the same
row as P is in the support and satisfies f(Q) = z1, showing that β(ν) > 0; a similar conclusion is
reached if f(P ) 6= z2.

Consider now one of the blocks Xz ×Yz. Lemma 4.3 shows that we can modify the component
of ν on that block so as to increase the information complexity, and Lemma 4.2 shows that this
increases the information complexity over the entire domain. We conclude that ν is not optimal.

For ρ > 0, let Oρ = {ν : ICν(f, 0) > IC(f, 0) − ρ}. Continuity of ICν(f, 0) shows that Oρ is
closed. We define b(ρ) = inf{β(ν) : ν ∈ Oρ}; since β is continuous and Oρ is closed, the infimum
is achieved. In view of the preceding paragraph, b(0) > 0. Continuity of β(ν) and ICν(f, 0) shows
that b(ρ) is continuous as well, and so b(δ) > 0 for some δ > 0. The proof is complete by taking
c = b(δ). �

We can now apply Theorem 3.2 to deduce that IC(f, ε) 6 IC(f, 0)− Ω(h(ε)).

Theorem 3.15 (restated). If f : X × Y → Z is non-constant then

IC(f, ε) 6 IC(f, 0)− Ω(h(ε)),

where the hidden constant depends on f .
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Proof. Let c, δ be the parameters from Lemma 4.4. For a distribution µ, either ICµ(f, 0) 6
IC(f, 0)− δ or Theorem 3.2 shows that ICµ(f, ε) 6 ICµ(f, 0)− (c3/32)h(ε) 6 IC(f, 0)− (c3/32)h(ε)
for all ε 6 ε0 where ε0 depends only on c and |X × Y|. Choose ε sufficiently enough such that
(c3/32)h(ε) 6 δ and ε 6 ε0, we conclude in both cases that ICµ(f, ε) 6 IC(f, 0)− Ω(h(ε)). �

4.4 A characterization of trivial measures

First we present the proof of the external case, i.e. Theorem 3.20, as it is simpler.

Theorem 3.20 (restated). Let f : X ×Y → Z be an arbitrary function, and µ a distribution on
X × Y. The distribution µ is external-trivial iff it is strongly external-trivial iff it is structurally
external-trivial.

Proof of Theorem 3.20. If µ is external-trivial then µ is structurally external-trivial. Sup-
pose that µ is external-trivial but not structurally external-trivial. We will reach a contradiction.

We start by showing that if µ is external-trivial then f has to be constant on the support of
µ. Indeed, suppose that the protocol π computes f correctly, and denote by Π the transcript of π.
The data processing inequality shows that

I(Π;XY ) > I(Π; f(XY )) = H(f(XY ))−H(f(XY )|Π) = H(f(XY )).

This shows that µ can only be external-trivial if H(f(XY )) = 0, that is, if f is constant on the
support of µ. From now, we assume that this is indeed the case.

Let ab be an arbitrary point in the support of µ, and let c = f(ab). Since µ is not structurally
external-trivial, there must be some input x0y0 ∈ SA × SB for which f(x0y0) 6= c. Note that x0y0

is not in the support of µ. Since x0 ∈ SA, x0y1 is in the support of µ for some y1 ∈ SB. Similarly,
x1y0 is in the support of µ for some x1 ∈ SA.

Since µ is external-trivial, there is a sequence πn of protocols computing f correctly on every
input such that I(XY ; Πn) → 0, where XY ∼ µ. We think of πn also as a distribution over
transcripts t. Since f(XY ) = c with probability 1, if πn(t) > 0 then the transcript t indicates that
the output is c. Let pn be the joint distribution of X,Y, t. Recall that D(pn(x, y, t)‖µ(x, y)πn(t)) =
I(XY ; Πn), hence D(pn(x, y, t)‖µ(x, y)πn(t))→ 0.

For two distributions µ and ν on a finite space, Pinsker’s inequality states that D(µ||ν) >
1
2‖µ− ν‖

2
1. This implies that ‖pn(x, y, t)− µ(x, y)πn(t)‖1 → 0. On the other hand, for every tran-

script t appearing with positive probability, either pn(x0, y1, t) = 0 or pn(x1, y0, t) = 0: otherwise
pn(x0, y0, t) > 0 (due to the rectangular property of protocols), contradicting the correctness of πn
(since f(x0y0) 6= c). Therefore

|µ(x0, y1)πn(t)− pn(x0, y1, t)|+ |µ(x1, y0)πn(t)− pn(x1, y0, t)| > πn(t) min(µ(x0, y1), µ(x1, y0)).

Summing over all transcripts having positive probability, we deduce that

‖pn(x, y, t)− µ(x, y)πn(t)‖1 >
∑
t

πn(t) min(µ(x0, y1), µ(x1, y0)) = min(µ(x0, y1), µ(x1, y0)),

contradicting our assumption that ‖pn(x, y, t)− µ(x, y)πn(t)‖1 → 0.
If µ is structurally external-trivial then µ is strongly external-trivial. Consider the

following protocol. Alice tells Bob whether her input is in SA. Bob tells Alice whether his input is
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in SB. If the input is in SA × SB, then the output is known. Otherwise, the players reveal their
inputs (but this happens with probability zero). It’s not difficult to check that this protocol has
zero external information cost.

If µ is strongly external-trivial then µ is external-trivial. This is obvious. �

We comment that our proof gives an explicit lower bound on ICext
µ (f, 0) whenever µ is not

external-trivial.
Next we present the proof of Theorem 3.17, showing that all our definitions of internal triviality

are equivalent. As before, we can get an explicit lower bound on ICµ(f, 0) whenever µ is not
internal-trivial.

Theorem 3.17 (restated). Let f : X × Y → Z be an arbitrary function, and µ a distribution
on X ×Y. The distribution µ is internal-trivial iff it is strongly internal-trivial iff it is structurally
internal-trivial.

Proof of Theorem 3.17. If µ is internal-trivial then µ is structurally internal-trivial. Sup-
pose that µ is internal-trivial but not structurally internal-trivial. We will reach a contradiction.

Since µ is internal-trivial, there is a sequence of protocols πn such that I(X; Πn|Y )+I(Y ; Πn|X)→
0. In particular, I(X; Πn|Y ), I(Y ; Πn|X) → 0. Moreover, for every x ∈ SA and for every y ∈ SB,
I(X; Πn|Y = y), I(Y ; Πn|X = x)→ 0.

Let pn(x, y, t) be the joint probability of the input and of the transcript of πn being t. We also
think of πn as a distribution over transcripts. As in the proof of Theorem 3.20, using Pinsker’s
inequality we deduce that for all y ∈ SB, ‖pn(x, t|y)− µ(x|y)πn(t|y)‖1 → 0, and so for all y ∈ SB,

By :=
∑
x,t

|pn(x, y, t)− µ(x, y)πn(t|y)| → 0.

Similarly, for all x ∈ SA we have

Ax :=
∑
y,t

|pn(x, y, t)− µ(x, y)πn(t|x)| → 0.

According to Lemma 3.19, there exists a connected component C of Gµ such that f is not
constant on CA × CB. Suppose first that there is an edge (P,Q) on which f is not constant.
Without loss of generality, assume P = (a, y0) and Q = (a, y1). Thus∑

t

|pn(a, y0, t)− µ(a, y0)πn(t|a)|+ |pn(a, y1, t)− µ(a, y1)πn(t|a)| → 0.

On the other hand, for each transcript t either pn(a, y0, t) = 0 or pn(a, y1, t) = 0, since f(ay0) 6=
f(ay1). Thus∑

t

|pn(a, y0, t)− µ(a, y0)πn(t|a)|+ |pn(a, y1, t)− µ(a, y1)πn(t|a)| >∑
t

πn(t|a) min(µ(a, y0), µ(a, y1)) = min(µ(a, y0), µ(a, y1)),

contradicting the assumption that the left-hand side tends to zero.
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Suppose next that f is constant across all edges (and so on the entire connected component),
say f(x, y) = c for all (x, y) ∈ C. Since f is not monochromatic on CA × CB, there must exist a
point P ∈ CA × CB such that f(P ) 6= c. There must be points PA, PB ∈ suppµ with the same
row and column (respectively) as P . Since PA, PB are in the same connected component, there is
some path PA = Q0, Q1, . . . , Qm = PB connecting them: for every i < m, Qi, Qi+1 are either in
the same row or in the same column. We can assume that m 6M := |X |+ |Y|. No transcript can
have positive probability for both Q0 and Qm, since otherwise it would have positive probability
for P as well, and this cannot happen since f(Q0) = f(Qm) = c while f(P ) 6= c.

