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Abstract

Nisan and Szegedy showed that low degree Boolean functions are juntas. Kindler and Safra
showed that low degree functions which are almost Boolean are close to juntas. Their result holds
with respect to µp for every constant p. When p is allowed to be very small, new phenomena emerge.
For example, the function y1 + · · · + yε/p (where yi ∈ {0, 1}) is close to Boolean but not close to a
junta.

We show that low degree functions which are almost Boolean are close to a new class of functions
which we call sparse juntas. Roughly speaking, these are functions which on a random input look
like juntas, in the sense that only a finite number of their monomials are non-zero. This extends a
result of the second author for the degree 1 case.

As applications of our result, we show that low degree almost Boolean functions must be very
biased, and satisfy a large deviation bound.

An interesting aspect of our proof is that it relies on a local-to-global agreement theorem. We
cover the p-biased hypercube by many smaller dimensional copies of the uniform hypercube, and
approximate our function locally via the Kindler–Safra theorem for constant p. We then stitch the
local approximations together into one global function that is a sparse junta.
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1 Introduction

We study the structure of “simple” Boolean functions in the p-biased hypercube, for all values of p, and
in particular when p(n) → 0. We introduce a new class of functions that we call sparse juntas which
generalize the standard juntas. Our main result is that every Boolean function that has at most ε of its
`22 mass above degree d, is O(ε) close to a degree d sparse junta. Throughout the paper we say that f is
ε-close to g if ‖f − g‖2µp := Ex∼µp [(f(x)− g(x))2] ≤ ε.

Nisan and Szegedy showed that Boolean functions that are exactly low degree must be juntas [NS94],
namely functions that depend on a constant number of coordinates. Classical theorems in the analysis of
Boolean functions describe the structure of Boolean functions that are close to being “simple” functions,
where closeness is measured with respect to the uniform measure. Notions of “simple” include functions
that are noise-stable, or nearly low degree, or have low total-influence [Fri98, FKN02, Bou02, KS02].
These results invariably prove that the function depends on a few coordinates (a dictator or a junta).
For example, Friedgut, Kalai and Naor [FKN02] prove that a function whose `2 mass is almost all on
Fourier levels 0, 1 must be a function that depends on at most one variable (dictator, anti-dictator or
constant). Bourgain [Bou02] and Kindler and Safra [KS02] studied Boolean functions with small mass
on the Fourier levels above d. Kindler and Safra proved that such functions are close to juntas.

Theorem 1.1 (Kindler–Safra [KS02, Kin03]). Fix d ≥ 0. For every 0 < p < 1 there exists ε0 = ε0(p, d)
such that for every ε < ε0, if f : {±1}n → {±1} satisfies ‖f>d‖2µp = ε then there exists a degree d

function g : {±1}n → {±1} (which necessarily depends on Od(1) coordinates) satisfying ‖f − g‖2µp ≤
ε(1 +O(ε1/4(1/p)d)). In particular, when ε = o(p4d) and ε ≤ ε0, ‖f − g‖2 = ε+ o(ε).

The term junta was actually coined in an earlier paper of Friedgut who proved that any Boolean
function with small total influence is close to a junta [Fri98].

Theorem 1.1 is a generalization to degree d of the earlier theorem of Friedgut, Kalai and Naor [FKN02]
mentioned above, which states that functions which are close to degree 1 are close to dictators or
constants. An alternative way of saying this is that given a function f with only ε fraction of its `22-mass
outside levels 0, 1, if f(x) ∈ {±1} for all x ∈ {±1}n, then it must be O(ε)-close to a function g such
that ĝ(S) ∈ {0,−1, 1} for all S ⊆ [n] (it is easy to verify that such Boolean functions are exactly the
dictators, anti-dictators or the constant functions).

It is natural to wonder if the condition that the range is Boolean, namely f(x) ∈ {±1} for all x,
can be replaced by f(x) ∈ A for all x, for any arbitrary finite set A ⊂ R. What can be said about
such a function that has ε of its mass outside levels 0, 1? The answer becomes more complicated as the
size of A grows, and the function need not depend on just one variable, as can be seen by the function
f(x) = x1 +x2 that takes only three distinct values but depends on more than one variable. Nevertheless,
we show that a similarly flavored statement is true: if the function f takes values in a finite set A ⊂ R
and has only ε mass outside levels 0, . . . , d, then there is a finite set A′ ⊂ R such that f is close to a
function whose Fourier coefficients belong to the set A′.

Theorem 1.2 (A-valued functions with low degree). Let A ⊂ R be a finite set, let d ∈ N, and let
f : {±1}n → A be a function that has at most ε fraction of its `22-mass outside levels 0, . . . , d, that is,
‖f>d‖2µ1/2

< ε. Then f is OA,d(ε)-close to a function g of degree d with Fourier coefficients in a finite

set A′ ⊂ R.

This theorem is not difficult to prove given Theorem 1.1, but it turns out to be quite useful. In fact,
generalizing from Boolean to A-valued allows us to give an new proof of Theorem 1.1 that proceeds by
induction on the degree d (see Section 8).

Having warmed up, we turn to the main focus of this paper, which is understanding the structure of
Boolean (or A-valued) functions that are nearly degree d in the p-biased hypercube. The p-biased hyper-
cube is the set {±1}n equipped with the µp measure (given by µp(x) = p(n+

∑
i xi)/2(1 − p)(n−

∑
i xi)/2).

We think of p as being possibly very small, for example p = 1/
√
n.

The theorem of Kindler and Safra [KS02] continues to hold under the µp measure, but the quality
of the approximation deteriorates with p. Indeed, the class of junta functions does not seem to be the
correct class of functions for approximating low degree functions that are µp-almost Boolean. This is
demonstrated by the following simple example: Let f(x) =

∑
i∈S

1−xi
2 be a degree 1 function, and let

g be the Boolean function closest to f . If |S| = O(
√
ε/p) then g is ε-close to f , and yet it depends
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on many coordinates. It turns out that this example is canonical: in previous work [Fil16], the second
named author has proved that all functions that are nearly degree one, in µp, essentially look like this
one.

The function f considered above is very biased: with probability roughly 1−
√
ε, it is equal to zero.

More generally, the result of [Fil16] implies that if ϕ is a degree 1 function which is ε-close to Boolean
then ϕ is O(

√
ε)-close to a constant function. Still, one can hope for an even better approximation, with

error of O(ε), and indeed this is possible: ϕ is O(ε)-close to a linear function similar to the function f
considered above (or its negation).

Generalizing this theorem to higher degrees requires coming up with a new syntactic class of simple
functions that are the good approximators for low degree Boolean functions. As before, constants give
an O(εC)-approximation for some C < 1, a fact which comes as a consequence of our main theorem
(see Lemma 1.7), but our goal here will be to find an even better approximation, on the order of O(ε).
The first step is to move away from the Fourier basis whose basis functions depend on p and are thus
non-canonical. Instead, we will rely on the y-expansion of f :

Definition 1.3 (y-expansion). The y-expansion of a function f : {±1}n → R is the unique expansion
f(x) =

∑
S f̃(S)yS(x) where {yS}S is a basis of functions given by yi = 1−xi

2 and for S ⊆ [n], we define
yS =

∏
i∈S yi.

The y-expansion is the standard expansion of f as a multilinear polynomial in {0, 1} variables instead
of {±1} variables. We stress that this is not the Fourier expansion of f (under µ1/2), which is its expansion
as a multilinear polynomial in {±1} input variables. The y-expansion is better suited for working with
µp for small p. The result mentioned above [Fil16] states that any degree 1 function that is close to being
Boolean in the p-biased hypercube can be approximated by a function whose y-expansion coefficients are
all in {−1, 0, 1}.

This motivates the following generalization:

Definition 1.4 (quantized polynomial). Given a finite set A ⊂ R, a function f : {±1}n → R is said to
be an A-quantized polynomial of degree d if all coefficients of the y-expansion of f belong to A.

