Subexponential AC⁰-Frege Simulates Frege

Yuval Filmus¹ Toniann Pitassi¹ Rahul Santhanam²

¹University of Toronto

²University of Edinburgh

International Colloquium on Automata, Languages and Programming 2011

Proof complexity

Propsitional proof complexity studies how hard it is to prove propositions in weak proof systems. Motivation: If no proof system can prove all tautologies in polynomial size, then NP≠coNP.

Propsitional proof complexity studies how hard it is to prove propositions in weak proof systems.

Motivation: If no proof system can prove all tautologies in polynomial size, then $NP \neq coNP$.

Some proof systems:

- Frege: Undergraduate propositional logic.
- AC_d^0 -Frege: Can only use depth-*d* formulas.

Statement of main result

Theorem

Suppose Frege proves some formula φ in size s. For every $d \ge 1$, Frege with depth-d + 2 cuts proves φ in size

 $2^{ds^{1/d}}$

Statement of main result

Theorem

Suppose Frege proves some formula φ in size s. For every $d \ge 1$, Frege with depth-d + 2 cuts proves φ in size

2^{ds1/a}

Corollary

If Frege proves depth-d formula φ in size $|\varphi|^c$, then AC^0_{d+2} -Frege proves φ in size

 $2^{cd|\varphi|^{1/d}}$

Our result relates two barriers in proof complexity:

- Superpolynomial lower bounds for Frege.
- $2^{n^{\epsilon}}$ lower bounds for AC_d^0 -Frege with ϵ independent of d.

The result shows that the latter imply the former.

Proof system has *Feasible Interpolation* if given a proof of $A(x, y) \lor B(x, z)$ of size *s*, can construct a circuit C(x) of size *poly*(*s*) deciding whether *A* or *B* is satisfiable.

Proof system has *Feasible Interpolation* if given a proof of $A(x, y) \lor B(x, z)$ of size *s*, can construct a circuit C(x) of size *poly*(*s*) deciding whether *A* or *B* is satisfiable.

ション 小田 マイビット ビー シックション

Proof system is *weakly automatizable* if there exists a polytime algorithm that on input A, 1^{*r*}:

- Outputs 0 if A is not a tautology.
- Outputs 1 if A has a proof of size r.

Simplifies proof of [BDGMP] that AC⁰-Frege doesn't have FIP and is not weakly automatizable unless DDH has subexponential circuits.

- Simplifies proof of [BDGMP] that AC⁰-Frege doesn't have FIP and is not weakly automatizable unless DDH has subexponential circuits.
- Starting point is [BPR]: poly-size Frege proof of either $x = g^{a_1}, y = g^{b_1}$ and $g^{a_1b_1}$ even or $x = g^{a_2}, y = g^{b_2}$ and $g^{a_2b_2}$ odd [BDGMP] laboriously translate proof to AC⁰-Frege. Our result gives such a translation in general.

Proof idea

Starting point is a circuit complexity result:

Every NC¹ circuit can be converted to a bounded-depth circuit with sub-exp blow-up.

- Convert all formulas in proof to bounded depth.
- Prove rules of inference hold for converted formulas.
 Main idea: prove C(P◊Q) ↔ C(P)◊C(Q) for ◊ = ∨, ∧ (internal comprehension).

Circuit complexity result

Proof of the circuit complexity result:

Replace each subcircuit with DNF or CNF.

Canonical representation

Let maximal depth of all formulas be *h*. Convert all formulas to depth 4 (say) using:

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

Internal comprehension

Prove that $C(P \diamond Q) \leftrightarrow C(P) \diamond C(Q)$ by moving all levels down and adding level at top at depth 1:

(日)

Level manipulation

All manipulations reduce to adding/removing one level:

This equivalence is proved by brute force.

Tightness

 $2^{s^{1/d}}$ blowup is tight for *tree-like* proofs:

- Start with PHP with n + 1 pigeons, *n* holes.
- Buss: poly-size Frege proof of PHP.
- Replace each variable with Sipser function of depth d.

- New formula provable in size $n^{d+O(1)}$.
- Krajíček: 2^{n^{Ω(1)}} lower bound for tree-like AC⁰_d-Frege.

Open questions

Extension to theories: ongoing work by Ghasemloo and Cook.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Open questions

Extension to theories: ongoing work by Ghasemloo and Cook.

Do other similar results from circuit complexity carry over to proof complexity?

- Yao's normal form for ACC
- Allender's normal form for arithmetic circuits
- Allender/Koucký self-reducibility: Superlinear separation between Frege and TC⁰-Frege implies superpoly separation