Let t be any transcript satisfying pn(Q0, t) > 0. Since pn(Qm, t) = 0, there must be an index
i such that pn(t|Qi)− pn(t|Qi+1) > pn(t|Q0)/m > pn(t|Q0)/M . Assume without loss of generality
that Qi = (a, y0) and Qi+1 = (a, y1). The contribution of t to Aa is

|µ(a, y0)πn(t|a)− pn(a, y0, t)|+ |µ(a, y1)πn(t|a)− pn(a, y1, t)| =
µ(a, y0)|πn(t|a)− pn(t|a, y0)|+ µ(a, y1)|πn(t|a)− pn(t|a, y1)| >

min(µ(a, y0), µ(a, y1))

M
pn(t|Q0) >

min(µ(a, y0), µ(a, y1))

M
pn(Q0, t),

using the triangle inequality in the form |α− γ|+ |γ − β| > |α− β|.
Denoting by δ the minimum of µ(x, y) over the support of µ, we conclude that

∑
xAx +

∑
y By

is at least ∑
t

δ

M
pn(Q0, t) =

δ

M
µ(Q0) >

δ2

M
,

contradicting our assumption that
∑

xAx +
∑

y By → 0.
If µ is structurally internal-trivial then µ is strongly internal-trivial. Consider

the following protocol. Alice tells Bob which block Xi her input belongs to. Bob tells Alice which
block Yi his input belongs to. If the input is in Xi ×Yi, then the output is known. Otherwise, the
players reveal their inputs (but this happens with probability zero). It’s not difficult to check that
this protocol has zero internal information cost.

If µ is strongly internal-trivial then µ is internal-trivial. This is obvious. �

5 Parametrization of all distributions as product distributions

In Section 2.5 we discussed how a communication protocol can be interpreted as a random walk on
the set of distributions on X ×Y. Every time a player sends a signal, we update the underlying dis-
tribution based on the information provided by the sent signal. These updates are by scaling either
the X marginal or the Y marginal of the distribution. This restricted way in which the underling
distribution can be updated will allow us to parametrize the set of all reachable distributions from
a specific distribution µ in such a way that the changes are captured by product measures. First
note that each reachable distribution µ′ can be identified by the constants that multiplied µ to
obtain µ′.

To formalize this intuition, we have the following definition.

Definition 5.1. For two distributions µ, ν ∈ ∆(X ,Y), define

µ� ν :=
µ · ν
〈µ, ν〉

, (43)

where µ · ν is the usual point-wise product of the two measures.
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Clearly, µ � ν ∈ ∆(X ,Y) unless 〈µ, ν〉 = 0, in which case the product is undefined. For our
purposes, we will consider decompositions of the form µ = ν�µ, where µ is a product measure. The
statement “µ is a distribution obtained from ν by scaling its rows and columns” is equivalent to
“there exists a product measure µ such that µ = ν�µ”. Note that if µ is the uniform distribution,
then ν = µ� ν for all distributions ν.

Let µ be the prior distribution on X ×Y in a communication protocol. We fix a decomposition
µ = ν � µ, where µ is a product distribution. For every distribution µ′ reachable from µ there is a
product distribution µ′ such that µ′ = ν � µ′, for the same distribution ν. This follows from the
fact that µ′ is obtained from µ by scaling its rows and columns; therefore if we scale the rows and
columns of µ by the same constants and then normalize it, we obtain the desired µ′. In such a
decomposition µ = ν � µ, µ is called the real distribution, ν the reference distribution and µ the
pretend distribution.

We would like to work with product distributions since they are simpler, and easier to analyze,
as we will demonstrate in Section 6. Therefore, we define a pretend random walk, which is a
random walk on pretend distributions, as opposed to the normal random walk presented in Section
2.5, which we call the real random walk to distinguish it from the pretend one. It starts from a
product measure µ = (µX , µY), where µX and µY are the X and Y marginals of µ. At each step
we either move by scaling the ∆(X ) marginal or the ∆(Y) marginal. The transition in ∆(X ) is
performed by moving with probability λ0 to (µ0, µ

Y) and with probability λ1 to (µ1, µ
Y), where

0 < λ0, λ1 < 1, λ0 + λ1 = 1 and
∑

b=0,1 λiµi = µX . A step in the ∆(Y) direction is performed
similarly.

Every pretend random walk corresponds to a real random walk performed by some protocol.
Given such a pretend random walk, and a reference distribution ν, if we replace every distribution
µ encountered in the random walk by ν � µ, and scale the transition probabilities, we obtain a
real random walk performed by some protocol. Here ν can be any distribution such that ν � µ is
defined for every µ encountered in the protocol (e.g. if supp ν includes the support of the initial
distribution). The inverse transformation is also possible.

To formalize this idea, consider a pretend random walk step, from µ to µ0 and µ1 with transition
probabilities λ0 and λ1, respectively. Fix a reference distribution ν. Then

ν � µ =
ν · µ
〈ν, µ〉

=
∑
b=0,1

λb
ν · µb
〈ν, µ〉

=
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb(ν � µb) =
∑
b=0,1

λb(ν � µb)

for the values

λb =
〈ν, µb〉
〈ν, µ〉

λb. (44)

A calculation shows ∑
b=0,1

λb =
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb =
〈ν,
∑

b=0,1 λbµb〉
〈ν, µ〉

=
〈ν, µ〉
〈ν, µ〉

= 1.

Furthermore, if the pretend random walk step is performed in the ∆(X ) direction, then ν � µb
is obtained by scaling the rows of µ, and if in the ∆(Y) direction, then by scaling the columns.
Therefore, there exists a real random walk step where we move from ν � µ to ν � µ0 and ν � µ1

with probabilities λ0 and λ1 respectively. The conversion in the opposite direction, from the real
world to the pretend world, is possible due to essentially the same calculations.
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Let π0 and π1 be the two branches of the protocol π corresponding to the value of the first bit
that was sent. Let µ be an input distribution that moves either to µ0 or to µ1 with probabilities
λ0 and λ1, respectively. The following equation regarding the concealed information,

CIµ(π) =
∑
b=0,1

λb CIµb(πb)

translates to

CIν�µ(π) =
∑
b=0,1

〈ν, µb〉
〈ν, µ〉

λb CIν�µb(πb).

Multiplying by 〈ν, µ〉 we get

CIν�µ(π)〈ν, µ〉 =
∑
b=0,1

λb〈ν, µb〉CIν�µb(πb),

This motivates the following definition.

Definition 5.2. Let ν be a fixed reference distribution. Define the scaled information of a protocol
π with respect to a product distribution µ as

SIMµ(π) := 〈ν, µ〉CIν�µ(π). (45)

Equation (45) allows us to write

SIMµ(π) = λ0 SIMµ0(π0) + λ1 SIMµ1(π1). (46)

Recall that CI is the expected amount of entropy that the players have concealed from each
other by the end of the protocol. To formally state this, let µ be a distribution over the inputs,
π some protocol and Π the random variable representing the transcript of the protocol. Let µΠ

be the random variable that represents the distribution over the inputs given the transcript Π, as
defined in Section 2.5. Then

CIµ(π) = E
Π

[
HµΠ

(X|Y ) +HµΠ
(Y |X)

]
. (47)

We will translate (47) to a formula involving the pretend random walk. Let µ = ν � µ, and
denote by µΠ the pretend distribution where the pretend random walk ends if its associated protocol
has the transcript Π. Or, in a more formal way, µΠ is the distribution such that ν � µΠ = µΠ.
Equation (45) implies

SIMµ(π) = E
Π
〈ν, µΠ〉

[
H(ν�µ)Π

(X|Y ) +H(ν�µ)Π
(Y |X)

]
, (48)

where the probability for each transcript Π is according to the pretend random walk rather than
the real one.

One should ask: What is the probability of a transcript t in the pretend random walk, given its
probability λ in the real world? The answer turns out to be very simple. Let µ0, . . . , µk be the real
distributions encountered in the real random walk, where µ0 is the input distribution and µk = µt
is the last distribution encountered. For all 1 6 i 6 k, let λi be the transition probability from µi−1

to µi in the real random walk, so that λ = λ1 · · ·λk. Let µi be the pretend distribution associated
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with µi such that µi = ν � µi for all i . Then, the transition probability from µi−1 to µi in the
pretend world equals

λi =
〈ν, µi−1〉
〈ν, µi〉

λi,

using the conversion in (44). Multiplying all together, we get that the probability of t in the pretend
world is

λ =
k∏
i=1

λi =
k∏
i=1

〈ν, µi−1〉
〈ν, µi〉

λi =
〈ν, µ0〉
〈ν, µk〉

λ.