As part of our main result, stated below as Theorem 1.5, we show that for all p ≤ 1/2, a low degree
function that is ε-close under µp to being A-valued, is close to an A′-quantized polynomial for some
finite set A′ = A′(d,A). This can be nicely rephrased as follows: For all d ≥ 0 and sets A, there exists
A′ = A′(d,A) such that for all p ≤ 1/2:

If a function has degree ≤ d and is ε-close under µp to an A-valued function, then its y-
expansion is O(ε)-close to being A′-quantized.

Observe that the y-expansion is important for making such a statement. It could not be made for
the Fourier expansion since the coefficients would have to depend on p.

This generalizes Theorem 1.2 above since in the uniform µ 1
2

setting a quantized polynomial that has

bounded norm must be a junta. Indeed, substituting yi = 1−xi
2 shows that if |S| = d then f̂(S) =

(−1)d2−df̃(S) (where f̃(S) is the coefficient of yS in the y-expansion of f), and so Parseval’s identity
shows that there is a constant number of non-zero f̃(S) with |S| = d. Removing them can only increase
the `2 norm by a constant, and so applying the same reasoning inductively shows that f is a junta.

Our main theorem gives a somewhat stronger syntactic characterization, showing that A-valued
functions with nearly low degree are close to being sparse juntas. These are quantized polynomials that
have an additional structural property which we call bounded branching factor. The branching factor
of a quantized polynomial g is best explained by considering the hypergraph whose edges correspond to
all non-zero coefficients in the y-expansion of g. This hypergraph has branching factor ρ = O(1/p) if
for all subsets A ⊆ [n] and integers r ≥ 0, there are at most ρr hyperedges in H of cardinality |A| + r
containing A.

While this is the syntactic definition, the meaning of having small branching factor is that the function
is “empirically” a junta, because a typical input only leaves a constant number of monomials non-zero.
This is why we call these functions sparse juntas. Finally, we can state our main theorem:
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Theorem 1.5 (Main). For every positive integer d and finite set A ⊂ R, there exists a finite set
A′ = A′(d,A) such that the following holds. For every p ≤ 1/2 and f : {±1}n → R of degree d there
exists a function g : {±1}n → R of degree d that satisfies the following properties for ε := Eµp [dist(f,A)2]:

1. ‖f − g‖2 = O(ε).

2. Pr[g /∈ A] = O(ε)

3. g is an A′-sparse junta, that is, it is an A′-quantized polynomial of degree d with branching factor
O(1/p).

4. If x ∼ µp then g(x) is the sum of O(1) coefficients of g with probability 1−O(ε).

We also show a converse to the above theorem (see Lemma 6.1) in the sense that the second and
third properties are a complete characterization of degree d functions that are O(ε)-close to A (i.e.,
Eµp [dist(f,A)2] = O(ε)).

As applications of our theorem we show a large deviation bound for degree d functions close to a
finite set A:

Lemma 1.6 (Large deviation bound). Fix an integer d and a finite set A. Suppose that f : {0, 1}n → R
is a degree d function satisfying E[dist(f,A)2] = ε with respect to µp for some p ≤ 1/2. For large t,

Pr[|f | ≥ t] ≤ exp
(
−Ω(t1/d) +O(ε/t2)

)
.

We also prove that such functions must by very biased:

Lemma 1.7 (Sparse juntas are very biased). Fix a constant d ≥ 0 and a finite set A. There exist
constants C, ε0 > 0 such that for all p ≤ 1/2 and ε ≤ ε0, the following holds.

Suppose that g : {0, 1}n → R is a degree d function with branching factor O(1/p) such that Pr[g /∈
A] = ε. Then there exists a ∈ A such that Pr[g 6= a] = O(εC + p).

Combining this with our main theorem implies that if an A-valued function is ε close to degree d, it
must be very biased.

A local-to-global aspect of the proof

Let us highlight an interesting aspect of the proof of our main theorem. Previous works analyzing the
structure of Boolean functions rely on hypercontractivity. When p → 0 the hypercontractive behavior
breaks down, and this is responsible for the deterioration of the approximation in Theorem 1.1. Our proof
doesn’t go down this path, and instead proceeds by breaking up the p-biased hypercube into many small
sub-cubes that are obtained by setting many variables to 0 (using the {0, 1} convention for the inputs).
The measure on these sub-cubes becomes the uniform measure, and so we are able to approximate f
locally on them using the classical Kindler-Safra theorem, Theorem 1.2. This gives us a separate junta
function fS on each sub-cube S. Moving from local to global, we rely on a recent so-called agreement
theorem proven by the authors [DFH17] that gives us a single global function g that agrees with most
of the local approximations (after ensuring that the local pieces typically agree with each other).

To complete the proof of our main theorem, we use a crucial feature of the agreement theorem proven
in [DFH17], namely that agreement is reached by consensus. This means that each coefficient of the
y-expansion of g is chosen by picking the most “popular” value appearing in all relevant fS . In turns
out that this feature guarantees that g has branching factor O(1/p).

A new proof of the Kindler–Safra theorem

Our new proof of Theorem 1.1 demonstrates the power of our view of the theorem as stating that if a
low degree function is close to being quantized, then its Fourier expansion is close to being quantized.
Our inductive proof also makes essential use of the generalization to A-valued, rather than just Boolean,
functions: even when starting with a Boolean function, A-valued functions arise in the proof.

Given a function f of degree d which is close to a finite set A, we use the theorem for degree d − 1
(assumed to hold by induction) together with the A-valued FKN theorem to show that the degree d− 1
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and degree d coefficients are almost quantized (this is the heart of the proof). This allows us to replace
the two highest levels of f with a quantized polynomial, which must be a junta. Removing these two
levels altogether, we get an A′-valued function for some A′ depending on A, d. Applying the theorem for
degree d− 2 completes the proof.

Related work

Understanding the structure of Boolean functions that are simple according to some measure such as
being nearly low degree is a basic complexity goal. Similar structure theorems such as the KKL theo-
rem [KKL88], Friedgut’s junta theorem [Fri98], and the FKN theorem [FKN02], have found numerous
applications. The analogous questions for the p-biased hypercube are understood only to some extent,
yet the questions are natural and play an important role in several areas in combinatorics and the theory
of computation.

• A major motivation for studying Boolean functions under the µp measure comes from trying to
understand the sharp threshold behavior of graph properties, and of satisfiability of random k-CNF
formulae.

A large area of combinatorics is concerned with understanding properties of graphs selected from
the random graph model of Erdős and Rényi, G(n, p). A graph property is described via a Boolean
function f whose N =

(
n
2

)
input variables describe the edges of a graph and the function is 1 iff

the property is satisfied. Selecting a graph at random from the G(n, p) distribution is equivalent to
selecting a random input to f with distribution µp. The density of this function is the probability
that the property holds, and so its fine behavior as p increases from 0 to 1 is the business of sharp
threshold theorems. For many of the most interesting graph properties, such as connectivity and
appearance of a triangle, a phase transition occurs for very small values of p (corresponding to
p ≈ 1/

√
N). Friedgut and Kalai [FK96] used the theorem of Kahn, Kalai and Linial [KKL88] to

prove that every monotone graph property has a narrow threshold.

A famous theorem of Friedgut [Fri99] characterizes which graph and hypergraph properties have
sharp threshold. As an application, Friedgut establishes the existence of a sharp threshold for the
satisfiability of random k-CNF formulae. This is done through analyzing the structure of p-biased
Boolean functions with low total influence, which corresponds to not having a sharp threshold.
The same question was also studied by Bourgain [Bou99] and subsequently by Hatami [Hat12],
who proved that such functions must be “pseudo-juntas” (see [O’D14, Chapter 10] for a discussion
of these results). We recommend the nice recent survey [BK17, Section 3] for a description of some
related questions and conjectures.

