Über die Transzendenz der Zahlen e und π^1 .

[Nachrichten der Gesellschaft der Wissenschaften zu Göttingen S. 113–116 (1893). Mathem. Annalen Bd. 43, S. 216–219 (1893).]

Man nehme an, die Zahl e genüge der Gleichung n-ten Grades

$$a + a_1e + a_2e^2 + \dots + a_ne^n = 0,$$

deren Koeffizienten a, a_1, \ldots, a_n ganze rationale Zahlen sind.

Wird die linke Seite dieser Gleichung mit dem Integral

$$\int_{0}^{\infty} = \int_{0}^{\infty} z^{\varrho} [(z-1)(z-2)\cdots(z-n)]^{\varrho+1} e^{-z} dz$$

multipliziert, wo ρ eine ganze positive Zahl bedeutet, so entsteht der Ausdruck

$$a\int_{0}^{\infty} + a_{1}e\int_{0}^{\infty} + a_{2}e^{2}\int_{0}^{\infty} + \cdots + a_{n}e^{n}\int_{0}^{\infty}$$

und dieser Ausdruck zerlegt sich in die Summe der beiden folgenden Ausdrücke:

$$P_1 = a \int_0^\infty + a_1 e \int_1^\infty + a_2 e^2 \int_2^\infty + \dots + a_n e^n \int_n^\infty,$$

$$P_2 = a_1 e \int_0^1 + a_2 e^2 \int_0^2 + \dots + a_n e^n \int_0^n.$$

Die Formel

$$\int_0^\infty z^\varrho e^{-z} \, dz = \varrho!$$

zeigt, daß das Integral \int_0^∞ eine ganze rationale durch ϱ ! teilbare Zahl ist und ebenso leicht folgt, wenn man bezüglich die Substitutionen $z=z'+1, z=z'+2, \ldots, z=z'+n$ anwendet, daß $e\int_1^\infty, e^2\int_2^\infty, \ldots, e^n\int_n^\infty$ ganze rationale durch $(\varrho+1)$! teilbare Zahlen sind. Daher ist auch P_1 eine durch ϱ ! teilbare ganze Zahl, und zwar gilt, wie man sieht, nach dem Modul $\varrho+1$ die Kongruenz

$$\frac{P_1}{\varrho!} \equiv \pm a(n!)^{\varrho+1}, \qquad (\varrho+1). \tag{1}$$

Andrerseits ist, wenn mit K bezüglich k die absolut größten Werte bezeichnet werden, welche die Funktionen

$$z(z-1)(z-2)\cdots(z-n)$$

bezüglich

$$(z-1)(z-2)\cdots(z-n)e^{-z}$$

in dem Intervalle z=0 bis z=n annehmen:

$$\left| \int_0^1 \right| < kK^{\varrho}, \quad \left| \int_0^2 \right| < 2kK^{\varrho}, \dots, \quad \left| \int_0^n \right| < nkK^{\varrho}$$

und hieraus folgt, wenn zur Abkürzung

$$\varkappa = \{|a_1e| + 2|a_2e^2| + \dots + n|a_ne^n|\}k$$

gesetzt wird, die Ungleichung

$$|P_2| < \varkappa K^{\varrho}. \tag{2}$$

Nun bestimme man eine ganze positive Zahl ϱ , welche erstens durch die ganze Zahl $a\cdot n!$ teilbar ist und für welche zweitens $\varkappa\frac{K^\varrho}{\varrho!}<1$ wird. Es ist dann $\frac{P_1}{\varrho!}$ infolge der Kongruenz (1) eine nicht durch $\varrho+1$ teilbare und daher notwendig von 0 verschiedene ganze Zahl, und da überdies $\frac{P_2}{\varrho!}$ infolge der Ungleichung (2) absolut genommen kleiner als 1 wird, so ist die Gleichung

$$\frac{P_1}{o!} + \frac{P_2}{o!} = 0$$

unmöglich.

¹Hilbert, Gesammelte Abhandlungen Bd. I, 1, S. 1–4.

Man nehme an, es sei π eine algebraische Zahl und es genüge die Zahl $\alpha_1 = i\pi$ einer Gleichung n-ten Grades mit ganzzahligen Koeffizienten. Bezeichnen wir dann mit $\alpha_2, \ldots, \alpha_n$ die übrigen Wurzeln dieser Gleichung, so muß, da $1 + e^{i\pi}$ den Wert 0 hat, auch der Ausdruck

$$(1+e^{\alpha_1})(1+e^{\alpha_2})\cdots(1+e^{\alpha_n})=1+e^{\beta_1}+e^{\beta_2}+\cdots+e^{\beta_N}$$

den Wert 0 haben und hierin sind, wie man leicht sieht, die N Exponenten β_1, \ldots, β_N die Wurzeln einer Gleichung N-ten Grades mit ganzzahligen Koeffizienten. Sind überdies etwa die M Exponenten β_1, \ldots, β_M von 0 verschieden, während die übrigen verschwinden, so sind diese M Exponenten β_1, \ldots, β_M die Wurzeln einer Gleichung M-ten Grades von der Gestalt

$$f(z) = bz^M + b_1 z^{M-1} + \dots + b_M = 0,$$

deren Koeffizienten ebenfalls ganze rationale Zahlen sind und in welcher insbesondere der letzte Koeffizient b_M von 0 verschieden ist. Der obige Ausdruck erhält dann die Gestalt

$$a + e^{\beta_1} + e^{\beta_2} + \cdots + e^{\beta_M}$$
.

wo a eine ganze positive Zahl ist.