This equation also shows how one can derive (48) from (47) by multiplying the equation by 〈ν, µ0〉.

6 The analysis of the AND function

This section is mainly devoted to proving the only remaining case of Theorem 3.7, i.e. the lower
bound on ICµ(AND, ε). This is presented below separately as Theorem 6.5. Our general strategy
for this proof was sketched in Section 3.3 following Theorem 3.7.

Preliminaries and notations. The section relies strongly on the parametrization of distribu-
tions as product distributions, as presented in Section 5. A real distribution is usually denoted as
µ, and it is usually decomposed as µ = ν�µ, where ν is a symmetric reference distribution and µ a
pretend distribution. Pretend distributions are always product ones. We will use the shorthand no-
tation µ = (p, q) for the product distribution in which p = µ(1, 0)+µ(1, 1) and q = µ(0, 1)+µ(1, 1).
The distribution µ will usually be assumed to be of full support, which in turn forces ν and µ to
be so too.

We are usually going to be working in a pretend world, dealing with the pretend distributions,
and keeping the reference distributions in the background. Furthermore, reference distributions are
usually kept fixed. We regard protocols as pretend random walks, as presented in Section 5.

Suppose that we run a protocol π starting at a distribution µ = ν � µ. As we explained in
Section 5, for each transcript t of the protocol, there is a product distribution µt such that ν�µt is
the distribution of the players’ inputs conditioned on the protocol terminating at the leaf t. Let Π
be the random transcript of the pretend random walk associated with an execution of π on input
distribution µ. Therefore, for any transcript t, Pr[Π = t] is the probability for the transcript t in
the pretend random walk, which might be different than the corresponding probability in the real
random walk. Throughout this section our view of the protocol is only by the pretend random
walk, therefore all random variable that correspond to Π are assumed to be distributed according
to the pretend random walk. Since µΠ, the pretend distribution on the random transcript Π, is a
product distribution, it can be written as µΠ = (p,q), where p,q are random variables. We call
(p,q) the leaf distribution of π. We define a crucial random variable, ` = max(p,q).

If π is a zero-error protocol, then the leaf distribution is supported on product distributions of
the form (p, 0), (0, q) or (1, 1), since in order to know the AND of the two players’ inputs we need
to know that one of the players has input 0, or that both inputs are 1.

Since we are concerned with almost-optimal protocol, we would like to quantify optimality.
Given a protocol π, define its wastage with respect to a distribution µ by

IWµ(π) = ICµ(π)− ICµ(AND, 0) = CIµ(AND, 0)− CIµ(π).
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6.1 Stability results

Braverman et al. [BGPW13a], studying the complexity of the AND function, suggested a contin-
uous protocol whose information complexity equals ICµ(AND, 0), called the buzzer protocol. This
protocol is defined differently for any input distribution µ. Here we denote this protocol by π∗.
The buzzer protocol is not a conventional communication protocol as it has access to a continuous
clock, however, it can be viewed as a limit of a sequence of genuine protocols. The information
complexity of the protocols in that sequence converges to that of the buzzer protocol, and their
leaf distribution converges in distribution.

We start by presenting the leaf distribution of the buzzer protocol. We assume that the input
reference distribution is symmetric; its importance will become apparent later on.

Table 1: The leaf distribution of the buzzer protocol starting from (p, q), where p > q.

Distribution µΠ (p, 0)
(`, 0), (0, `)
(p < ` < 1)

(1, 1)

The probability to reach that distribution 1− q/p pq/`3 d` pq

As it can be seen in Table 1, this is a mix of discrete probabilities and a continuous density. To
verify that the above formulas are correct, we can convert the leaf distribution of the buzzer protocol
as it is calculated in [BGPW13a] for the real random walk to its corresponding leaf distribution in
the pretend random walk. The formulas that are discussed in Section 5 can be used to calculate
the appropriate scaling of the probabilities as we convert the real random walk to the pretend one.

There is also a second and more intuitive way to obtain these formulas. This is done by
considering a sequence of protocols that converges to the buzzer protocol. We describe the protocols
in that sequence by their pretend random walk. The initial distribution in the pretend world of a
protocol in that sequence is (p, q), where p, q ∈ {0, 1

n ,
2
n , . . . , 1}. In each step, the pretend random

walk moves to one of two adjacent grid points, each with probability half. If we are currently in a
distribution ( an ,

b
n) where a > b, then the step moves to one of ( an ,

b+1
n ) and ( an ,

b−1
n ). Otherwise,

the protocol moves to one of (a+1
n , bn) and (a−1

n , bn).

Therefore, starting at the point ( an ,
b
n) where a > b, the random walk moves in the y axis, until

it ends up either at ( an , 0) or at ( an ,
a+1
n ). Since this walk is balanced, the probabilities to get to

these points are 1 − b
a+1 and b

a+1 , respectively. Then, from that point the random walk moves in

the x axis, until it either gets to the point (0, a+1
n ) or to (a+1

n , a+1
n ), with probabilities 1

a+1 and
a
a+1 respectively. Then again, it ends up either at (a+1

n , 0) or at (a+1
n , a+2

n ), then at (0, a+2
n ) or

(a+2
n , a+2

n ) and continues this way, until it either gets to the point (1, 1), or to a point of the form
(0, in) or ( in , 0). Calculating the leaf distribution of each pretend random walk in that sequence, and
taking the limit as n→∞, results in a leaf distribution, which equals that of the buzzer protocol,
as will be explained below.

The buzzer protocol can also be defined similarly as a sequence of converging protocols, where
for each protocol in the sequence, the real-world analogue of moving in the y direction is performed
whenever Pr[X = 1] > Pr[Y = 1], while the analogue of moving in the x direction is performed
otherwise. In order for our limit protocol to behave identical to the buzzer protocol, we would like
the region Pr[X = 1] > Pr[Y = 1] to correspond to the region p > q. This is done by using a
symmetric reference distribution.

Next, we would like to show a stability result, proving that every protocol performing the task
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[AND, 0] with nearly optimal information complexity is similar to the buzzer protocol. We measure
similarity in terms of the leaf distribution (p,q), and define the following potential function:

Definition 6.1. Given a protocol π for [AND, 0], a constant 0 < c < 1, and a pretend distribution
µ, let

Φc,µ(π) = E
[
((c− `)+)2

]
,

where (·)+ = max{·, 0}, and ` = max(p,q). Denote Φc,µ = Φc,µ(π∗), where π∗ is the buzzer
protocol.

The following theorem shows that the value of the potential function is small for nearly optimal
protocols.

Theorem 6.2. Let µ be a full support distribution, and µ = ν �µ be its decomposition, where ν is
a symmetric reference distribution and µ = (p, q) is the product pretend distribution. Assume that
c 6 max{p, q}. Let π be a protocol performing [AND, 0]. Then

Φc,µ(π) = O(ICµ(π)− ICµ(AND, 0)) = O(IWµ(π)).

The constant in the O(·) is uniform whenever ν(0, 0), ν(0, 1), ν(1, 0), p, q are bounded away from 0
and 1.

In order to prove this theorem, we measure how each performed step contributes both to the
wastage and to the potential function. To measure the wastage, we work with SIM instead of IC,
as it is a more natural measure for this task.

Lemma 6.3. Let µ be a full support distribution, and µ = ν �µ be its decomposition, where ν is a
symmetric reference distribution and µ is the pretend distribution. Let 0 < c < 1, and let π be the
protocol which behaves as follows:

1. One step of a pretend random walk is performed, which corresponds to one bit that is sent in
the protocol.

2. The pretend random walk that corresponds to the buzzer protocol is simulated from that point:
assuming that after the first bit was sent the pretend distribution is (p, q), let π∗(p,q) be the

buzzer protocol for the input distribution ν � (p, q). Then, the pretend random walk that
corresponds to π∗(p,q) is simulated (the value of (p, q) is different for the case that the first bit

equals 1, and when it equals 0).

Then
Φc,µ(π)− Φc,µ = Oν(SIMµ(AND, 0)− SIMµ(π)).

