
Hardness of Approximating Set Cover

Yuval Filmus

January 2011

1 Introduction

This talk describes Feige’s result on the hardness of approximation of set cover.
We will start by following (somewhat anachronistically) the footsteps of Lund
and Yannakakis, showing an Ω(log n) hardness result. We will improve it, using
Feige’s ideas, to (1 − ε) log n. For technical reasons, the results are not NP-
hardness but rely on a slightly stronger hypothesis, namely that NP cannot be
solved in time nO(log logn).

In this talk, log n will always be taken to base e.

2 Set Cover

Set cover is the following problem: Given a universe U and a collection of subsets
Si ⊂ U which together cover U , find the minimal-size collection covering U .

Set cover has several simple approximation algorithms, all achieving more-
or-less the same worst-case ratio. The simplest one is the greedy algorithm:
In each step, add a set covering the maximal number of elements not already
covered.

Lemma 2.1. The greedy algorithm gives a (1−o(1)) log n approximation, where
n = |U |.

Proof. Let ct be the number of elements not covered by the greedy algorithm
after t sets are picked. Thus c0 = n. Denote by m the size of the minimal set
cover. Suppose that among the first t sets picked by the greedy algorithm, r
belonged to the minimal set cover. The other m− r sets cover all the uncovered
elements, and so the set picked by the greedy algorithm covers at least ct/(m−r)
elements. Therefore

ct+1 ≤
(

1− 1
m− r

)
ct ≤

(
1− 1

m

)
ct.

The process stops when ct < 1, which happens after roughly m log n steps.

1

3 From 3SAT to Set Cover

Our starting point is the PCP theorem: it is NP-hard to distinguish satisfiable
instances of 3SAT from (1 − ε)-satisfiable instances, for some ε. It will be
advantageous to recast this as a two-prover game (we’ve already seen that):

• Prover 1 assigns a code in {0, . . . , 7} for each clause; the code signifies
which literal is true (it will be advantageous for the prover to never use
the code 0).

• Prover 2 assigns a truth value for each variable.

The verifier selects a clause at random, and a random variable within the clause.
She probes the truth assignment of the clause from Prover 1, and the truth
assignment of the variable from Prover 2. She is “convinced” if the two answers
are consistent, i.e. the underlying value of the variable is the same. The PCP
theorem can be recast as follows: it is NP-hard to distinguish between 3SAT
instances in which the provers can always convince the verifier, and instances in
which the verifier is convinced with probability at most 1− ε (for a different ε).

We will try to model the situation in the setting of set cover. We will have
a set S(q, a, i) for every question-answer pair of Prover i. When i = 1, the
question q is a clause, and the answer a is the truth-value of the literals. When
i = 2, the question q is a variable, and the answer a is its truth-value. Denote
by Qi the number of possible questions to Prover i. Thus Q1 is the number of
clauses, and Q2 is the number of variables.

A set cover represents a “single-minded” strategy if every question has a
single answer. We would like the set cover instance to have the following prop-
erty: it must contain an answer for every possible question, and a single-minded
strategy is a set cover if and only if the corresponding strategy for the provers
always convinces the verifier, i.e. the 3SAT instance is satisfiable.

The remaining piece of the puzzle is thus a “verifier”. The verifier can
ask the provers V = 3Q1 different questions (q1, q2), and each of them will
be represented by a part Uq1,q2 of the universe U . Each of these parts should
be coverable by any consistent pair S(q1, a1, 1), S(q2, a2, 2). Thus we posit the
existence of a partition

Uq1,q2 = Uq1,q2,α,1 ∪ Uq1,q2,α,2

for every possible consistent answer α. What is α? It is the value of the variable
chosen within the clause. Thus there are two possible partitions for each Uq1,q2 ,
corresponding to the two values of the underlying variable.

Finally, let us connect the prover part of the construction to the verifier
part by defining the sets S(q, a, i). The set S(q, a, i) signifies that Prover i
answers a when confronted by question q. When the verifier asks (q1, q2), if it
gets consistent answers (a1, a2) then Uq1,q2 should be covered. So S(q, a, i) is
the union of all sets Uq1,q2,α,i in which qi = q (i.e. Prover i is actually asked
q) and α is the value of the marked variable extracted from a (in the case of
Prover 2, α = a).