Man multipliziere diesen Ausdruck mit dem Integral

$$\int_0^\infty = \int_0^\infty z^{\varrho} [g(z)]^{\varrho+1} e^{-z} dz,$$

wo ϱ wiederum eine ganze positive Zahl bedeutet und wo zur Abkürzung $g(z) = b^M f(z)$ gesetzt ist; dann ergibt sich

$$a\int_0^\infty + e^{\beta_1} \int_0^\infty + e^{\beta_2} \int_0^\infty + \dots + e^{\beta_M} \int_0^\infty$$

und dieser Ausdruck zerlegt sich in die Summe der beiden folgenden Ausdrücke:

$$P_1 = a \int_0^\infty + e^{\beta_1} \int_{\beta_1}^\infty + e^{\beta_2} \int_{\beta_2}^\infty + \dots + e^{\beta_M} \int_{\beta_M}^\infty,$$

$$P_1 = e^{\beta_1} \int_0^{\beta_1} + e^{\beta_2} \int_0^{\beta_2} + \dots + e^{\beta_M} \int_0^{\beta_M},$$

wo allgemein das Integral $\int_{\beta_i}^{\infty}$ in der komplexen z-Ebene vom Punkte $z=\beta_i$ längs einer zur Achse der reellen Zahlen

parallelen Geraden bis zu $z=+\infty$ hin und das $\int_0^{\beta_i}$ vom Punkte z=0 längs der geraden Verbindungslinie bis zum Punkte $z=\beta_i$ hin zu erstrecken ist.

Das Integral \int_0^∞ ist wieder gleich einer ganzen rationalen durch $\varrho!$ teilbaren Zahl, und zwar gilt, wie man sieht, nach dem Modul $\rho+1$ die Kongruenz

$$\frac{1}{\varrho!} \int_0^\infty \equiv b^{\rho M + M} b_M^{\varrho + 1}, \qquad (\varrho + 1).$$

Mittels der Substitution $z=z'+\beta_i$ und wegen $g(\beta_i)=0$ ergibt sich ferner

$$e^{\beta_i} \int_{\beta_i}^{\infty} = \int_0^{\infty} (z' + \beta_i)^{\varrho} [g(z' + \beta_i)]^{\varrho + 1} e^{-z'} dz' = (\varrho + 1)! \quad G(\beta_i),$$

wo $G(\beta_i)$ eine ganze ganzzahlige Funktion von β_i bedeutet, deren Grad in β_i unterhalb der Zahl $\varrho M+M$ bleibt und deren Koeffizienten sämtlich durch $b^{\varrho M+M}$ teilbar sind. Da β_1,\ldots,β_M die Wurzeln der ganzzahligen Gleichung f(z)=0 sind und mithin durch Multiplikation mit dem ersten Koeffizienten b zu ganzen algebraischen Zahlen werden, so ist

$$G(\beta_1) + G(\beta_2) + \cdots + G(\beta_M)$$

notwendig eine ganze rationale Zahl. Hieraus folgts, daß der Ausdruck P_1 gleich einer ganzen rationalen durch ϱ ! teilbaren Zahl wird, und zwar gilt nach dem Modul $\varrho + 1$ die Kongruenz

$$\frac{P_1}{\varrho!} \equiv ab^{\varrho M+M}b_M^{\varrho+1}, \qquad (\varrho+1). \tag{3}$$

Andrerseits ist, wenn mit K bezüglich k die größten absoluten Beträge bezeichnet werden, welche die Funktionen zg(z) bezüglich $g(z)e^{-z}$ auf den geradlinigen Integrationsstrecken zwischen z=0 bis $z=\beta_i$ annehmen:

$$\left| \int_{\beta_i}^{\infty} \right| < |\beta_i| \, kK^{\varrho} \qquad (i = 1, \, 2, \, \dots, \, M)$$

und hieraus folgt, wenn zur Abkürzung

$$\varkappa = \{ |\beta_1 e^{\beta_1}| + |\beta_2 e^{\beta_2}| + \dots + |\beta_M e^{\beta_M}| \} k$$

gesetzt wird, die Ungleichung

$$|P_2| < \varkappa K^{\varrho}. \tag{4}$$

Nun bestimme man eine ganze positive Zahl ϱ , welche erstens durch abb_M teilbar ist und für welche zweitens $\frac{\varkappa K^\varrho}{\varrho!} < 1$ wird. Es ist dann $\frac{P_1}{\varrho!}$ infolge der Kongruenz (3) eine nicht durch $\varrho+1$ teilbare und daher notwendig von 0 verschiedene ganze Zahl, und da überdies $\frac{P_2}{\varrho!}$ infolge der Ungleichung (4), absolut genommen, kleiner als 1 wird, so ist die Gleichung

$$\frac{P_1}{\rho!} + \frac{P_2}{\rho!} = 0$$

unmöglich.

Es ist leicht zu erkennen, wie auf dem eingeschlagenen Wege ebenso einfach auch der allgemeinste LINDEMANNsche Satz über die Exponentialfunktion sich beweisen läßt.

Königsberg i. Pr., den 5. Januar 1893.