Our condition of having nearly degree d is a strictly stronger condition than having low total
influence, and indeed our sparse juntas are in particular pseudo-juntas. Unlike sparse juntas, the
pseudo-junta property is not syntactic (it does not define a class of functions, but rather a property
of the given function), and it is interesting to understand the relation between pseudo-juntas and
sparse juntas.

Friedgut conjectured that every monotone function that has a coarse threshold is approximable
by a narrow DNF, which is a function that can be written as f(x) = maxS:|S|≤d f̃(S)yS(x). This
is quite similar to our class of sparse juntas (in fact, they coincide for degree d = 1), except that
our functions are expressed as a sum of monomials rather than their maximum, and thus we must
restrict ourselves to functions with bounded branching factor. The assumption of having a coarse
threshold is weaker than having nearly degree d, yet it is interesting whether our techniques can
be applied toward resolution of this conjecture.

• Hardness of approximation: The p-biased hypercube has been used as a gadget for proving hardness
of approximation of vertex cover, where the relevant regime is some constant p < 1/2. Other
variants of the hypercube have been used or suggested as gadgets for proving inapproximability,
including the short code [BGH+15], the real code [KM13], and the Grassmann code [KMS17]. In all
of these, understanding the structure of Boolean functions with nearly low degree seems crucial. In
the Grassmann code, one considers subspaces of small dimension inside a large-dimensional vector
space. Some conjectures were made in [DKK+16, DKK+17] regarding the structure of Boolean
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functions whose domain is the set of subspaces and that have non-negligible mass on the space
of functions that corresponds to having low degree. Thinking of subspaces as subsets of points,
this is analogous to the p-biased case, when p is very small, on the order of O(1/n). Toward
understanding that question, it is natural to first pursue such a study on the simpler model of the
p-biased hypercube for very small p, where the analysis is potentially easier since the space is a
product space.

• Relatively recent work [KKM+17] proves that Reed–Muller codes achieve capacity on the erasure
channel, using the Bourgain–Kalai sharp threshold theorem for affine-invariant functions [BK97].
The regime of this result is only for codes with constant rate, and it seems that extending it
to lower rates would require understanding the structure of affine-invariant functions under the
p-biased measure for small p.

Organization

The rest of the paper is organized as follows. We begin with a few preliminaries in Section 2, which
includes the agreement testing results. In Section 3, we define the branching factor and discuss some of
its properties. We generalize the classical Kindler-Safra theorem to A-valued functions in Section 4. We
then prove the main result of the paper (Theorem 1.5) in Section 5. In Section 6, we prove the converse
to our main result. We discuss some applications in Section 7 and give an alternate proof to the classical
Kindler-Safra theorem in Section 8.

2 Preliminaries

We will need the following definitions:

• We define dist(x,A) = miny∈A |x− y|.

• We define round(x,A) as an element in A whose distance from x is dist(x,A).

• For a function f : {0, 1}n → R and a set S ⊆ [n], the function f |S : {0, 1}S → R results from
substituting zero to all coordinates outside of S.

• For a function f : {0, 1}n → R, the support of its y-expansion naturals corresponds to a hypergraph
Hf ⊂ 2[n] which we sometimes refer to as the support of g.

• For a set S, µp(S) is a distribution over subsets of S in which each element of S is chosen indepen-
dently with probability p.

• The L2
2 triangle inequality states that (a+ b)2 ≤ 2(a2 + b2). It implies that

dist(x+ y,A)2 = min
a∈A

(x+ y − a)2 ≤ min
a∈A

[2(x− a)2 + 2y2] ≤ 2 dist(x,A)2 + 2y2.

• For any p, q ∈ (0, 1) satisfying 2p − pq ≤ 1, the distribution µp,q is defined to be the distribution
on pairs S1, S2 in which each element belongs only to S1 with probability p(1− q), only to S2 with
probability p(1− q), and to both S1 and S2 with probability pq.

We will need the following theorems.

Theorem 2.1 (Nisan–Szegedy). If f : {0, 1}n → {0, 1} is a degree k function, then f is a k2k−1-junta.

Theorem 2.2 ((2, p) hypercontractivity). Let p ≥ 2, then for any function f : {0, 1}n → R of degree at
most k, we have ‖f‖p ≤ (p− 1)k/2 · ‖f‖2.

We also need the following result about quantization.

Lemma 2.3. For every finite set V and integer d there exists a finite set U such that the following
holds. Suppose that deg g1,deg g2 ≤ d. If all coefficients of the y-expansion of g1, g2 belong to V , then
all coefficients of the y-expansion of g1g2 belong to U .
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Proof. Let g := g1g2, and let |A| ≤ 2d (otherwise g̃(A) = 0). Since yA1
yA2

= yA1∪A2
, we have

g̃(A) =
⋃

A1∪A2=A

g̃1(A1)g̃2(A2).

The lemma follows from the fact that the sum contains at most 32d terms.

2.1 Agreement testing

Agreement tests are a type of PCP tests that capture local-to-global phenomena. Our proof of the main
result uses an agreement test recently analyzed by the authors [DFH17], which is an extension of the
direct product test to higher dimensions. In the standard direct product test, one is given a ground
set [n] and an ensemble of local functions {fS}S⊂[n] containing a local function fS : S → {0, 1} for each
subset S ⊂ [n]. The direct product test is specified by the distribution µp,q over pairs of sets (S1, S2),
in which each element i ∈ [n] is independently added to S1 ∩ S2 with probability pq, to S1 \ S2 with
probability p(1−q), to S2 \S1 with probability p(1−q), and to neither set with probability 1− (2p−pq).
Here, we assume p ≤ 1/2 and q ∈ (0, 1). The direct product testing results [DG08, IKW12, DS14] state
that if the local functions agree most of the time, ie.,

Pr
(S1,S2)∼µp,q

[fS1
|S1∩S2

= fS2
|S1∩S2

] = 1− ε,

then there must exist a global function G : [n]→ {0, 1} that explains most of the local functions:

Pr
S∼µp

[fS = G|S ] = 1−O(ε).

In recent work [DFH17], the authors extended this direct product to higher dimensions, wherein the
local functions are functions not only on the vertices of S but also on hyperedges supported by S, i.e.,
fS :

(
S
≤d
)
→ {0, 1} instead of fS : S → {0, 1}. Furthermore, they demonstrated that the function obtained

by majority decoding serves as a good candidate for the global function. Formally:

Theorem 2.4 (Agreement theorem via majority decoding). For every positive integer d and alphabet
Σ, there exists a constant p0 ∈ (0, 1/2) such that for all p ∈ (0, p0) and q ∈ (0, 1) and sufficiently large
n, the following holds. Let {fS :

(
S
≤d
)
→ Σ | S ∈ {0, 1}n} be an ensemble of functions satisfying

Pr
S1,S2∼µp,q

[fS1
|S1∩S2

6= fS2
|S1∩S2

] ≤ ε.

Then the global function G :
(

[n]
≤d
)
→ Σ defined by plurality decoding (ie., G(T ) is the most popular value

of fS(T ) over all S containing T , chosen according to the distribution µp([n]), i.e., PrS∼µp [fS(T ) =
G(T )] = maxσ PrS∼µp [fS(T ) = σ]) satisfies

Pr
S∼µp

[fS 6= G|S ] = Od,q(ε).

3 Branching factor

The analog of juntas for small p are quantized functions with branching factor O(1/p). Let us start by
formally defining this concept,

Definition 3.1 (branching factor). For any ρ ≥ 1, a hypergraph H over a vertex set V is said to have
branching factor ρ if for all subsets A ⊂ V and integers k ≥ 0, there are at most ρk hyperedges in H of
cardinality |A|+ k containing A.

A function g : {0, 1}n → R is said to have branching factor ρ if the corresponding hypergraph Hg

(given by the support of the y-expansion of g) has branching factor ρ.

