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Proof complexity

Propsitional proof complexity studies how hard it is
to prove propositions in weak proof systems.

Motivation: If no proof system can prove all
tautologies in polynomial size, then NP,coNP.

Some proof systems:
I Frege: Undergraduate propositional logic.
I AC0

d-Frege: Can only use depth-d formulas.
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Statement of main result

Theorem
Suppose Frege proves some formula ϕ in size s.
For every d ≥ 1, Frege with depth-d + 2 cuts
proves ϕ in size

2ds1/d

Corollary
If Frege proves depth-d formula ϕ in size |ϕ|c,
then AC0

d+2-Frege proves ϕ in size

2cd|ϕ|1/d
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Consequences

Our result relates two barriers in proof complexity:
I Superpolynomial lower bounds for Frege.
I 2nε lower bounds for AC0

d-Frege with ε
independent of d.

The result shows that the latter imply the former.



Consequences

Proof system has Feasible Interpolation if given a
proof of A(x, y) ∨ B(x, z) of size s, can construct a
circuit C(x) of size poly(s) deciding whether A or
B is satisfiable.

Proof system is weakly automatizable if there
exists a polytime algorithm that on input A , 1r :
I Outputs 0 if A is not a tautology.
I Outputs 1 if A has a proof of size r .
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Consequences

Simplifies proof of [BDGMP] that AC0-Frege
doesn’t have FIP and is not weakly automatizable
unless DDH has subexponential circuits.

Starting point is [BPR]: poly-size Frege proof of
either x = ga1, y = gb1 and ga1b1 even
or x = ga2, y = gb2 and ga2b2 odd

[BDGMP] laboriously translate proof to AC0-Frege.

Our result gives such a translation in general.
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Proof idea

Starting point is a circuit complexity result:

Every NC1 circuit can be converted to a
bounded-depth circuit with sub-exp blow-up.

I Convert all formulas in proof to bounded
depth.

I Prove rules of inference hold for converted
formulas.
Main idea: prove C(P♦Q)↔ C(P)♦C(Q) for
♦ = ∨,∧ (internal comprehension).



Circuit complexity result

Proof of the circuit complexity result:
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Replace each subcircuit with DNF or CNF.



Canonical representation

Let maximal depth of all formulas be h.
Convert all formulas to depth 4 (say) using:
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Internal comprehension

Prove that C(P♦Q)↔ C(P)♦C(Q) by moving all
levels down and adding level at top at depth 1:
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Level manipulation

All manipulations reduce to adding/removing one
level:

This equivalence is proved by brute force.



Tightness

2s1/d
blowup is tight for tree-like proofs:

I Start with PHP with n + 1 pigeons, n holes.
I Buss: poly-size Frege proof of PHP.
I Replace each variable with Sipser function of

depth d.
I New formula provable in size nd+O(1).
I Krajı́ček: 2nΩ(1)

lower bound for tree-like
AC0

d-Frege.



Open questions

Extension to theories: ongoing work by
Ghasemloo and Cook.

Do other similar results from circuit complexity
carry over to proof complexity?
I Yao’s normal form for ACC
I Allender’s normal form for arithmetic circuits
I Allender/Koucký self-reducibility:

Superlinear separation between Frege and
TC0-Frege implies superpoly separation
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