The constant in the O(·) is uniform whenever ν(0, 0), ν(0, 1), ν(1, 0), c are bounded away from 0 and
1.

The potential function of Definition 6.1 is defined in that manner so that Lemma 6.3 holds. Let
us elaborate on this: assume that a protocol π is defined as in this lemma, with a pretend input
distribution of (p, q). Assume that the first step moves from (p, q) either to (p + δ) or to (p − δ)
with equal probability. Then

SIM(p,q)(π)− SIM(p,q)(AND, 0) =
1

2
SIM(p+δ,q)(AND, 0) +

1

2
SIM(p+δ,q)(AND, 0)− SIM(p,q)(AND, 0)
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≈ δ2

2

∂2

∂p2
SIM(p,q)(AND, 0).

Thus, this difference has the same order of magnitude as δ2. We would like the change in the
potential function to have the same order. Looking at the function x2, it holds that

1

2
(x+ δ)2 +

1

2
(x− δ)2 − x2 =

δ2

2
.

If a protocol π moves according to the direction of the buzzer protocol, then π is the same as π∗ and
both differences are zero. Therefore, assume that p > q, and π moves in the x direction, whereas
the buzzer protocol would have moved in the y direction. Roughly speaking, the leaf distribution
of π is obtained from the leaf distribution of π∗ by splitting some of the mass around ` ≈ p between
` ≈ p− δ and ` ≈ p+ δ. Thus, Φc,µ(π)− Φc,µ approximately has the order of magnitude of

1

2
(c− p− δ)2 +

1

2
(c− p+ δ)2 − (c− p)2 =

δ2

2
.

We chose (c− p)2
+ instead of (c− p)2 since Lemma 6.8 requires the buzzer protocol to have a value

of zero. Indeed, by choosing c carefully we can achieve this.
We will prove Lemma 6.3 using the following criterion.

Lemma 6.4. Let ν be a symmetric reference distribution, and C > 0 a constant. Define F (p, q) =
C SIM(p,q)(AND, 0) + Φc,(p,q). If for every q, F (p, q) is concave as a function of p, and for every p,
F (p, q) is concave as a function of q, then Lemma 6.3 holds, and the constant in the O(·) can be
taken to be equal to C.

Proof. Let π be the protocol defined in Lemma 6.3, and let µ be its pretend input distribution.
Assume that the pretend random walk of π first moves from µ either to µ0 or to µ1, with probabilities
λ0 and λ1. We assume this step is on the x-direction, thus, the first step is from (p, q) to (p0, q) or
(p1, q). The analysis for the case that this step it in the y-direction is similar. Let 0 < c < 1. Then
SIM(p,q)(π) =

∑
b λb SIM(pb,q)(AND, 0), and Φc,(p,q) =

∑
b λbΦc,(pb,q). From concavity,

C SIM(p,q)(AND, 0) + Φc,(p,q) = F (p, q) >
∑
b

λbF (pb, q) =
∑
b

λb(C SIM(pb,q)(AND, 0) + Φc,(pb,q))

= C SIM(p,q)(π) + Φc,(p,q)(π). �

Thus, our focus would be proving that these concavity conditions hold for some value C. We
proceed by calculating Φc,(p,q), assuming without loss of generality that p > q. One can see that
whenever p > c, with probability 1 the leaf distribution of the buzzer protocol satisfies ` > p > c,
and thus the potential function evaluates to 0. Consider the case p < c. Using the leaf distribution,
we obtain the formula

Φc,(p,q) = (1− q/p)(c− p)2 + 2

∫ c

`=p

pq

`3
(c− `)2d`.

Thus, the general definition is as follows:

Φc,(p,q) =


0 if max{p, q} > c,
(1− q/p)(c− p)2 + 2

∫ c
`=p

pq
`3

(c− `)2d` if q 6 p 6 c,

(1− p/q)(c− q)2 + 2
∫ c
`=q

pq
`3

(c− `)2d` if p 6 q 6 c.
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In order to apply Lemma 6.4, we start by showing that the function Φc,(p,q) is differentiable for
all p (in the direction of p) given a fixed value of q, and for all q given a fixed value of p. This is
done by calculating the two one-sided derivatives in the points suspected of non-differentiability:
p = q and max{p, q} = c. To state it into more detail, for any fixed q, we calculate both

∂Φc,(p,q)

∂p +

= lim
h→0+

Φc,(p+h,q) − Φc,(p,q)

h
,

and
∂Φc,(p,q)

∂p −
= lim

h→0−

Φc,(p+h,q) − Φc,(p,q)

h
,

and verify that both values are equal in all suspected points. We do the same switching the roles
of p and q. (though it is not required as this potential function is symmetric, since we assume the
reference distribution to be symmetric) Additionally, we calculate its second derivatives whenever
they are defined. If max{p, q} > c, then they are trivially zero. For q < p < c, we get:

∂2Φc,(p,q)

∂p2
= 2(1− q/p)

and
∂2Φc,(p,q)

∂q2
= 0.

Actually, there is a reason why this second derivative with respect to q is zero. For any 0 <
δ 6 min{p − q, q}, consider a protocol π that first moves to (p, q − δ) or to (p, q + δ), each with
probability 1/2, and then simulates the buzzer protocol. It has the same leaf distribution as the
buzzer protocol (in the pretend world). Both the buzzer protocol and π either get to the point
(p, 0) or to the point (p, p), with probabilities 1 − q/p and q/p, respectively. From that point on,
both continue the same way, resulting in the same leaf distribution. This validates the equality

Φc,(p,q) =
1

2
Φc,(p,q+δ) +

1

2
Φc,(p,q−δ)

for all q and δ sufficiently small, which implies linearity in the region q ∈ [0, p] (given a fixed p).
Similar calculations will now be performed with regard to SIMp,q(AND, 0). Denote x = ν(0, 0), y =

ν(1, 0) = ν(0, 1), z = ν(1, 1). It is possible to extract the value of this function from the equations
in [BGPW13a], using the conversion from SIM to CI (45) and from CI to IC (9). Nevertheless, we
calculate it using the formula (48), which is an expectation over a value obtained in the leafs of
the protocol. Let p > q, and let Π correspond to the buzzer protocol, which starts at distribution
(p, q). Then,

SIMp,q(AND, 0) = E
Π

[〈ν, µΠ〉(HµΠ(X|Y ) +HµΠ(Y |X))]

=

(
1− q

p

)
((1− p)x+ py)h

(
py

(1− p)x+ py

)
+∫ 1

p

2pq

`3
((1− `)x+ `y)h

(
y`

x(1− `) + y`

)
d`
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= −
[
q(1− p)y + (1− p)(1− q)x log

(1− p)x
(1− p)x+ py

+(
pqy2

x
+ (p+ q − 2pq)y

)
log

py

(1− p)x+ py

]
.

Calculating the second derivative, we get for p > q,

∂2 SIM(p,q)(AND, 0)

∂p2
= −2(1− q/p) xy

2(1− p)p2((1− p)x+ py)
,

and
∂2 SIM(p,q)(AND, 0)

∂q2
= 0.

The reason that the second derivative is zero is the same as explained for the potential function.
For proving differentiability (on each direction separately), the only suspected point is p = q.
Comparing the two one-sided derivatives implies the result.

Now we are almost ready to apply Lemma 6.4. Define

C = max
06p61

2(1− p)p2((1− p)x+ py)

xy
,

and F (p, q) = C SIMµ(π∗) + Φc,µ. For any fixed q, ∂F (p,q)
∂p is continuous, piecewise differentiable,

and its derivative, ∂
∂p

∂F (p,q)
∂p is non-positive wherever it is defined. Thus, ∂F (p,q)

∂p is non-increasing,
and F (p, q) is concave as a function of p. The same holds when switching the roles of p and q, thus
the conditions in Lemma 6.4 are satisfied, which concludes the proof of Lemma 6.3. Finally, we are
able to prove Theorem 6.2.

Proof of Theorem 6.2. Let T be the protocol tree of π. This is a directed binary tree with two
children for each internal node. Each node corresponds to a state of the protocol when some
communication has taken place, and its children are the two consecutive states, chosen according
to the bit sent by the player owning the node.

We can construct T using a sequence of trees, T1, T2, . . . , Tk = T . The tree T1 contains only the
root of T , and for all i, Ti is obtained from Ti−1 by adding the children of a leaf of Ti−1 which is
not a leaf of T .