In what sense is a function with branching factor O(1/p) similar to a junta? If f is a junta and
y ∼ µ1/2, then f(y) is the sum of a bounded number of coefficients of the y-expansion of f . Let us call

such a coefficient live. In other words, the coefficients left alive by S are all f̃(S) for which yS = 1.
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We want a similar property to hold for a function f with respect to an input y ∼ µp for small p. As
a first approximation, we need the expected number of live coefficients to be bounded. If deg f = d then
the expected number of live coefficients is

d∑
e=0

peNe, where Ne = |{|S| = e : f̃(S) 6= 0}|.

This sum is bounded if Ne = O(1/pe) for all e. A drawback of this definition is that it is not closed
under substitution: if the expected number of live coefficients of f is bounded, this doesn’t guarantee
the same property for f |yi=1. For example, consider the function

f = y0(y1 + · · ·+ y1/p2).

While the expected number of live coefficients is p2/p2 = 1, if we substitute y0 = 1 then the expected
number of live coefficients jumps to p/p2 = 1/p. The recursive nature of the definition of branching
factor guarantees that this cannot happen.

Functions with branching factor O(1/p) also have several other desirable properties, such as the large
deviation bound proved in Section 7, and Lemma 3.4 below.

In the rest of this section we prove several elementary properties of the branching factor. We start
by estimating the branching factor of a sum or product of functions.

Lemma 3.2. Suppose that ϕ1, ϕ2 have degree d and branching factor ρ. Then ϕ1ϕ2 and ϕ1 + ϕ2 have
branching factor O(ρ), where the hidden constant depends on d.

Proof. The claim about ϕ1 + ϕ2 is obvious, so let us consider ϕ = ϕ1ϕ2. Given A, e, we have to show
that the number of non-zero coefficients in ϕ which extend A by e elements is O(ρe).

If ϕ̃(B) 6= 0 then B = B1 ∪ B2 for some B1, B2 such that ϕ̃i(Bi) 6= 0. Let B1 = A1 ∪ C1 ∪ F
and B2 = A2 ∪ C2 ∪ F , where A1 ∪ A2 = A, and C1, C2, F are disjoint and disjoint from A, so that
|C1 ∪ C2 ∪ F | = e. Denote the sizes of C1, C2, F by c1, c2, f .

There are O(1) options for A1, A2. Given A1, there are at most ρc1+f non-zero coefficients in ϕ1

extending A1 by c1 + f elements, and for each such extension, there are O(1) options for F . Given
A2, F , there are at most ρc2 non-zero coefficients in ϕ2 extending A2 ∪ F by c2 elements. In total, we
deduce that for each of the O(1) choices of c1, c2, f , the number of non-zero coefficients extending A by
e elements is O(1) · ρc1+f ·O(1) · ρc2 = O(ρe).

As mentioned above, substitution has a bounded effect on the branching factor.

Lemma 3.3. If H has branching factor ρ then H|A=∅ has branching factor 2|A|ρ.

Proof. It’s enough to prove the theorem when A = {i}. Let B, k be given. We will show that the number
of hyperedges in H|i=∅ extending B by k elements is at most (2ρ)k. If k = 0 then this is clear. Otherwise,
for each such hyperedge e, either e or e+ i belongs in H. The former case includes all hyperedges of H
extending B by k elements, and the latter all hyperedges of H extending B + i by k elements. Since H
has branching factor ρ, we can upper bound the number of hyperedges by 2ρk ≤ (2ρ)k.

One of the crucial properties of functions with branching factor O(1/p) is that given that a certain
y-coefficient is live, there is constant probability that no other y-coefficient is live.

Lemma 3.4 (Uniqueness). Suppose that ϕ has branching factor O(1/p) and degree d = O(1), where
p ≤ 1/2. For every B, the probability that yB = 1 and yA = 0 for all A * B in the support of ϕ is
Ω(p|B|).

Proof. Let H be the hypergraph formed by the support of ϕ (that is, C is a hyperedge if ϕ̃(C) 6= 0). Given
that yB = 1, the probability that yA = 0 for all A * B is exactly equal to PrS∼µp [(H|B=1 \ {∅})|S = ∅].
Lemma 3.3 shows that H|B=1 has branching factor O(1/p), and so it has O(p−e) hyperedges of size e.
The probability that each such edge survives is 1 − pe, and so the FKG lemma shows that given that
yB = 1, the probability that yA = 0 for all A * B is at least

d∏
e=1

(1− pe)O(p−e) = Ω(1).

This completes the proof, since Pr[yB = 1] = p|B|.
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4 Generalized Kindler–Safra theorem to A-valued functions

In this section, we prove the following generalization of Kindler-Safra to quantized function (i.e, A-valued
functions for some finite set A). Everything that follows holds with respect to µp for fixed p ∈ (0, 1). All
hidden constants depend continuously on p.

Theorem 4.1. For all integers d and finite sets A the following holds. If f : {0, 1}n → R is a degree d
and ε := E[dist(f,A)2] then f is O(ε)-close to a degree d function g : {0, 1}n → A.

We start with the following easy claim which is an easy consequence of the Nisan-Szegedy theorem
(Theorem 2.1).

Claim 4.2. For all integers d and finite sets A there exists M such that the following holds. If
f : {0, 1}n → A has degree d then f depends on at most M coordinates.

Proof. For all a ∈ A, define

fa =
∏
b 6=a

f − b
a− b

.

The function fa has degree at most d(|A|−1) and is Boolean, and so it depends on at mostM0 coordinates.
Since

f =
∑
a∈A

afa,

we see that f depends on at most M0|A| coordinates.

Suppose we are dealing with degree d functions which are close to some finite setA (ie., E[dist(h,A)2] =
O(ε)) and we wish to show that ‖h‖2 = O(ε). The following trick (using hypercontractivity Theorem 2.2)
shows that is suffices to show ‖h‖2 = O(εα) for some α < 1.

Claim 4.3. Fix an integer d, a finite set A, and an exponent α < 1. If h : {0, 1}n → R is a degree d
function satisfying E[dist(h,A)2] = O(ε) and ‖h‖2 = O(εα) then ‖h‖2 = O(ε).

Proof. We can assume that ε ≤ 1, since otherwise the theorem is trivial. Similarly, we can assume that
0 ∈ A, since adding 0 can only decrease E[dist(h,A)2].

Let z ∈ A denote the element of A closest to h. Then

O(ε) ≥ E[dist(h,A)2] ≥ E[h21z=0] = E[h2]− E[h21z 6=0].

If z 6= 0 then z = Ω(1), and so h2 = O(hk) for any integer k ≥ 2. In particular, for k = d2/αe, this shows
that

E[h21z 6=0] = O(E[hk]) = O(‖h‖kk) = O(‖h‖k2) = O(εk(α/2)) = O(ε),

using hypercontractivity and ε ≤ 1. It follows that E[h2] = O(ε).

Corollary 4.4. Fix an integer d, finite sets A,B, and an exponent α < 1. If f, g : {0, 1}n → R are
degree d functions satisfying E[dist(f,A)2] = O(ε), E[dist(g,B)2] = O(ε), and ‖f − g‖2 = O(εα), then
‖f − g‖2 = O(ε).

Proof. Let h = f − g. The L2
2 triangle inequality shows that E[dist(h,A − B)2] = O(ε). Also, ‖h‖2 =

O(εα). The lemma therefore shows that ‖h‖2 = O(ε).

We now generalize the Kindler–Safra theorem to the A-valued setting, using the decomposition of
Claim 4.2 and thus prove Theorem 4.1

Proof of Theorem 4.1. Pick some arbitrary a ∈ A and arbitrary constant ε0 > 0. The L2
2 triangle

inequality shows that ‖f − a‖2 = O(1 + ε). If ε > ε0, the conclusion of the theorem is trivially satisfied
with g = a. Therefore from now on we assume that ε ≤ ε0.

For a ∈ A, define

fa(x) =
∏
b 6=a

f(x)− b
a− b

.

8



Also, let y(x) ∈ A be the element in A closest to f(x), and let δ(x) := (f(x)−y(x)). Note dist(f(x), A) =
|δ(x)|. We will usually drop the argument x from all these functions. Finally, define m = |A| − 1.

