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1 Introduction

Spectral techniques have many applications in combinatorics. One central technique is the
Hoffman–Lovász bound. Since the bound is so simple, let us start by stating and proving
the version due to Lovász:

Theorem 1 (Lovász bound). Let G = (V,E) be a graph, and let A be a V × V symmetric
matrix such that A(x, y) = 1 if x = y or (x, y) /∈ E. Then

α(G) ≤ λmax(A).

Proof. Let f be the indicator function of an independent set, and let |f | denote its size.
Then

|f |2 = 〈f, Af〉 ≤ λmax(A)〈f, f〉 = λmax(A)|f |.

The best bound obtainable in this way is denoted θ(G), and can be computed efficiently
using semidefinite programming. The original application of Lovász was to compute the
Shannon capacity of C5, but it has many other applications, such as:

1. Delsarte’s linear programming bound in coding theory. This application also inau-
gurated the theory of association schemes. Navon and Samorodnitsky found a proof
which circumvents the Lovász bound.

2. Various t-intersecting Erdős–Ko–Rado theorems: vector spaces (Frankl–Wilson), per-
mutations (Ellis–Friedgut–Pilpel), graphs (Ellis–Filmus–Friedgut). These are the only
known proofs of these theorems.

3. Planted clique (Feige–Krauthgamer). Arguably cleaner than original algorithm of
Alon–Krivelevich–Sudakov.

4. Separation between P/poly and its monotone version (Éva Tardos).
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What all of these applications have in common is that the constraints involved are on
pairs of elements. For example, in the LP bound, the constraint is minimum distance, in
Erdős–Ko–Rado the constraint is intersection of pairs, and in planted clique the constraint
is on pairs of vertices. In other circumstances, we are interested in constraints on larger
tuples, for example:

1. Erdős matching conjecture: How large can a k-uniform family be if no s sets are
pairwise disjoint?

2. s-wise Erdős–Ko–Rado: How large can a k-uniform family be if any s sets have a
common element? (solved by Frankl–Tokushige)

3. Mantel’s theorem: How many edges can a graph contain if it contains no triangles?

4. Frankl’s triangle problem: How large can a k-uniform family be if it contains no solution
to x+ y + z = 0 (sets identified with vectors over F2)?

All of these can be modeled as independent sets in certain hypergraphs (in the case of
Mantel’s theorem, the encoding is not obvious). This calls for a version of the spectral
bound which is appropriate for complexes. Such versions have been suggested by Golubev
and by Bachoc, Gundert and Passuello, but our result subsumes the former and seems more
useful than the latter. For example, we are able to reprove Mantel’s theorem and the Frankl-
Tokushige bound, and we prove nearly tight bounds for Frankl’s triangle problem.

2 Hoffman bound

We start with the standard Hoffman bound, which is a slightly weaker form of the Lovász
bound (though we do not explore this connection). Let V be a ground set, and let µ2 be
a symmetric distribution on ordered pairs of vertices. Denote the marginal by µ1. We say
that a subset of V is independent if it spans no edge in the support of µ2. The characteristic
vector φ of an independent set thus satisfies

E
(x,y)∼µ2

[φ(x)φ(y)] = 0.

Let T be the operator

(Tf)(x) =
󰁛

y

µ2(x, y)

µ1(x)
f(y).

(Note that y 󰀁→ µ2(x, y)/µ1(x) is a probability distribution.) If we define an inner product

〈f, g〉 = E
µ1

[fg] =
󰁛

x

µ1(x)f(x)g(x),

then we have
〈f, Tg〉 =

󰁛

x,y

µ2(x, y)f(x)g(y).
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Since µ2 is symmetric, the operator T is self-adjoint, and so has real eigenvectors. In fact, it
is a Markov operator: T1 = 1.

Let us get back to φ, decomposing it orthonormally as

φ = E
µ1

[φ]1 +
󰁛

i

civi,

where 1, vi are the eigenvectors of T , say with eigenvalues 1, ℓi. A quick calculation shows
that

0 = E
(x,y)∼µ2

[φ(x)φ(y)] = 〈φ, Tφ〉 = E
µ1

[φ]2 +
󰁛

i

ℓic
2
i ≥ E

µ1

[φ]2 + λmin(T )
󰁛

i

c2i =

E
µ1

[φ]2 + λmin(T )(󰀂φ󰀂2 − E
µ1

[φ]2) = E
µ1

[φ]2 + λmin(T )(E
µ1

[φ]− E
µ1

[φ]2) =

E
µ1

[φ]

󰀗
1− (1− λmin(T ))(1− E

µ1

[φ])

󰀘
.

Rearrangement yields

1− E
µ1

[φ] ≥ 1

1− λmin(T )
.

In fact, everything would work even with a signed measure, and this is important for
many applications.

Generalization to higher dimensions Since all the ideas appear already in the gen-
eralization to triplets, let us describe this case to simplify notation. Again V is a ground
set, and µ3 is a symmetric distribution on ordered triplets of vertices. A subset of V is
independent if it spans no hyperedge in the support of µ3. We define µ2 and µ1 to be the
marginal distributions of pairs and singletons, respectively.