Given a tree Ti, construct a protocol πi, that whenever it reaches a state represented by node
v which is not a leaf of Ti, the protocol behaves as π for the next bit sent, and if the state
is represented by a leaf of Ti, then the buzzer protocol is simulated from that point on. Let
D be the constant in the O(·) guaranteed from Lemma 6.3. The lemma implies that for all i,
Φc,µ(πi)−Φc,µ(πi−1) 6 D(SIMµ(πi−1)−SIMµ(πi)). Summing over i, we get a telescopic summation
that results in

Φc,µ(π) = Φc,µ(πk)− Φc,µ(π1) 6 D(SIMµ(π1)− SIMµ(πk)) = D(SIMµ(AND, 0)− SIMµ(π)).

We used the fact that Φc,µ(π1) = Φc,µ = 0, which hold since we assumed that c 6 max{p, q}, and
the leaf distribution of the buzzer protocol has zero mass on ` < max{p, q}, therefore its potential
cost is zero. This finishes the proof as

SIMµ(AND, 0)− SIMµ(π) = 〈ν, µ〉(CIµ(AND, 0)− CIµ(π)) = 〈ν, µ〉 IWµ(π) 6 IWµ(π). �
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6.2 Lower bound on the information complexity of ICµ(AND, ε)

In this section, we prove Theorem 3.7 by showing that every distribution µ which is of full sup-
port, except perhaps for µ(1, 1), satisfies ICµ(AND, ε) > ICµ(AND, 0) − O(h(ε)). Recall that
Theorem 3.7 (ii) follows from Part (i) and we have already established the upper bound of Theo-
rem 3.7 (i) in Theorem 3.2. Hence it remains to prove the following theorem.

Theorem 6.5 (The remaining case of Theorem 3.7). Let µ be a full-support distribution, except
perhaps for µ(1, 1). For all ε > 0,

ICµ(AND, ε) > ICµ(AND, 0)−Oµ(h(ε)).

The hidden constant can be fixed if µ(0, 0), µ(0, 1), µ(1, 0) are bounded away from 0.

The proof uses the idea of protocol completion: given a protocol π performing [AND, ε], we can
create a protocol π0, which we call the zero-error completion of π. Such a protocol π0 takes the
following steps:

• First Alice and Bob simulate π until it terminates.

• Afterwards they run a protocol that solves the AND function with zero error.

The cost of completion is the amount of information revealed in the second step, and it is equal
to ICµ(π0)−ICµ(π). We have shown in the proof of Theorem 3.5 that for general functions, this cost
is bounded by O(h(

√
ε)), but here we would like to prove a stronger bound of O(h(ε)) for protocols

that are almost optimal for the AND function. This obviously would yield the desired lower bound,
and prove Theorem 6.5. This completion cost can be arbitrarily close to EΠ[ICµΠ

(AND, 0)]. In
order to bound this quantity, we first bound the information complexity of the AND function.

Lemma 6.6. Consider a reference distribution ν with ν(0, 0) = x, ν(1, 0) = ν(0, 1) = y, ν(1, 1) = z,
such that x, y, z > 0. Let µ = (p, q) be a pretend distribution. Let µ = ν � µ, and µ(1, 1) = δ. Let
0 < C < 1 be an arbitrary constant.

Firstly ICµ(AND, 0) 6 2h(1− δ). Secondly

ICµ(AND, 0) 6

{
O(h(δ/z)) if max(p, q) > C,

O(h(
√
δ/z)) if p, q < C.

The hidden constants can be fixed if x, y, C are bounded away from both 0 and 1.

Proof. First we prove that ICµ(AND, 0) 6 2h(1 − δ). Assume that δ > 1/2, as otherwise the
inequality trivially follows. The information complexity is achieved by a protocol where both Alice
and Bob send their inputs. The cost of that protocol is at most H(XY ) 6 H(X) +H(Y ) 6 2h(δ).

For proving the other bounds, assume that δ < 1/2, since otherwise the lemma trivially follows.

If p, q > 1/2, then δ = ν(1,1)pq
〈ν,µ〉 > ν(1, 1) = z, as

〈ν, µ〉 = (1− p)(1− q)x+ [p(1− q) + (1− p)q]y + pqz 6 (x+ 2y + z)pq = pq.

In this case, the lemma follows.

49



Assume that either p 6 1/2 or q 6 1/2. Without loss of generality, p 6 q. We will analyze
the protocol in which Alice first sends her input to Bob, and if X = 1 then Bob sends his input to
Alice. This protocol has a cost of

H(X|Y ) + Pr[X = 1]H(Y |X = 1) 6 H(X) + Pr[X = 1] 6 h(Pr[X = 1]) + Pr[X = 1].

The obtained bound is monotonic in Pr[X = 1], a fact that we will use.
Now

Pr[X = 1] =
p(1− q)y + pqz

〈ν, µ〉
6
p(y + z)

〈ν, µ〉
=
δ(y + z)

zq
.

Thus, if q > C, then the cost of completion is at most

h

(
δ(y + z)

zC

)
+
δ(y + z)

zC
6

(y + z)δ

Cz
+

{
h(δ/z) if y+z

C < 1,
y+z
C 2h(δ/z) otherwise,

(49)

using the bound h(cx) 6 2ch(x) for all c > 1, from (12).
If q 6 C, Pr[X = 1] is maximized at q = p. Assume indeed that p = q. We will bound its value

from below. The equation q2z
〈ν,µ〉 = q2z

〈ν,µ〉 = δ implies

q =

√
δ〈ν, µ〉
z

.

Now since
〈ν, µ〉 > ν(0, 0)µ(0, 0) = (1− p)(1− q)x > (1− C)2x,

we have

Pr[X = 1] 6
δ(y + z)

zq
6

√
δ

z

y + z

(1− C)
√
x
.

The proof concludes applying similar calculations as in (49). �

Next, we use this bound to show that if the probability that max{p,q} does not exceed some
constant is very small, then one can get an improvement over h(

√
ε) for the completion cost.

Lemma 6.7. Let ν be a symmetric reference distribution with ν(0, 0) = x, ν(0, 1) = ν(1, 0) = y
and ν(1, 1) = z > 0. Let µ = (p, q) be a pretend distribution, and let µ = ν � µ = ν.

Let π be a protocol performing [AND, ε]. Let 0 < C < 1 be an arbitrary constant, κ =
Pr[max{p,q} 6 C].

The protocol π can be completed to a zero-error protocol using an additional information cost of

O
(
κh(
√
ε/κ) + (1− κ)h( ε

1−κ)
)
,

where the cost is according to the distribution µ, and the hidden constant in O(·) can be fixed if
x, y, p, q, C are all bounded away from both 0 and 1.

Proof. First, note that

µ(1, 1) =
zpq

〈ν, µ〉
6

zpq

x(1− p)(1− q)
= O(z).
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Let ψ be the random variable denoting the completion cost as a function of Π. Let 1o=b be the
indicator of whether π outputs b given the transcript Π, for b = 0, 1. The total completion cost is

E[ψ] =
∑
b=0,1

E[ψ1o=b].

We start by bounding E[ψ1o=1]. Let δ be the random variable which equals µΠ(1, 1).

E[(1− δ)1o=1] = Pr[(X,Y ) 6= (1, 1), π outputs 1] 6 ε.

From Lemma 6.6, the completion cost ψ is at most 2h(1− δ). From the concavity of h,

E[ψ1o=1] = EO(h(1− δ))1o=1 = EO(h((1− δ)1o=1)) 6 O(h(E[(1− δ)1o=1])) 6 O(h(ε)).

This can be bounded as desired since in both cases of κ > 1/2 and κ 6 1/2, we have

h(ε) = O
(
κh(
√
ε/κ) + (1− κ)h( ε

1−κ)
)
.

Next we bound E[ψ1o=0].

E[δ1o=0] = Pr[(X,Y ) = (1, 1), π outputs 0] 6 εµ(1, 1) 6 εO(z).

Let S be the event that max{p,q} 6 C. Then,

E[δ1o=0|S] 6 εO(z)/Pr[S] = εO(z)/κ.

E[δ1o=0|S] 6 εO(z)/(1− κ).

From Lemma 6.6, the completion cost is of order of h
(√

δ/z
)

when S happens, and h(δ/z)

otherwise.