Our first goal is to bound dist(fa, {0, 1}) in terms of δ. Let δ0 > 0 be a small constant. We consider
two cases. If y 6= a then

dist(fa, {0, 1}) ≤ |fa| =
|δ|
|y − b|

∏
b6=a,y

|y − b+ δ|
|a− b|

.

If |δ| ≤ δ0 then dist(fa, {0, 1}) = O(|δ|), and otherwise dist(fa, {0, 1}) = O(|δ|m). If y = a then

dist(fa, {0, 1}) ≤ |fa − 1| =

∣∣∣∣∣∣
∏
b6=a

∣∣∣∣1 +
δ

a− b

∣∣∣∣− 1

∣∣∣∣∣∣ .
Once again, if |δ| ≤ δ0 then dist(fa, {0, 1}) = O(|δ|), and otherwise dist(fa, {0, 1}) = O(|δ|m).

We can now obtain a rough bound on E[dist(fa, {0, 1})2] by considering separately the cases |δ| ≤ δ0
and |δ| > δ0. The first case is simple:

E[dist(fa, {0, 1})21|δ|≤δ0 ] ≤ O(E[δ2]) = O(ε).

For the second case, we use Cauchy–Schwartz and the bound Pr[δ2 ≥ δ2
0 ] = O(ε) (recall δ0 is a constant):

E[dist(fa, {0, 1})21|δ|≥δ0 ] ≤
√

E[δ2m]O(
√
ε).

Let C := 2 maxa∈A |a|. If |f | ≥ maxa∈A |a| then clearly |δ| ≤ |f |, and otherwise |δ| ≤ |f |+ maxa∈A |A| ≤
C. Therefore it always holds that |δ| ≤ max(C, |f |). This shows that

E[δ2m] ≤ C2m + E[f2m] = O(1) + ‖f‖2m2m.

Since deg f = d, we have ‖f‖2m = O(‖f‖2). The L2
2 triangle inequality shows that ‖f‖22 = O(maxa∈A |a|+

ε) = O(1), and in total this case contributes O(
√
ε). We conclude that

E[dist(fa, {0, 1})2] = O(
√
ε).

The L2
2 triangle inequality also allows us to bound ‖fa‖22 by O(1), by writing it as a polynomial in f

and bounding separately all the summands.
The Kindler–Safra theorem shows that fa is O(

√
ε)-close to a Boolean junta ga depending on the

variables Ja. If deg ga > d then ‖fa − ga‖2 ≥ ‖g>da ‖2 = Ω(1) (since there are finitely many options for
ga, up to the choice of Ja), and so ε = Ω(1). Choosing ε0 appropriately, we can assume that deg ga ≤ d.

Define now g =
∑
a∈A aga, and note that this is an A-valued junta of degree at most d. The L2

2

inequality shows that

‖f − g‖2 =

∥∥∥∥∥∑
a∈A

a(fa − ga)

∥∥∥∥∥
2

= O

(∑
a∈A
‖fa − ga‖2

)
= O(

√
ε).

The theorem now follows directly from Corollary 4.4 (with α = 1/2).

5 Main result: sparse juntas

In this section, we prove our main result, an analog of the Kindler-Safra theorem for all p ∈ (0, 1/2).

Theorem 5.1 (Restatement of Theorem 1.5). For every p ≤ 1/2 and f : {0, 1}n → R of degree d there
exists a function g : {0, 1}n → R of degree d that satisfies the following properties for ε := E[dist(f,A)2]:

1. ‖f − g‖2 = O(ε).

2. Pr[g /∈ A] = O(ε)

3. The coefficients of the y-expansion of g belong to a finite set (depending only on d,A).
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4. The support of g has branching factor O(1/p).

5. If x ∼ µp then g(x) is the sum of O(1) coefficients of g with probability 1−O(ε).

The following corollary (proved at the end of this section) for A-valued functions which have light
Fourier tails follows from the above the theorem.

Corollary 5.2. Let d ≥ 0 be any positive integer and A ⊆ R any finite set. For every p ≤ 1/2 and
F : {0, 1}n → A there exists a function g : {0, 1}n → R of degree d that satisfies the following properties
for ε := ‖F>d‖2:

1. ‖F − g‖2 = O(ε).

2. Pr[F 6= g] = O(ε).

3. All other properties of g (alone) stated in the theorem.

Given d and alphabet A, let p0 be the constant given by the agreement theorem Theorem 2.4. For
the rest of this section, we fix the constant d, set A and p0. All hidden constants will depend only on
d and A. For all the prelimary claims till the proof of Theorem 5.1, we further assume that p ≤ p0.
Finally, as in the hypothesis of the theorem, we assume f is a function from {0, 1}n to R of degree d
satisfying Eµp [dist(f,A)2] = ε

The main result of this section extends the generalized Kindler-Safra theorem Theorem 4.1, which
holds only for constant p, to all values of p via the agreement theorem Theorem 2.4. The idea is to
consider, for each subset S ⊂ [n], a “restriction” of f obtained by fixing the inputs outside S to be 0.
Namely, we define f |S : {0, 1}S → R by f |S(x) = f(x◦0S̄) where x◦0S̄ ∈ {0, 1}n is the input that agrees
with x on the coordinates of S and is zero outside of S. We will find an approximate structure for each
f |S , and then stitch them together using the agreement theorem Theorem 2.4. We start by applying
the generalized Kindler-Safra theorem to f |S for subsets S selected according to two constant values of
p (namely, p = 1/2 and p = 1/4).

Claim 5.3. For every set S ⊆ [n], let

εS := E
µ1/4

[dist(f |S , A)2], δS := E
µ1/2

[dist(f |S , A)2]

Then ES∼µ4p [εS ] = ES∼µ2p [δS ] = ε, and for every S there exist A-valued degree d juntas gS : {0, 1}S → A
and hS : {0, 1}S → A such that Eµ1/4

[(f |S − gS)2] = O(εS) and Eµ1/2
[(f |S − hS)2] = O(δS).

Proof. If S ∼ µ4p and x ∼ µ1/4(S) then x ∼ µp, and this explains why ES∼µ4p
[εS ] = ε. The fact that

Eµ1/4
[(f |S − gS)2] = O(εS) follows from the generalized Kindler-Safra theorem Theorem 4.1. The proof

of ES∼µ2p [δS ] = ε and Eµ1/2
[(f |S − hS)2] = O(δS).

Towards applying the agreement theorem Theorem 2.4, we need to prove that the collection of local
juntas {gS}S typically agree with each other. We do so by showing that typically gS1

and gS2
agree on

the intersection of their domains with hS1∩S2
. In the next claim, we show that if the pair of sets (S1, S2)

are chosen according to the distribution µ4p,1/2, then the two juntas gS1
and gS2

agree with hS1∩S2
with

probability 1 − O(ε). We will then apply the agreement theorem using majority decoding to obtain a
single degree d function g : {0, 1}n → R that explains most of the juntas gS .

Claim 5.4. For every set S ⊆ [n], let the y-expansion of the junta gS given in Claim 5.3 be as follows:

gS =
∑
T⊆S
|T |=d

dS,T yT .

For every |T | ≤ d, let dT be the plurality value of dS,T among all S ⊇ T (measured according to µ4p),
and define

g :=
∑
|T |≤d

dT yT .

Then PrS∼µ4p
[gS = g|S ] = 1−O(ε), and so Prµp [g ∈ A] = 1−O(ε).
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Proof. To apply the agreement theorem we would like to first bound the probability PrS1,S2∼µ4p,1/2
[gS1
|S1∩S2

6=
gS2
|S1∩S2

] when the pair of sets (S1, S2) are chosen according to µ4p,1/2. Now for (S1, S2) ∼ µ4p,1/2, let
T := S1 ∩ S2. Notice that S1, S2 ∼ µ4p, while T ∼ µ1/2(S1). Consider the three juntas gS1

, gS2
and hT .