Recall that T is the operator defined by

(Tf)(x) =
µ2(x, y)

µ1(x)
f(y),

and that we defined an inner product

〈f, g〉 =
󰁛

x

µ1(x)f(x)g(x).

Repeating the calculation above, if φ is an independent set then

E
µ1

[φ]

󰀗
1− (1− λmin(T ))(1− E

µ1

[φ])

󰀘
≤ 〈φ, Tφ〉 = E

(x,y)∼µ2

[φ(x)φ(y)].

Previously, the right-hand side was simply zero. This time, we need to use a different bound.
The idea is that if φ(x) = 1 (which we also write as x ∈ φ), then we can bound the total
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contribution of φ(y) by computing a Hoffman bound relative to x. In more detail,

E
(x,y)∼µ2

[φ(x)φ(y)] =
󰁛

x

µ1(x)φ(x)
󰁛

y

µ2(x, y)

µ1(x)
φ(y) ≤

󰁛

x

µ1(x)φ(x)×max
x∈φ

󰁛

y

µ2(x, y)

µ1(y)
φ(y) = E

µ1

[φ] max
x∈φ

E
µx
1

[φ],

where µx
1 is the measure given by µx

1(y) = µ2(x, y)/µ1(x). Cancelling Eµ1 [φ], this gives

1− (1− λmin(T ))(1− E
µ1

[φ]) ≤ max
x∈φ

E
µx
1

[φ] =⇒ 1− E
µ1

[φ] ≥
minx∈φ(1− Eµx

1
[φ])

1− λmin(T )
.

Let us define, by analogy, µx
2(y, z) = µ3(x, y, z)/µ1(x). Since φ is an independent set

with respect to µ3 and φ(x) = 1, we see that φ is an independent set with respect to µx
2 .

Therefore, if we define the operator T x in the natural way,

1− E
µx
1

[φ] ≥ 1

1− λmin(T x)
=⇒ 1− E

µ1

[φ] ≥ 1

(1− λmin(T ))maxx(1− λmin(T x))
.

This is the Hoffman bound for triplets. The Hoffman bound for d-tuples includes d − 1
factors, with an identical proof.

3 Example: Frankl’s triangle problem

Recall that the µp measure is a tensorial measure given by µp(S) = p|S|(1 − p)|S|. Frankl’s
triangle problem (in its µp version) asks for the maximum µp-measure of a subset of {0, 1}n
without a triplet of elements summing to zero (modulo 2). When p > 2/3, the family of all
vectors of weight more than 2

3
n has measure tending to 1, so we concentrate on p ≤ 2/3.

We start by solving the seemingly trivial case n = 1. We are looking for a distribution
µ3 supported on triplets summing to zero, say

µ3(0, 1, 1) = µ3(1, 0, 1) = µ3(1, 1, 0) = α, µ3(0, 0, 0) = 1− 3α.

In order to compute α, let us notice that µ1(1) = 2α, and so α = p/2. The distribution µ3

is thus given by

µ3(0, 1, 1) = µ3(1, 0, 1) = µ3(1, 1, 0) =
p

2
, µ3(0, 0, 0) = 1− 3

2
p.

The marginal distributions are

µ2(1, 1) =
p

2
, µ2(1, 0) = µ2(0, 1) =

p

2
, µ2(0, 0) = 1− 3

2
p

and
µ1(1) = p, µ1(0) = 1− p.
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The relevant operators are

T =

󰀣
1−3p/2
1−p

p/2
1−p

p/2
p

p/2
p

󰀤
, T 0 =

󰀕
1 0
0 1

󰀖
, T 1 =

󰀕
0 1
1 0

󰀖
.

The corresponding eigenvalues are

λ(T ) = 1,
1− 2p

2(1− p)
; λ(T 0) = 1, 1; λ(T 1) = 1,−1.

(For T , the second eigenvalue can be computed by considering the trace.)
When n > 1, we take tensor products of the same distribution µ3. The eigenvalues of

T⊗n are products of eigenvalues of T , and similarly the eigenvalues of T x are products of
eigenvalues of T 0, T 1.

We immediately see that maxx(1−λmin(T
x)) = 2. As for λmin(T

⊗n), the answer depends
on whether p ≥ 1/2 or not. If p ≥ 1/2 then −1 ≤ λmin(T ) ≤ 0, and so λmin(T

⊗n) = λmin(T ).
This shows that the measure of a triangle-free set is at most

1− 1

(1− 1−2p
2(1−p)

)2
= p,

a bound which is met by stars (all vectors v with vi = 1 for some fixed i).
When p ≤ 1/2 then λmin(T ) ≥ 0, and so all we can say is that λmin(T

⊗n) ≥ 0, which
implies a bound of

1− 1

1 · 2 =
1

2
.

This bound is asymptotically met by the family of all vectors having odd parity.

4 Open problem

The generalized Hoffman bound (with minor adjustments) is strong enough to prove Man-
tel’s theorem. Can it solve Turán’s (4,3) problem, which asks for the maximum number
of hyperedges in a 3-uniform graph without a tetrahedron? The answer should be: a 5/9
fraction of them (compared to a half for Mantel’s theorem).
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