E[ψ1o=0] = Pr[S]E[ψ1o=0|S] + Pr[S]E[ψ1o=0|S]

= O
(
κE
[
h
(√

δ1o=0/z
)
|S
]

+ (1− κ)E[h(δ1o=0/z)|S]
)

6 O
(
κh
(√

E[δ1o=0|S]/z
)

+ (1− κ)h(E[δ1o=0|S]/z)
)

(50)

6 O
(
κh
(√

O(ε)/κ
)

+ (1− κ)h(O(ε)/(1− κ))
)

6 O

(
κh
(√

ε/κ
)

+ (1− κ)h

(
ε

1− κ

))
, (51)

where (50) follows from the concavity of h(·/z) and h(
√
·/z), and (51) follows from (12). �

Consider an almost optimal protocol π0 so that ICµ(π0)− ICµ(AND, 0) is small. Our stability
result, Theorem 6.2, translates this to a bound on the potential function introduced in Definition 6.1.
The next lemma uses this to show that for such a protocol π0, one can obtain a strong bound on
the value of κ in Lemma 6.7.
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Lemma 6.8. Let µ be full-support distribution and let µ = ν�µ be its decomposition, where ν is a
symmetric reference distribution, and µ is the pretend distribution. Let c = max {Prµ[X = 1],Prµ[Y = 1]}.
Let π be an arbitrary protocol, and π0 be the completion of π to a protocol performing [AND, 0].
Then

Pr[max{p,q} 6 c

4
] = Oc,µ,ν(ICµ(π0)− ICµ(AND, 0)),

The hidden constant can be fixed if p, q, µ(0, 0), µ(0, 1), µ(1, 0) are all bounded away from both 0 and
1, where µ = (p, q).

Proof. Let `p,q be the distribution of ` that corresponds to the buzzer protocol when it is invoked
from a pretend distribution parametrized by (p, q).

We start by showing that for any 0 < p, q < 1,

Pr[`p,q 6 2 max{p, q}] > 3

4
.

Assume without loss of generality that p > q. Using the leaf distribution from Section 6.1,

Pr[p 6 ` 6 2p] = 2

∫ 2p

p

pq

`3
d`+

(
1− q

p

)
>

3

4
.

This implies

Pr[`π0 6
c

2
] = Pr

[
`π0 6 2

c

4

]
> Pr

[
max{p,q} 6 c

4

]
Pr [`p,q 6 2 max{p,q}]

>
3

4
Pr
[
max{p,q} 6 c

4

]
.

Markov’s inequality and Theorem 6.2 imply

Pr[`π0 6
c

2
] = Pr[(c− `π0)2

+ >
c2

4
] 6

E[(c− `π0)2
+]

c2/4
=

Φc,µ(π0)

c2/4
= O(ICµ(π0)− IC(AND, 0)). �

Now we are ready to prove Theorem 6.5, and thus complete the proof of Theorem 3.7.

Proof of Theorem 6.5. We first prove the theorem for the full-support distributions. Consider
such a distribution µ. Let π be a protocol performing [AND, ε]. We can assume that ICµ(π) 6
ICµ(AND, 0), and let C = max{Prµ[X = 1],Prµ[Y = 1]}/4, κ = Pr[max{p,q} 6 C]. Lemma 6.7
constructs a zero-error protocol π0 whose wastage w is at most

w = O

(
κh

(√
ε

κ

)
+ (1− κ)h

(
ε

1− κ

))
.

Lemma 6.8 states that κ = O(w), and so

κ = O

(
κh

(√
ε

κ

)
+ (1− κ)h

(
ε

1− κ

))
.
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If ε
1−κ 6 1/2, then (12) shows that

κ = O

(
κh

(√
ε

κ

)
+ h(ε)

)
. (52)

Otherwise, κ > 1− 2ε > 1/2 (assuming ε 6 1/4), and so

κ = O(h(
√
ε) + (1− κ)) = O(h(

√
ε) + ε),

which contradicts κ > 1/2 for small enough ε.
Denoting the hidden constant in (52) by M , we get(

1−Mh

(√
ε

κ

))
κ 6Mh(ε).

We will show that for small ε, this forces κ 6 2Mh(ε). Indeed, suppose that κ > 2Mh(ε), which
implies that κ > 2Mε log(1/ε). Then

ε

κ
<

1

2M log(1/ε)
,

and so for small enough ε, Mh(
√
ε/κ) < 1/2. This shows that(

1−Mh

(√
ε

κ

))
κ >

κ

2
> Mh(ε),

contradicting the inequality above. We conclude that for small ε we have κ = O(h(ε)).
Applying Lemma 6.7 again, we see that

ICµ(π0)− ICµ(π) 6 κO

(
h

(√
ε

κ

))
+O(h(ε)) 6 O(κ) +O(h(ε)) = O(h(ε)).

Since ICµ(π0) > ICµ(AND, 0), we conclude that ICµ(π) > ICµ−O(h(ε)).
Next consider a distribution µ with µ(1, 1) = 0, that assigns a strictly positive probability

for every other input. There is a series of full support distributions, µ1, µ2, . . . that converge to
µ, and assume without loss of generality that for every input a ∈ {0, 1}2 and for every n ∈ N,
µn(a) > µ(a)/2. From the continuity of information complexity with respect to the tasks [AND, 0]
and [AND, ε],

lim
n→∞

ICµn(AND, 0) = ICµ(AND, 0),

and
lim
n→∞

ICµn(AND, 0) = ICµ(AND, 0).

Assume that µ(0, 0), µ(0, 1), µ(1, 0) are bounded from below. It is possible to decompose µ into
ν � (p, q), where ν is symmetric and p, q, ν(0, 0), ν(0, 1) and ν(1, 0) are bounded. This is done by
considering a decomposition where p = 1/2 and q is chosen such that ν is symmetric. Therefore,
there is a constant C > 0 such that

ICµn(AND, ε) > ICµn(AND, ε)− Ch(ε).

Thus,
ICµ(AND, ε) > ICµ(AND, ε)− Ch(ε).

�
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7 The set disjointness function with error

In this section we present the proofs of the results concerning the set disjointness function. It will
be convenient to switch the roles of 0 and 1 in the range of the function, and redefine DISJn as
DISJn(X,Y ) = ∨ni=1(Xi ∧ Yi), i.e. DISJn(X,Y ) = 0 if the inputs are disjoint and it is equal to 1
otherwise. Obviously, this will not affect the correctness of our results.

7.1 Proof of Theorem 3.11

Theorem 3.11 (restated). For the set disjointness function DISJn on inputs of length n, we have

Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))].

As discussed in Section 3.4, we only need to prove the upper bound. In fact, we will prove the
following lemma, from which Theorem 3.11 follows using Corollary 3.8.

Lemma 7.1. For every ε > 0 and sufficiently large n,

Rε(DISJn)

n
6 IC0(AND, ε, 1→ 0) + on→∞(1).

Intuitively, an upper bound like Lemma 7.1 is essentially a compression result. Besides, as DISJn
has a self-reducible structure (see [BGPW13b]), one can make use of this fact together with the
Braverman–Rao [BR14] compression. A difficulty is that what we want to solve is [DISJn, ε], that is,
the error allowed is non-distributional, while the error unavoidably introduced in the compression
phase is distributional. Fortunately, this can be salvaged by a minimax argument introduced in
Section 6.2 of [Bra12].

In order to use self-reducibility and compression, one first needs to have a control on the
information cost of solving [DISJn, ε].

Lemma 7.2. For every ε > 0 and sufficiently large n,

IC(DISJn, ε, 1→ 0) 6 n IC0(AND, ε, 1→ 0) + o(n),

where IC(DISJn, ε, 1→ 0) := maxµ ICµ(DISJn, ε, 1→ 0).

The proof is a direct adaptation of the proof for Lemma 8.5 in [BGPW13a].

Proof. Let Ω0 denote the set of all measures µ on {0, 1}2 with µ(1, 1) = 0. Let π be a protocol that
computes [AND, ε, 1 → 0] and satisfies maxµ∈Ω0 ICµ(π) 6 IC0(AND, ε, 1 → 0) + δ for some small
δ > 0. Consider the following protocol τ that computes DISJn with error.

• Alice and Bob exchange (with replacement using public randomness) n2/3 random coor-
dinates. Denote this set of random coordinates by J . If for some j ∈ J , xj = 1 and
yj = 1, then they output 1 and terminate.

• For each coordinate outside J , Alice and Bob run the protocol π and output 1 if π outputs
1 on some coordinate. Otherwise they output 0.
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As π has one-sided 1→ 0 error, obviously τ has only one-sided 1→ 0 error too, and this error
happens with probability at most εd 6 ε, where d is the number of coordinates outside J which
satisfy xj = yj = 1 (if xj = yj = 1 for some coordinate in J , there is no error). In particular, τ
computes [DISJn, ε, 1→ 0].