Clearly, if gS1
|T 6= gS2

|T then one of gS1
|T 6= hT or gS2

|T 6= hT must hold. Thus,

Pr
S1,S2∼µ4p,1/2

[gS1 |S1∩S2 6= gS2 |S1∩S2 ] ≤ 2 Pr
S∼µ4p

T∼µ1/2(S)

[gS |T 6= hT ] (1)

Thus, it suffices to bound the probability PrS,T [gS |T 6= hT ] where S ∼ µ4p and T ∼ µ1/2(S).
For any T ⊆ S ⊆ [n], the L2

2 triangle inequality shows that,

E
µ1/2

[(gS |T−hT )2] ≤ 2 E
µ1/2

[(gS |T−f |T )2]+2 E
µ1/2

[(f |T−hT )2] = 2 E
µ1/2

[(gS |T−f |T )2]+O( E
µ1/2

[dist(f |T , A)2]).

Taking expectation over T ∼ µ1/2(S), we see that

E
T∼µ1/2(S)

E
µ1/2

[(gS |T − hT )2] ≤ 2 E
µ1/4

[(gS − f |S)2] +O( E
µ1/4

[dist(f |S , A)2]) = O( E
µ1/4

[dist(f |S , A)2]).

Here we used the fact that if T ∼ µ1/2(S) and x ∼ µ1/2(T ) then x ∼ µ1/4(S).
Both gS |T and hT are A-valued degree d juntas (see Claim 4.2). Hence either they agree, or

Eµ1/2
[(gS |T − hT )2] = Ω(1). Therefore

Pr
T∼µ1/2(S)

[gS |T 6= hT ] = O( E
µ1/4

[dist(f |S , A)2]) = O(εS).

Now, taking expectation over S ∼ µ4p, we obtain via Claim 5.3

Pr
S∼µ4p

T∼µ1/2(S)

[gS |T 6= hT ] = ES∼µ4p
[O(εS)] = O(ε).

We now return to (1), to conclude that

Pr
S1,S2∼µ4p,1/2

[gS1
|S1∩S2

6= gS2
|S1∩S2

] = O(ε).

We have thus satisfied the hypothesis of the agreement theorem (Theorem 2.4). Invoking the agree-
ment theorem, we deduce that PrS∼µ4p

[gS = g|S ] = 1−O(ε). Since gS is A-valued,

Pr
µp

[g ∈ A] ≥ Pr
S∼µ4p

x∼µ1/4(S)

[g(x) = gS(x)] ≥ Pr
S∼µ4p

[g|S = gS ] = 1−O(ε).

We have thus constructed the function g indicated in the Theorem 5.1 and shown that Prµp [g /∈ A] =
O(ε). In the remaining claims, we show the other properties of g mentioned in Theorem 5.1.

First, we observe that since the gS are juntas, the coefficients dS,T , and so dT , belong to a finite set
depending only on d,A. We can easily deduce an upper bound on the support of g.

Claim 5.5. The function g from Claim 5.4 has branching factor O(1/p).

Proof. Let R, e be given. We want to show that the number of B ⊇ R such that |B| = |R| + e and
dB 6= 0 is O(p−e). Let us denote by B = {B ⊇ R : |B \R| = e} the collection of all such potential B.

Let gS be the functions from Claim 5.3. Recall that gS =
∑
B dS,ByB . Since gS is a junta (by

Claim 4.2),
∑
B d

2
S,B = O(1). Therefore

E
S∼µ4p

S⊇R

∑
B∈B
B⊆S

d2
S,B

 = O(1).

Given that S contains R, the probability that it also contains a specific B ∈ B is (4p)|B|−|S| = (4p)e,
and so ∑

B∈B
E

S∼µ4p

S⊇B

[d2
S,B ] = O(p−e).
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Since there are only finitely many possible values for dS,B (since gS is an A-valued junta) and we chose
dB as the plurality value, the inner expectation is Ω(d2

B), and so∑
B∈B

d2
B = O(p−e).

Again due to the finitely many possible values for dB , each non-zero d2
B is Ω(1). We conclude that the

number of non-zero dB for B ∈ B is O(p−e), as needed.

Our next step is to consider an auxiliary function derived from g.

Lemma 5.6. Let g be the function from Claim 5.4, and define

G =
∏
a∈A

(g − a).

Then G satisfies the following properties:

1. G has branching factor O(1/p).

2. Prµp [G = 0] = 1−O(ε).

3. The number of sets B of size e such that G̃(B) 6= 0 is O(p−eε).

4. Eµp [G2] = O(ε).

Proof. The first property follows from Claim 5.5 via Lemma 3.2, and the second from Claim 5.4.
For the third property, we start by bounding the number Ne of sets B of size e such that G̃(B) 6= 0

but G̃(R) = 0 for all R ( B. For each such B, Lemma 3.4 shows that the probability that yB = 1 and
yC = 0 for all other C in the support of G is Ω(pe). If this event happens, then G = G̃(B) 6= 0. Since
these events are disjoint, we deduce that Pr[G 6= 0] = Ω(peNe), which implies that Ne = O(p−eε).

We can associate with each B of size e such that G̃(B) 6= 0 a subset B′ ⊆ B such that G̃(B′) 6= 0
but G̃(R) = 0 for all R ( B. For each e′ ≤ e, there are Ne′ = O(p−e

′
ε) options for the set B′. Since

G has branching factor O(1/p), the set B′ has O(p−(e−e′)) extensions of size e in the support of G. In
total, for each e′ there are O(p−e

′
ε) ·O(p−(e−e′)) = O(p−eε) sets B with |B′| = e′. Considering the e+ 1

possible values of e′, we deduce the third property.
For the fourth property, write

G2 =
∑
B

yB
∑

B1∪B2=B

G̃(B1)G̃(B2).

Lemma 2.3 implies that |G̃(B)| = O(1) (recalling that the coefficients dB of g belong to a finite set
depending only on d,A, due to Claim 4.2). Denoting by Me the number of pairs B1, B2 such that
G̃(B1), G̃(B2) 6= 0 and |B1 ∪ B2| = e, it follows that E[G2] = O(

∑
e p

eMe). Since the sum contains
finitely many terms (degG ≤ d|A|), the fourth property will follow if we show that Me = O(p−eε).

Given e, it remains to bound the number of pairsB1, B2 such that G̃(B1), G̃(B2) 6= 0 and |B1∪B2| = e.
For each e1, e2, e∩, we will count the number of such pairs with |Bi| = ei and |B1 ∩B2| = e∩. The third
property shows that there are O(p−e1ε) many choices for B1. For each such B1, there are O(1) many
choices for B1 ∩B2, and given B1 ∩B2, the first property shows that there are O(p−(e2−e∩)) choices for
B. In total, there are O(p−e1ε) · O(1) · O(p−(e2−e∩)) = O(p−(e1+e2−e∩)ε) = O(p−eε) choices for B1, B2.
The fourth property follows since there are O(1) many choices for e1, e2, e∩.

Using the function G, we can finally compare f and g.

Lemma 5.7. Let g be the function from Claim 5.4. Then ‖f − g‖2 = Eµp [(f − g)2] = O(ε).

Proof. Let F = round(f,A), and let gS , g,G be the functions defined in Claim 5.3, Claim 5.4, and
Lemma 5.6. We have

E
µp

[(F − g)2] = E
S∼µ4p

E
µ1/4

[(F |S − g|S)2] =

E
S∼µ4p

E
µ1/4

[(F |S − g|S)21g|S=gS ]︸ ︷︷ ︸
ε1

+ E
S∼µ4p

E
µ1/4

[(F |S − g|S)21g|S 6=gS ]︸ ︷︷ ︸
ε2

.
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Claim 5.3 allows us to estimate ε1, using the L2
2 triangle inequality:

ε1 = E
S∼µ4p

E
µ1/4

[(F |S − gS)2] ≤ 2 E
S∼µ4p

E
µ1/4

[(F |S − f |S)2] + 2 E
S∼µ4p

E
µ1/4

[(f |S − gS)2] =

2 E
µp

[(F − f)2] + 2 E
S∼µ4p

[εS ] = O(ε) +O(ε) = O(ε).