2

Given a satisfiable 3SAT instance, there is a single-minded strategy for the
provers, which can be translated to a set cover. The set cover consists of an
answer for every possible question, and so its size is Q1+Q2. In the next section,
we find out what happens when the 3SAT instance is not satisfiable.

4 From Set Cover to 3SAT

If the 3SAT instance is not satisfiable, then no single-minded strategy translates
to a set-cover. In this section we show how to convert a non-single-minded
set cover to a randomized strategy for the provers, with the goal of showing
that unless the set cover is very large, the implied strategy is too successful in
convincing the verifier.

Given a set cover, how would we construct a strategy for the provers? First,
note that any set cover must contain at least one answer (across both provers)
for every question (q1, q2), since otherwise the corresponding part of the universe
Uq1,q2 is not covered at all. We can ensure that an answer exists for both provers
by having an element uq1,q2,i which belongs only to sets of the form Uq1,q2,·,i.
This way we enforce the existence of an answer for every possible question
targeted at any of the provers.

Because the strategy is not single-minded, there might be more than one pos-
sible answer in the set cover. We will adapt the following natural (and somewhat
naive) randomized strategy for the provers: when Prover i is confronted with
question q, she picks a random answer a from all the sets of the form S(q, a, i)
participating in the cover. Our goal is to show that this strategy convinces the
verifier with reasonable probability; this implies that some deterministic strat-
egy achieves the same amount of success, violating the “gap” in the statement
of the PCP theorem.

At this point it becomes apparent that the gap between 1 − ε and 1 is
not enough for our purposes; the strategy we are going to construct is going to
succeed with probability much smaller than 1−ε. Fortunately, parallel repetition
(covered in one of the previous talks) comes to our rescue. The verifier is now
going to ask the provers C questions in parallel; the provers will answer these
questions in parallel. The verifier will perform her consistency check on all C
pairs of answers in parallel. If the 3SAT instance is satisfiable, the provers can
always convince her. Otherwise, she will be convinced with probability at most
δC , where δ is a constant depending only on ε.

Generalizing our construction from the original two-prover system to its
parallel repetition is straightforward. The number of questions to each prover
Q1, Q2 is simply raised to the power C, as is the number of challenges (q1, q2) by
the verifier. Each part of the universe Uq1,q2 can now be covered by 2C different
partitions Uq1,q2,α,i, since α is now a vector of length C.

Suppose the verifier asks the questions (q1, q2), and the provers answer
(a1, a2). When do the provers convince the verifier? Each S(qi, ai, i) contains
a unique set of the form Uq1,q2,αi,i. The verifier is convinced exactly when

3

α1 = α2. We want to argue that unless the set cover is very large, such an event
is bound to happen with reasonable probability.

To start with, let Ai be the number of sets in the set cover pertaining to
Prover i. How many of them do we see on an average query of the verifier? In
the case of Prover 1, because all clauses are as likely to be asked about by the
verifier, the average query results in A1/Q1 possible answers. However, the same
is not necessarily true for Prover 2, since some variables may appear in more
clauses than other variables. However, it is not hard to reduce an arbitrary
3SAT formula so that each variable appears in exactly 5 clauses; moreover,
the PCP theorem remains true even for this variant of 3SAT. Given that, the
average query results in A2/Q2 possible answers.

The typical query thus has Ai/Qi answers to choose from for Prover i. We
would like to argue that if A1/Q1 + A2/Q2 is “small”, then those sets must
contain two consistent answers. The only way in which this will not happen
is if at most one set from each partition Uq1,q2,α,· is used. Recall that each of
the A1/Q1 +A2/Q2 sets contains a unique set of the form Uq1,q2,·,·. How many
of them are needed to cover all of Uq1,q2 , if we cannot use any of the built-in
partitions?

If we put all the 2C partitions in a sequence and choose one set of each in a
greedy manner, we will cover Uq1,q2 with at most log2 |Uq1,q2 | sets; for brevity,
define m = |Uq1,q2 |. It turns out that if the partitions are chosen randomly,
the greedy algorithm is almost optimal: we need at least (1− εP) log2m, where
εP → 0 as m→∞; such a “design” can also be constructed explicitly.

