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Abstract
We reproduce Harper’s proof of his isoperimetric inequality from his book Global methods
for combinatorial isoperimetric problems.

Let Qg be the dth dimensional hypercube with vertex set {0,1}¢ and edges connecting x0y to
xly for all zy € {0,1}4"1. For a subset S C Qq, the edge boundary OS is the number of edges (a, b)
such that a € S and b ¢ S. We order the vertices of Q4 lexicographically. For example, for d = 3
the order is

000,001,010,011,100, 101,110, 111.

Let Lg[n] € Qg denote the first n vertices according to the lexicograph order. Here is Harper’s
isoperimetric inequality.

Theorem 1. For every set S C Qyq,
0S > 0L4]|S]].

In words, a set of size n minimizing the edge boundary is Ly[n].

In his book Global methods for combinatorial isoperimetric problems, Harper offers two proofs of
Theorem 1. The first proof, presented in Chapter 1, closely follows the original one and uses intricate
induction. The second proof, presented in Chapter 3, also uses induction but is much simpler, and
this is the proof that we present here. It uses the technique of compression, a generalization of
shifting.

Proof of Theorem 1. The proof is by induction on d. When d = 1 the theorem is trivial. Suppose
now that d > 2, and that the theorem holds for all d — 1.

The first step of the proof is to compress the set S. To that end, we need to define an order
on subsets of {0,1}%. We think of such subsets as vectors in {0,1}2", with the coordinates ordered
according to the lexicographic order of (3. We order the subsets using the reverse lexicographic
order (that is, the lexicographic order with the order of coordinates reversed). Thus, if z,y € Qq
satisfy x < y and y € T C {0,1}? then replacing y with x decreases T in the order.

Let T' C {0, 1}"™. For every coordinate i € [d], we can decompose T into two subsets T;—g, T;=1 C
{0,1}91 according to the value of the ith coordinate. Let C;(T) be the set obtained by replacing
Ti—o with Lg_1[|Ti=o|] and T;=1 with L4_1[|T;=1]], and note that |C;(T")| = |T| and that C;(T) < T
with respect to the order on subsets of {0,1}%¢. The important property is C;(T) < 9T

0Ci(T) = OLg-1[|Ti=o|] + OLa—1[|Ti=1]] + [La—1[|Ti=o|] ALg—1[|Ti=1]]]
= OLg-1[|Ti=o|] + OLg-1[|Ti=1|] + [ |Ti=o| — |Ti=1] |
< 0Ti—o + 0Ti=1 + |Ti=o AT5=1]
=0T.



On the first line, the first two summands account for the edge boundary in all directions but ¢, and
the third for the edge boundary in direction i. The second line equals the first since Lg_1[|Ti=o|] C
Lq—1[|Ti=1]] or vice versa. The inequality holds by induction and since |AAB| > | |A| — |B]|.

Starting with S, apply the operations C1,...,Cy in a cyclic fashion repeatedly. The set keeps
decreasing in the order of subsets of {0, 1}2d7 and so eventually we reach a fixed point T of all
operations. As we have shown above, |T'| = |S| and 07| < |0S|. We say that T is compressed.

If all compressed sets containing y € {0,1}% also contain z € {0,1}? then we write z < y. The
order < is known as the compressibility order. We proceed show that if x < y then also x < y
unless = 01971 and y = 109~!; in the latter case we say that x,y are bad.

Indeed, suppose that z < y and that x,y are good. If x; = y; for some coordinate i then
T = C;(T) implies that x < y. It remains to consider the case that z; # y; for all i. Clearly
x1 = 0,y1 = 1, and since x,y are not bad, x; = 0,y; = 1 for some 7 > 1. We can write x = 0a0b
and y = lalb. Let z = Oalb:

y = lalb
z = 0ald
x = 0a0b

Since x < z and 1 = 21, © < z. Since z < y and z; = y;, z < y. We conclude that = < y, as
required.

We can picture the compressiblity order using a Hasse diagram, in which L consists of all vectors
smaller than 01971, and H consists of all vectors larger than 1091

H
Old—l 10d—1

\

The sets L, H are ordered linearly according to the lexicographic order. The only incomparable
elements are 019! and 109~!. This shows that unless |S| = 297!, T must be a prefix of the
lexicographic order on the vertices of )4, and so T' = Lg4][|S|], completing the proof in this case.

It remains to handle the case |S| = 2971, In that case, either T = Lg[297!] or T = Ly[2¢71] \
019~1 U 109~1. We complete the proof by calculating the corresponding edge boundaries:

aLd[2d71] — 2d717
A(Lg[2%7 1\ 0197 U 10971y = 2471 4 2(d — 2).

The theorem follows since 9L4[2¢71] < 9(Lg[2971]\ 014~ U 109-1). O