We estimate ε2 by truncation. Since x2 = O(
∏
a∈A(x − a)2) as x → ∞, we can find constants

M,C > 0 (depending only on A) such that if |x| ≥M then x2 ≤ C
∏
a∈A(x− a)2. Let g = g≤M + g>M ,

where g≤M = g1|g|≤M . The L2
2 triangle inequality shows that

ε2 ≤ 2 E
S∼µ4p

E
µ1/4

[(F |S − g≤M |S)21g|S 6=gS ]︸ ︷︷ ︸
ε2,1

+2 E
S∼µ4p

E
µ1/4

[g>M |2S1g|S 6=gS ]︸ ︷︷ ︸
ε2,2

.

Because both F and g≤M are bounded, we can estimate ε2,1 by

ε2,1 = O( Pr
S∼µ4p

[g|S 6= gS ]) = O(ε),

using Claim 5.4. The defining property of M shows that

ε2,2 ≤ C E
S∼µ4p

E
µ1/4

[G|2S ] = O(E
µp

[G2]) = O(ε),

using the fourth property of Lemma 5.6. Altogether, we deduce that Eµp [(F − g)2] = O(ε). Since
Eµp [(F − f)2] = ε by definition, the L2

2 triangle inequality completes the proof.

We can now prove our main theorem. Recall that the statement of the theorem does not make any
assumptions on p though all the above claims use the fact that p ≤ p0.

Proof of Theorem 5.1. Suppose that p ≤ p0, and let g be the function constructed in Claim 5.4. The
first property follows from Lemma 5.7. The second property follows from Claim 5.4. The third property
follows from the definition of g. The fourth property follows from Claim 5.5. Finally, Claim 5.4 shows
that PrS∼µ4p

[g|S = gS ] = 1 − O(ε). Hence if we choose S ∼ µ4p and x ∼ µ1/4(S) (so that x ∼ µp), we
get that g(x) = gS(x) with probability 1−O(ε), implying the fifth property since gS is a junta.

When p ∈ [p0, 1/2], we choose g using the generalized Kindler–Safra theorem, Theorem 4.1, guaran-
teeing the first property (we use the fact that the big O constant varies continuously with p). Claim 4.2
shows that g is an A-valued junta, implying all the other properties.

Corollary 5.2 is proved along similar lines.

Proof of Corollary 5.2. Apply the theorem to f := F≤d, which satisfies E[dist(f,A)2] = ε. The L2
2

triangle inequality shows that ‖F − g‖2 ≤ 2‖F − f‖2 + 2‖f − g‖2 = O(ε). For the second property,

Pr[F 6= g] ≤ Pr[g /∈ A] + Pr[F 6= g and g ∈ A] = Pr[F 6= g and g ∈ A] +O(ε).

When g(x) ∈ A, if F (x) 6= g(x) then (F (x)− g(x))2 = Ω(1). Therefore

Pr[F 6= g and g ∈ A] = E
µp

[1F 6=g and g∈A] ≤ E
µp

[(F − g)2] = O(ε).

Altogether we get that Pr[F 6= g] = O(ε). All other properties are inherited from the theorem.

6 A converse to the main result

Given a degree d function f such that E[dist(f,A)2] = ε, Theorem 5.1 gives a function g such that
‖f − g‖2 = O(ε) and:

• deg g ≤ d

• g has branching factor O(1/p).
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• Pr[g /∈ A] = O(ε).

• The coefficients of the y-expansion of g belong to some finite set depending only on d,A.

In this short section, we show that a function g satisfying these properties also satisfies E[dist(g,A)2] =
ε, and in this sense Theorem 5.1 is a complete characterization of degree d functions close (in L2) to A.

Lemma 6.1. Fix d ≥ 0 and finite sets A,B. Suppose that g satisfies the following properties, for some
small enough p:

• deg g ≤ d

• g has branching factor O(1/p).

• Pr[g /∈ A] = ε.

• The coefficients of the y-expansion of g belong to B.

Then E[dist(g,A)2] = O(ε).

Proof. The first step is to apply the argument of Lemma 5.6. This lemma defines

G =
∏
a∈A

(g − a),

and proves that E[G2] = O(ε), using only the listed properties.
Since dist(x,A)2 = O(

∏
a∈A(x− a)2), there exists M such that dist(g,A)2 ≤ G2 whenever |g| ≥ M .

For an arbitrary a ∈ A we have

E[dist(g,A)2] = E[dist(g,A)21g/∈A,|g|≤M ] + E[dist(g,A)21g/∈A,|g|≥M ] ≤
(M + |a|)2 Pr[g /∈ A] + E[G2] = O(ε).

7 Applications

Our main theorem, Theorem 5.1, describes the approximate structure of degree d functions which are
close in L2

2 to a fixed finite set (“almost quantized functions”): all such functions are close to sparse
juntas. This allows us to deduce properties of bounded degree almost quantized functions from properties
of sparse juntas.

We give two examples of applications of this sort in this section: we prove a large deviation bound,
and we show that when p is small, every bounded degree almost quantized function must be very biased.

7.1 Large deviation

Our first application is a large deviation bound, proved via estimating moments. We start by analyzing
the simpler case of hypergraphs.

Lemma 7.1. Let H be a d-uniform hypergraph with branching factor C/p. For S ∼ µp, let X be the
number of hyperedges in H|S. For all integer k,

E[Xk] ≤ (Ckd)kd.

Proof. Let e1, . . . , ek be a k-tuple of hyperedges. We can consider the hypergraph whose vertices are
e1 ∪ · · · ∪ ek and whose hyperedges are e1, . . . , ek. This is a hypergraph on at most kd vertices which we
call a pattern. We can crudely upper bound the number of patterns by (kd)kd.

Let P be a pattern on m = m(P ) vertices. Our goal is to show that the number of k-tuples
of hyperedges conforming to this pattern is at most (C/p)m. Suppose that we have already chosen
e1, . . . , ei−1, and suppose that ti = |ei \ (e1 ∪ · · · ∪ ei−1)|. Since H has branching factor C/p, there are
at most (C/p)ti choices for ei. In total, the number of k-tuples is at most (C/p)t1+···+tk = (C/p)m.

We can estimate the kth moment by

E[Xk] =
∑

e1,...,ek

Pr[e1 ∪ · · · ∪ ek ⊆ S] =
∑

e1,...,ek

p|e1∪···∪ek| ≤
∑
P

pm(P )(C/p)m(P ) ≤ (Ckd)kd.

14



This implies a large deviation bound for hypergraphs.

Lemma 7.2. Let H be a d-uniform hypergraph with branching factor C/p. For S ∼ µp, let X be the
number of edges in H|S. For large enough t,

Pr[X ≥ t] = exp−Ω(t1/d/C).

Proof. Let k = t1/d/(eCd). We perform the calculation under the assumption that k is an integer; in
general k should be taken to be bt1/d/(eCd)c, but the difference disappears for large t.

Lemma 7.1 shows that E[Xk] ≤ (t1/d/e)kd = tk/ekd, and so Markov’s inequality shows that Pr[Xk ≥
tk] ≤ tk/E[Xk] = e−kd. The lemma follows since kd = t1/d/(eC).

These two results also apply, with minor changes, to functions with bounded coefficients.

Lemma 7.3. Let f be a degree d function with branching factor C/p, the coefficients of whose y-expansion
are bounded in magnitude by M . For all integer k ≥ 1,

E[|f |k] ≤Mk(2Ckd)kd.

Proof. Let H be the support of f . The triangle inequality shows that at a given point S, the value of
|f |k is bounded by Mk times the number of k-tuples e1, . . . , ek ∈ H such that e1, . . . , ek ⊆ S. We can
then run the argument of Lemma 7.1 as written, the only difference being that now the hyperedges have
at most d vertices. This increases the number of patterns to at most (say) (kd+ 1)kd ≤ (2kd)kd.