So as long as A1/Q1 + A2/Q2 < log2m, the set of answers will contain a
pair of consistent answers. This pair will actually be chosen by the provers with
probability

Q1

A1
· Q2

A2
>

4
(log2m)2

;

note that the worst possible case is when Q1/A1 = Q2/A2, from which we get
the bound.

The careful listener will have noticed that A1/Q1+A2/Q2 is only the average
case: it might be that most of the time the sets of answers are larger than log2m,
and occasionally they are very small. Here Markov’s inequality comes to our
rescue: with constant probability we reach a set of answers that is at most only
slightly larger than the average (I’ll let you work out the details).

What does the argument give us? If the 3SAT formula is satisfiable, then
there is a set cover of size Q1 + Q2. Otherwise, if A1/Q1 + A2/Q2 < log2m
(glossing over some epsilons) then the provers have a strategy which convinces
the verifier with probability 4/(log2m)2. If 4/(log2m)2 > δC , then this would
contradict the parallel-repetition-amplified PCP gap. We would then deduce
that A1/Q1 +A2/Q2 ≥ log2m. We want to conclude that A1 +A2 is big.

Here we hit some trouble: Q1 is much bigger thanQ2. Whereas the size of the
“good” cover is approximately Q1, the best lower bound we can get on A1+A2 is
Q2 log2m, which is meaningless! The way to solve this problem is to somehow
make Q1 and Q2 coincide This can be done artificially by adding a dummy

4

“Prover 2” query to Prover 1, and vice versa. This makes the number of queries
Q = Q1Q2 for both provers. With this correction, A1/Q + A2/Q ≥ log2m
implies the favourable bound A1 +A2 ≥ Q log2m.

Summarizing, if the 3SAT formula is satisfiable then there is a set cover
of size roughly 2Q, and otherwise the minimal set cover must contain at least
Q log2m sets. So an approximation algorithm cannot produce an approximation
better than log2m/2.

We got a gap depending on m, whereas we actually want a gap depending
on n = |U | = (3N)Cm, where N is the number of clauses. Since

log n = C log(3N) + logm,

in order for log2m to be comparable with log2 n we need that m = (3N)Ω(C).
Now C must be big enough so that

δC <
4

(log2m)2
= O(C log(3N))2.

Ignoring the factor of C on the right, we see that C = Ω(log logN). Therefore
n = Ω(N log logN). Playing with the epsilons, we can actually carry every-
thing through with n = Θ(N log logN). Note that the reduction is only quasi-
polynomial, and this prevents us from getting an NP-hardness result.

Let’s recap our exploits: we started with a 3SAT instance of size Θ(N), and
constructed a set cover instance of size n = Θ(N log logN). If the original 3SAT
instance was satisfiable, then there is a set cover of size 2Q. Otherwise, any
set cover has size at least roughly Q log2 n. So if there exists a polynomial-
time approximation algorithm for set cover with approximation ratio better
than log2 n/2, we get an algorithm deciding 3SAT in time Θ(N log logN), and so
NP ⊂ Time(N log logN).

Taking the contrapositive, unless NP has N log logN algorithms, there is no
polynomial-time algorithm approximating set cover to within log2 n/2. This
result leaves two things to be desired: first, the correct threshold should be log n
rather than log2 n/2 ≈ 0.72 log n; second, the hypothesis should be NP 6= P . In
the next section we explain how Feige achieved the first goal. Raz and others
achieved, separately, the second goal. However, so far no one has been able to
achieve both simultaneously.

5 Perfecting the Construction

In this section we put ourselves in the shoes of Uri Feige, and show how to
obtain, using a very similar construction, a bound of the form (1 − ε) log n
for every ε > 0; the same technique can be used to give a bound of the form
(1 − o(1)) log n, which unfortunately does not match the precise performance
guarantees of known algorithms.