A direct inspection shows that the remaining proof of Lemma 8.5 in [BGPW13a] depends only
on the protocol but not on the specific problem, hence the proof works for our problem too, and
the lemma can be proved similarly. �

Next we prove an amortized upper bound for DISJn.

Lemma 7.3. For every ε, δ > 0, there exists a constant C > 0 that depends on n, ε, δ, such that
as long as N > C(n, ε, δ), we have

Rε(DISJn×N )

N
6 (1 + δ) IC(DISJn, ε, 1→ 0).

Proof. We sketch the proof below. More details can be found in Section 6.2 of [Bra12].

• Step 1. Choose a good protocol for [DISJn, ε− ξ, 1→ 0] for an appropriate ξ > 0.

Denote I := IC(DISJn, ε, 1→ 0). By continuity of information complexity (Lemma 2.4, which
holds for one-sided error with the same proof), there exists ξ > 0 such that

IC(DISJn, ε− ξ, 1→ 0) 6

(
1 +

δ

6

)
I.

A minimax argument along the lines of Theorem 3.5 and Theorem 3.6 of [Bra12] (but simpler)
shows that there exists a protocol π that computes [DISJn, ε − ξ, 1 → 0], and for every
distribution µ, its information cost satisfies

ICµ(π) 6

(
1 +

δ

3

)
I.

Denote by r the number of rounds in π.

• Step 2. Parallel computing.

Let M = 3
√
N . For an arbitrary distribution µ on {0, 1}n×M × {0, 1}n×M , let µ1, . . . , µM be

the marginals of µ restricted to each block of size n. Consider πM , that is, the execution of
M copies of π in parallel. The protocol πM has information cost

ICµ(πM ) 6
M∑
i=1

ICµi(π) 6

(
1 +

δ

3

)
M · I.

Clearly, πM is still an r-round protocol (this is required in order to apply Braverman–Rao
compression).

• Step 3. Compression (with the aid of a minimax argument), and truncation.

By Braverman–Rao compression [BR14] one can find another protocol with communication
cost roughly equal to M · I, and with an extra small error. However, this extra error is
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distributional according to the distribution µ. What we want is to solve [DISJn×M , ε], that
is, the protocol is only allowed to err with probability at most ε on every input.

Fortunately, one can fix this by applying a minimax argument, presented as Claim 6.10
in [Bra12], followed by an extra parallel computation step, presented as Claim 6.11 in [Bra12].

The analog of Claim 6.10 comes up with a protocol τ with the following properties:

– For every input in {0, 1}n×M ×{0, 1}n×M , the statistical distance between the output of
τ and the output of πM is O(1/M3).

– The expected communication cost of τ is at most
(
1 + δ

2

)
M · I.

– The worst-case communication cost of τ is at most O(Mn/δ1).

(The statement of Claim 6.10 has 1/M2 instead of 1/M3, but the proof of Claim 6.10 works
for any constant exponent; this can be traced to the fact that the dependence on the error in
Braverman–Rao compression is logarithmic.)

The idea now is to run M2 copies of τ in parallel, truncating the result, as in Claim 6.11
of [Bra12]. For large enough M (depending on n, ε, δ), the resulting protocol τ ′ satisfies the
following properties:

– For every input in {0, 1}n×M×M2 × {0, 1}n×M×M2
, the statistical distance between the

output of τ ′ and the output of τM
2

is at most η, where η tends to zero as M →∞.

– The worst-case communication complexity of τ ′ is at most (1 + δ)M3 · I.

In particular, the statistical distance between τ ′ and πM
3

= πN is at most η + O(1/M) on
every input, which tends to zero as M →∞. Choose M large enough to guarantee that the
statistical distance between the output of τ ′ and the output of πN is at most ξ. The protocol
τ ′ can be used to compute [DISJn×N , ε], as in the proof of Lemma 7.2. This completes the
proof. �

Now we prove the upper bound.

Proof of Lemma 7.1. Fix ε > 0. By Lemma 7.2, there exists T (ε) depending on ε such that

IC(DISJn, ε, 1→ 0) 6 n IC0(AND, ε, 1→ 0) + o(n)

whenever n > T (ε). For every such sufficiently large n, choose δ = 1
n . Lemma 7.3 states that

Rε(DISJn×N )

N
6

(
1 +

1

n

)
IC(DISJn, ε, 1→ 0)

whenever N > C(n, ε) for some constant C(n, ε). Since IC(DISJn, ε, 1→ 0) 6 n,

Rε(DISJn×N )

n×N
6 IC0(AND, ε, 1→ 0) +

1

n
+ o(1)

for N > C(n, ε). It follows that

Rε(DISJM )

M
6 IC0(AND, ε, 1→ 0) + o(1)

where o(1)→ 0 as M →∞, completing the proof. �
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7.2 A protocol for Set-Disjointness

Theorem 3.13 (restated). For the set-disjointness function DISJn on inputs of length n, we have

ICD(DISJn, ε) = n[IC0(AND, 0)−Θ(
√
h(ε))] +O(log n).

Proof. We already established the lower bound in (14), it remains to prove the upper bound.
Let µ be an input distribution for DISJn, and let p = Prµ[DISJn(X,Y ) = 1]. We can assume

that p > ε as otherwise ICµ(DISJn, µ, ε) = 0, and the upper bound trivially holds. Below we
introduce a protocol π in Figure 2 that solves [DISJn, µ, ε] and has the desired information cost.
In fact, our protocol is stronger in the sense that it has only one-sided error: the protocol π always
outputs 0 correctly if the correct output is 0, and on the other hand, if there are t > 1 coordinates
satisfying Xi = Yi = 1, then π will erroneously output 0 with probability at most (ε/2p)t 6 ε/2p.
Thus the distributional error of π is at most p · ε2p < ε, and π indeed solves [DISJn, µ, ε, 1→ 0].

On input (X,Y ):

• Alice and Bob, using public randomness, jointly sample a permutation σ on the set
{1, 2, . . . , n} uniformly at random; and they run the following sub-protocol πσ:

• For i = 1, 2, . . . , n repeat:

– Alice and Bob run a protocol πσi that is (almost) optimal for ICνi(AND, ε/2p, 1→ 0)
on input (Xσ(i), Yσ(i)), where νi is the distribution of (Xσ(i), Yσ(i)) conditioned on
the event that the protocol has not yet terminated;

– if the protocol πσi outputs 1, then terminate and output 1;

• If the “for-loop” ends without outputting 1, output 0 and terminate.

Figure 2: The protocol π that solves [DISJn, µ, ε, 1→ 0].

We now analyze the information cost. We start by analyzing the information cost of the sub-
protocol πσ. Let Πσ be the transcript of πσ, and write Πσ = Πσ

1 . . .Π
σ
n where Πσ

i denotes the
transcript of the protocol πσi for i = 1, . . . , n. As usual let Πσ

<i = Πσ
1 . . .Π

σ
i−1 be the partial

transcript. Let µi denote the distribution of Xσ(i)Yσ(i), and νi denote the distribution of Xσ(i)Yσ(i)

conditioned on Πσ
<i. Corollary 3.9 (iii) gives a bound on the information exchanged in each round:

there exist constants C1, C2 > 0 such that for any distribution ν,

ICν(AND, ε/2p, 1→ 0) 6 IC0(AND, 0) + C1h(ν(1, 1))− C2h(ε/p).

Note that (Πσ
i |XYΠσ

<i) has the same distribution as (Πσ
i |Xσ(i)Yσ(i)Π

σ
<i), and thus

I(Y ; Πσ|X) =
n∑
i=1

I(Y ; Πσ
i |X,Πσ

<i) =

n∑
i=1

[H(Πσ
i |X,Πσ

<i)−H(Πσ
i |XY,Πσ

<i)]
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6
n∑
i=1

[H(Πσ
i |Xσ(i),Π

σ
<i)−H(Πσ

i |Xσ(i)Yσ(i),Π
σ
<i)]

=
n∑
i=1

I(Yσ(i); Πσ
i |Xσ(i),Π

σ
<i).

