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Abstract
We reproduce Harper’s proof of his isoperimetric inequality from his book Global methods

for combinatorial isoperimetric problems.

Let Qd be the dth dimensional hypercube with vertex set {0, 1}d and edges connecting x0y to
x1y for all xy ∈ {0, 1}d−1. For a subset S ⊆ Qd, the edge boundary ∂S is the number of edges (a, b)
such that a ∈ S and b /∈ S. We order the vertices of Qd lexicographically. For example, for d = 3
the order is

000, 001, 010, 011, 100, 101, 110, 111.

Let Ld[n] ⊆ Qd denote the first n vertices according to the lexicograph order. Here is Harper’s
isoperimetric inequality.

Theorem 1. For every set S ⊆ Qd,
∂S ≥ ∂Ld[|S|].

In words, a set of size n minimizing the edge boundary is Ld[n].
In his book Global methods for combinatorial isoperimetric problems, Harper offers two proofs of

Theorem 1. The first proof, presented in Chapter 1, closely follows the original one and uses intricate
induction. The second proof, presented in Chapter 3, also uses induction but is much simpler, and
this is the proof that we present here. It uses the technique of compression, a generalization of
shifting.

Proof of Theorem 1. The proof is by induction on d. When d = 1 the theorem is trivial. Suppose
now that d ≥ 2, and that the theorem holds for all d− 1.

The first step of the proof is to compress the set S. To that end, we need to define an order
on subsets of {0, 1}d. We think of such subsets as vectors in {0, 1}2d , with the coordinates ordered
according to the lexicographic order of Qd. We order the subsets using the reverse lexicographic
order (that is, the lexicographic order with the order of coordinates reversed). Thus, if x, y ∈ Qd

satisfy x < y and y ∈ T ⊆ {0, 1}d then replacing y with x decreases T in the order.
Let T ⊆ {0, 1}n. For every coordinate i ∈ [d], we can decompose T into two subsets Ti=0, Ti=1 ⊆

{0, 1}d−1 according to the value of the ith coordinate. Let Ci(T ) be the set obtained by replacing
Ti=0 with Ld−1[|Ti=0|] and Ti=1 with Ld−1[|Ti=1|], and note that |Ci(T )| = |T | and that Ci(T ) ≤ T
with respect to the order on subsets of {0, 1}d. The important property is ∂Ci(T ) ≤ ∂T :

∂Ci(T ) = ∂Ld−1[|Ti=0|] + ∂Ld−1[|Ti=1|] + |Ld−1[|Ti=0|]4Ld−1[|Ti=1|]|
= ∂Ld−1[|Ti=0|] + ∂Ld−1[|Ti=1|] + | |Ti=0| − |Ti=1| |
≤ ∂Ti=0 + ∂Ti=1 + |Ti=04Ti=1|
= ∂T.
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On the first line, the first two summands account for the edge boundary in all directions but i, and
the third for the edge boundary in direction i. The second line equals the first since Ld−1[|Ti=0|] ⊆
Ld−1[|Ti=1|] or vice versa. The inequality holds by induction and since |A4B| ≥ | |A| − |B| |.

Starting with S, apply the operations C1, . . . , Cd in a cyclic fashion repeatedly. The set keeps
decreasing in the order of subsets of {0, 1}2d , and so eventually we reach a fixed point T of all
operations. As we have shown above, |T | = |S| and |∂T | ≤ |∂S|. We say that T is compressed.

If all compressed sets containing y ∈ {0, 1}d also contain x ∈ {0, 1}d then we write x ≺ y. The
order ≺ is known as the compressibility order. We proceed show that if x < y then also x ≺ y
unless x = 01d−1 and y = 10d−1; in the latter case we say that x, y are bad.

Indeed, suppose that x < y and that x, y are good. If xi = yi for some coordinate i then
T = Ci(T ) implies that x ≺ y. It remains to consider the case that xi 6= yi for all i. Clearly
x1 = 0, y1 = 1, and since x, y are not bad, xi = 0, yi = 1 for some i > 1. We can write x = 0a0b
and y = 1ā1b̄. Let z = 0a1b:

y = 1ā1b̄

z = 0a1b

x = 0a0b

Since x < z and x1 = z1, x ≺ z. Since z < y and zi = yi, z ≺ y. We conclude that x ≺ y, as
required.

We can picture the compressiblity order using a Hasse diagram, in which L consists of all vectors
smaller than 01d−1, and H consists of all vectors larger than 10d−1:

H

10d−101d−1

L

The sets L,H are ordered linearly according to the lexicographic order. The only incomparable
elements are 01d−1 and 10d−1. This shows that unless |S| = 2d−1, T must be a prefix of the
lexicographic order on the vertices of Qd, and so T = Ld[|S|], completing the proof in this case.

It remains to handle the case |S| = 2d−1. In that case, either T = Ld[2d−1] or T = Ld[2d−1] \
01d−1 ∪ 10d−1. We complete the proof by calculating the corresponding edge boundaries:

∂Ld[2d−1] = 2d−1,

∂(Ld[2d−1] \ 01d−1 ∪ 10d−1) = 2d−1 + 2(d− 2).

The theorem follows since ∂Ld[2d−1] ≤ ∂(Ld[2d−1] \ 01d−1 ∪ 10d−1).
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