The approximation factor of log2 n/2 derived from a construction in which
the optimal set cover is of size 2, but a greedy algorithm uses log2m sets (logm ≈

5

log n). In the beginning of today’s lecture, we showed that if the optimal set
cover is of size k, then the greedy algorithm uses at most k logm sets; this came
up as the solution t of m(1− 1/k)t = 1, via the approximation (1− 1/k)k ≈ e.
The latter approximation gets better and better as k gets larger and larger; so
we are led to concoct a situation in which each partition has size k; for k large,
the “non-single-minded” way to cover a Uq1,q2 part of the universe will require
(1− f(k))k logm sets, with limk→∞ f(k) = 0.

Having replaced 2 by k, we also need to enlarge the number of provers to
k, and to give the proof system some reasonable semantics. One naive attempt
would be to pair up the provers, and run several two-way proofs in parallel. The
provers can cheat by being inconsistent across pairs, but it doesn’t help them to
increase their probability of convincing the verifier. Let’s try working out this
idea, and see where it breaks down.

It is easy to generalize the construction of the set system. We again have a
set S(q, a, i) for each possible question-answer pair for Prover i; we arrange so
that the number of questions each prover can be asked is the same number Q.
The universe U of size n is divided into pieces Uq1,...,qk

of size m. Each of them
can be covered by any of 2(k/2)C partitions Uq1,...,qk,α,· of size k, and S(q, a, i)
contains a set Uq1,...,qk,α,i whenever qi = q and α is consistent with a. If the
3SAT formula is satisfiable then we can cover U with kQ sets, which give the
correct answer for every possible question. It remains to see what happens if
the formula is not satisfiable.

Given a set cover consisting of Ai sets belonging to Prover i, we use the
same strategy as in the two-player case: for every question a prover is asked,
she replies a random answer from those appearing in the set cover. On average,
there will be Ai/Q possible answers in her disposal. The provers convince the
verifier if every pair of provers chooses two consistent answers. If this does not
happen, then we have a cover of Uq1,...,qk

using at most k/2 sets from each
possible partition. Unfortunately, these constraints are not stringent enough,
since the greedy algorithm shows that Uq1,...,qk

can be covered using k/2 log2m
sets, so that we get nothing new.

What we would like is a constraint enforcing the ill-behaved set cover to
choose at most one set from each possible partition. The greedy algorithm
now follows the asymptotics of the set cover greedy algorithm, namely we need
(1 − f(k))k logm sets to cover the Uq1,...,qk

part of the universe (recall that
f(k) ≈ 0 for large k).

So we need the verifier to be convinced from any potential pair of provers.
This requires, at the very least, that any two provers will have some consistency
check associated with them. This is easy to achieve: for each pair (i, j) of
provers, have one of them tell you the values of C clauses, and the other one
tell you the values of C selected variables, one from each clause.

The new k-prover system still has the property that the provers can com-
pletely convince the verifier when the 3SAT instance is satisfiable. Conversely,
when the instance is not satisfiable, no pair of provers can convince the verifier
with probability better than δC . So in the former case the verifier accepts the
proofs in a very strong manner, whereas in the latter case she utterly rejects

6

them.
Wrapping up, when the 3SAT formula is satisfiable, there is a set cover of

size kQ; otherwise, any set cover must contain at least kQ(1− f(k)) logm sets.
The rest of the proof carries through, and so we get that unless NP is solvable
in time NO(log logN), no polynomial-time algorithm can approximate set cover
to within (1− ε) log n, for any ε > 0.

Using more than log logN parallel rounds, Feige gets an ε that goes down
with n. The idea is to make k grow with N . This requires a more efficient
construction of the k-prover system. Feige takes a linear code of length ` = Θ(C)
and size k. The verifier chooses ` clauses and highlights a variable in each clause.
Prover i is then asked for a mix of clauses and variables, depending on her vector
(say 0 means clause and 1 means variable). The fact the the code is good means
that the verify can cross-check any two provers; the distance between two code-
words is exactly equal to the number of consistency checks.

6 Bibliography

Lund, C. and Yannakakis, M. 1994. On the hardness of approximating
minimization problems. J. ACM 41, 5 (Sept.), 960–981.

Naor, M., Schulman, L. and Srinivasan, A. 1995. Splitters and near-
optimal derandomization. In FOCS 95, 182–191.

Feige U. 1998. A Threshold of ln n for Approximating Set Cover. J. ACM
45, 4 (July), 634–652.

7