Thus, denoting by T σ the number of AND protocols executed before the termination of πσ, the
above inequality implies (note that νi is a random variable, and πσi depends on νi)

ICµ(πσ) 6
n∑
i=1

E ICνi(π
σ
i ) 6

n∑
i=1

Pr[T σ > i]E [ICνi(π
σ
i ) | T σ > i]

6
n∑
i=1

Pr[T σ > i]E
[
IC0(AND, 0) + C1h(νi(1, 1))− C2h(ε/p) | T σ > i

]
6
(
IC0(AND, 0)− C2h(ε/p)

)
E[T σ] + C1

n∑
i=1

Pr[T σ > i]E
[
h(νi(1, 1))|T σ > i

]
.

We want to bound the second term. Note since p > ε,

Pr[T σ = i|T σ > i,Xσ(i) = Yσ(i) = 1] = Pr[πσi (Xσ(i)Yσ(i)) = 1|T σ > i,Xσ(i) = Yσ(i) = 1] > 1− ε

2p
> 1/2.

Hence, applying (12) twice and using the concavity of h, we get

Pr[T σ > i]E
[
h(νi(1, 1))|T σ > i

]
6 Pr[T σ > i]h (E [νi(1, 1)|T σ > i])
= Pr[T σ > i]h(Pr[Xσ(i) = Yσ(i) = 1|T σ > i])
6 h(Pr[Xσ(i) = Yσ(i) = 1|T σ > i] Pr[T σ > i])

= h(Pr[T σ > i,Xσ(i) = Yσ(i) = 1])

6 2 Pr[T σ = i|T σ > i,Xσ(i) = Yσ(i) = 1]h(Pr[T σ > i,Xσ(i) = Yσ(i) = 1])

6 2h(Pr[T σ = i,Xσ(i) = Yσ(i) = 1])

6 2h(Pr[T σ = i, π(X,Y ) = 1]).

Using concavity of h again,

1

n

n∑
i=1

h(Pr[T σ = i, π(X,Y ) = 1]) 6 h(Pr[π(X,Y ) = 1]/n) = h(p/n).

Therefore
n∑
i=1

Pr[T σ > i]E
[
h(νi(1, 1))|T σ > i

]
6 2nh(p/n).

That is, we have shown

ICµ(πσ) 6
(
IC0(AND, 0)− C2h(ε/p)

)
E[T σ] + 2C1nh(p/n). (53)

Taking the expectation with respect to σ, we obtain

ICµ(π) = E
σ

ICµ(πσ) =
(
IC0(AND, 0)− C2h(ε/p)

)
E

σ,XY
[T σ] + 2C1nh(p/n). (54)
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Hence it remains to bound E[T σ] where the expectation is over σ and the input XY .
Let x, y be such that DISJ(x, y) = 1, and let j be an index such that AND(xj , yj) = 1. Then

E
σ,XY

[T σ|XY = xy] =
n∑
i=1

Pr[σ(i) = j]E[T σ|XY = xy, σ(i) = j] =
1

n

n∑
i=1

E[T σ|XY = xy, σ(i) = j]

=
1

n

n∑
i=1

∑
b=0,1

E[T σ|XY = xy, σ(i) = j, πσi (X,Y ) = b] Pr[πσi (X,Y ) = b|XY = xy, σ(i) = j]

6
1

n

n∑
i=1

(
iPr[πσi (X,Y ) = 1|XY = xy, σ(i) = j] + nPr[πσi (X,Y ) = 0|XY = xy, σ(i) = j]

)
6

1

n

n∑
i=1

(
i(1− ε

2p
) + n

ε

2p

)
= (1− ε

2p
)
n+ 1

2
+

ε

2p
n 6

n+ 1

2
+

ε

4p
n.

This allows us the next bound:

E
σ,XY

[T σ] = Pr[DISJ(X,Y ) = 1]E[T |DISJ(X,Y ) = 1] + Pr[DISJ(X,Y ) = 0]E[T |DISJ(X,Y ) = 0]

6 p

(
n+ 1

2
+

ε

4p
n

)
+ (1− p)n 6 2p

3
n+

ε

4
n+ (1− p)n = (1− p/3 + ε/4)n. (55)

Combine (54) and (55) we get

ICµ(π) 6 n(1− p/3 + ε/4)
(
IC0(AND, 0)− C2h(ε/p)

)
+ C12nh(p/n)

= n(IC0(AND, 0)− Ω(h(ε/p) + p)) +O(nh(p/n)).

It remains to optimize over p. We start by minimizing p + h(ε/p). Up to a constant multiple,
the minimum is attained at the point satisfying p = h(ε/p). A simple calculation shows that
p ≈

√
h(ε), and so p+ h(ε/p) = Ω(

√
h(ε)). Thus

ICµ(π) 6 n[IC0(AND, 0)− Ω(
√
h(ε))] +O(nh(p/n)).

The value of the error term O(nh(p/n)) is at most O(nh(1/n)) = O(n logn
n ) = O(log n), and the

theorem follows. �

8 Open problems and concluding remarks

• In Conjecture 3.12 we speculated that the exact asymptotics of Rε(DISJn) is given by the
information complexity of the AND function when only one-sided error is allowed:

Rε(DISJn) = n IC0(AND, ε, 1→ 0)± o(n).

The set disjointness function has a “self-reducible” structure in the sense that it is possible
to solve an instance of the corresponding communication problem by dividing the input
into blocks and solving the same problem on each block separately. This structure allows
us to relate the communication complexity of the problem to its amortized communication
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complexity, and thus to its information complexity via the fundamental result of Braverman
and Rao [BR14]. Applying such ideas we showed (the lower bound is obvious)

IC(DISJn, ε) 6 Rε(DISJn) 6 m IC(DISJ n
m
, ε, 1→ 0) + o(n),

for an appropriate choice of m = m(n) that tends to infinity as n→∞. In Theorem 3.11 we
combined this with our analysis of the information complexity of the set disjointness to prove
Rε(DISJn) = n[IC0(AND, 0)−Θ(h(ε))]. More precisely we showed

n IC0(AND, ε) 6 IC(DISJn, ε) 6 IC(DISJn, ε, 1→ 0) 6 n IC0(AND, ε, 1→ 0) + o(n),

and combined it with our results regarding the information complexity of the AND function.
We believe that the upper bound is the truth; that is

IC(DISJn, ε) > n IC0(AND, ε, 1→ 0)− o(n),

which would imply Conjecture 3.12.

• The example of the AND function shows that the Ω(h(ε)) gain in the information cost,
appearing in our upper bounds in Theorems 3.2, 3.6, 3.15 and 3.16 is tight. However we do
not know whether the O(h(

√
ε)) gain appearing in the lower bounds in Theorems 3.5 and 3.6,

Corollary 3.14 and Theorem 3.16 is sharp. In fact we are not aware of any example that
exhibits a gain that is not Θ(h(ε)). Is it true that for every function f : X × Y → Z, and
measure µ on X × Y with ICµ(f, 0) > 0, we have ICµ(f, ε) = ICµ(f, 0) − Θ(h(ε))? One can
ask a similar question for ICµ(f, µ, ε), IC(f, ε), and ICD(f, ε).

• Recall that the inner product function IPn : {0, 1}n × {0, 1}n → {0, 1} is defined as

IPn : (x, y) 7→
n∑
i=1

xiyi mod 2.

Let ν denote the uniform probability measure on {0, 1}n × {0, 1}n. It is easy to see that
ICν(IPn, ν, ε) 6 (1 − 2ε)n. In [BGPW13b, Theorem 1.3], Braverman et al. exploited the
self-reducibility properties of the inner product function to showed that for every δ > 0, there
exists an ε > 0 and n0 > 0 such that for every n > n0, IC(IPn, ε) > (1− δ)n.

In [BGPW13b, Problem 1.4] they ask whether the dependency of δ on ε is linear. In other
words, is there a constant α > 0 such that for every sufficiently small ε > 0 and sufficiently
large n, ICν(IPn, ν, ε) > (1 − αε)n? If yes, then can we take α ≈ 2, or more precisely, is it
true that ICν(IPn, ν, ε) = (1− 2ε− o(ε))n? Note that the bound ICν(f, ν, ε) < ICν(f, ν, 0)−
Ω(h(ε)) of Theorem 3.6 does not refute these possibilities as in these questions ε is fixed, and
asymptotics are as n→∞.

• The focus of this paper has been on the internal information complexity, and except for few
results such as Proposition 3.4, we have not studied the external information complexity
analogues. However considering that external information complexity is typically simpler
than internal information complexity, we believe that the analogues of many of our results,
specially those about the AND function, can be proven for this case as well. We defer this to
future research.
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