Lemma 7.4. Let f be a degree d function with branching factor C/p, the coefficients of whose y-expansion
are bounded in magnitude by M . For large enough t,

Pr[|f | ≥Mt] = exp−Ω(t1/d/C).

Proof. This lemma follows from Lemma 7.3 just as Lemma 7.2 follows from Lemma 7.1.

Applying our main theorem, we deduce a large deviation bound for bounded degree almost quantized
functions.

Corollary 7.5 (Restatement of Lemma 1.6). Fix an integer d and a finite set A. Suppose that
f : {0, 1}n → R is a degree d function satisfying E[dist(f,A)2] = ε with respect to µp for some p ≤ 1/2.
For large enough t,

Pr[|f | ≥ t] ≤ exp−Ω(t1/d) +O(ε/t2).

Proof. Theorem 5.1 shows that there exists a function g satisfying the conditions of the lemma such that
‖f − g‖2 = O(ε). If |f | ≥ t then either |f − g| ≥ t/2 or |g| ≥ t/2. The corollary follows from Markov’s
inequality and the lemma.

7.2 Distance from being constant

Suppose that f is a bounded degree A-valued function. How does the empirical distribution of f under
µp look like, for small p? Claim 4.2 shows that f is a junta. All coordinates it depends upon are zero
with probability (1− p)O(1) = 1−O(p), and so for small p the empirical distribution of f is very biased.

What happens when f is just close to being A-valued? Consider for example the function f =
y1 + · · ·+ yc/p, for some small c. The empirical distribution of f is close to Poisson with expectation c,
and so Pr[f = 0] ≈ e−c ≈ 1− c, Pr[f = 1] ≈ e−cc ≈ c− c2, and so Pr[f /∈ {0, 1}] ≈ c2. Taking c =

√
ε,

we see that f is ε-close to {0, 1}, but only
√
ε-biased (that is, the most probable element in the range

is attained with probability roughly 1 −
√
ε). We think of ε as a “small constant” much larger than

p, and this shows that almost {0, 1}-valued functions can be much less biased than truly {0, 1}-valued
functions.

In this section our goal is to estimate how biased can bounded degree almost quantized functions be.
We start by analyzing the situation for sparse juntas.
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Lemma 7.6 (Restatement of Lemma 1.7). Fix a constant d ≥ 0 and a finite set A. There exist constants
C, ε0 > 0 such that for all p ≤ 1/41 and ε ≤ ε0, the following holds.

Suppose that g : {0, 1}n → R is a degree d function with branching factor O(1/p) such that Pr[g /∈
A] = ε. Then there exists a ∈ A such that Pr[g 6= a] = O(εC + p).

Proof. Lemma 3.4 shows that Pr[g = g̃(∅)] = Ω(1). Choosing ε0 small enough, we can guarantee that
g̃(∅) ∈ A.

Denote a := g̃(∅) and δ := Pr[g 6= a]. Let Se = {|B| = e : g̃(B) 6= 0}. If g 6= a then yB 6= 0 for some

B such that g̃(B) 6= 0, and this shows that δ ≤
∑d
e=1 p

e|Se|. Therefore there exists 1 ≤ e ≤ d such that
|Se| ≥ δp−e/d.

Let M be the constant from Claim 4.2. We will show that either there exist constants L,C > 0 such
that either δ = O(p) or

Pr
S∼µ2p

[g|yS=1 depends on more than M and at most L coordinates] = Ω(δC).

If g|yS=1 depends on more than M coordinates then it cannot be A-valued. If it also depends on at most
L coordinates, the probability (with respect to µ1/2) that it is not A-valued is Ω(1). Hence

Pr[g /∈ A] = Pr
S∼µ2p

x∼µ1/2(S)

[g(x) /∈ A] ≥ Ω
(

Pr
S∼µ2p

[g|yS=1 depends on > M and ≤ L coordinates]
)

= Ω(δC),

as claimed.

Let M0 be a constant such that M0 distinct hyperedges of cardinality at most d span more than
M vertices. Note that M0 such hyperedges also span at most L := dM0 vertices. If |Se| < M0 then
δ = O(pe) = O(p), so we can assume that |Se| ≥M0.

Consider the collection S of all M0-tuples of hyperedges from |Se|. Since |Se| ≥ M0, we have
|S| = Ω(|Se|M0) = Ω(δM0p−eM0). For each M0-tuple of hyperedges, we can consider the set of vertices
contained in these hyperedges. Let V denote the collection of all such sets of vertices formed from S.
Since every set in S can be obtained from O(1) tuples of V, we have |V| = Ω(δM0p−eM0). Every set in
V contains at most eM0 vertices.

For every U ∈ V, Lemma 3.3 shows that g|yU=1 has branching factor O(1/p). Hence Lemma 3.4
shows that when S ∼ µ2p, with probability Ω((2p)|U |) = Ω(peM0) the vertex support of g|yS=1 contains
no vertex outside of U . In fact, since U is the set of vertices contained in an M0-tuple of hyperedges, the
vertex support of g|yS=1 is exactly U , and so g|yS=1 depends on more than M and at most L coordinates.
The corresponding events for different U are disjoint, and we conclude that

Pr
S∼µ2p

[g|yS=1 depends on > M and ≤ L coordinates] = Ω(peM0)|V| = Ω(peM0) · Ω(δM0p−eM0) = Ω(δM0),

completing the proof.

Applying Corollary 5.2, we obtain a similar result for bounded degree almost quantized functions.

Corollary 7.7. Fix a constant d ≥ 0 and a finite set A. There exists constant C, ε0 > 0 such that for
all p ≤ 1/4 and ε ≤ ε0, the following holds.

Suppose that f : {0, 1}n → R is a degree d function satisfying E[dist(f,A)2] = ε. Then there exists
a ∈ A such that Pr[round(f,A) 6= a] = O(εC).

Proof. Let F = round(f,A). Corollary 5.2 shows that there exists a degree d function g : {0, 1}n → R
which has branching factor O(1/p) and satisfies Pr[g /∈ A] = O(ε) and Pr[F 6= g] = O(ε). The lemma
shows that Pr[g 6= a] = O(εC) for some a ∈ A, and the corollary follows.

Discussion What is the correct exponent of ε? Let us focus on A = {0, 1}. Let n = δ/p, and consider
the function

fd =
∑
i1

yi1 −
∑
i1<i2

yi1yi2 + · · · ±
∑

i1<···<id

yi1 . . . yid .

1This constant is arbitrary. Any constant less than 1 can be used.
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When exactly m of the coordinates are 1, we have

fd =

d∑
e=1

(−1)e−1

(
m

e

)
= 1−

d∑
e=0

(−1)e
(
m

e

)
.

When m ≤ d, we have

fd = 1−
m∑
e=0

(−1)e
(
m

e

)
= 1− (1− 1)m =

{
0 if m = 0,

1 otherwise.

When m = d+ 1, we have

fd = 1−
m∑
e=0

(−1)e
(
m

e

)
+ (−1)m

(
m

m

)
= 1− (1− 1)m + (−1)m =

{
0 if d is even,

2 if d is odd.

For small p, the distribution of m is roughly Poisson with expectation δ, and so for small δ:

• Pr[fd = 0] ≥ Pr[m = 0] ≈ e−δ ≈ 1− δ.

• When d is odd, Pr[fd /∈ {0, 1}] ≤ Pr[m > d] ≈ Pr[m = d+ 1] ≈ e−δ δd+1

(d+1)! ≈
δd+1

(d+1)! .

• When d is even, Pr[fd /∈ {0, 1}] ≤ Pr[m > d+ 1] ≈ Pr[m = d+ 2] ≈ e−δ δd+2

(d+2)! ≈
δd+2

(d+2)! .

This shows that a degree d function which is ε-close to A can be Ω(ε1/(d+1))-far from constant, and
even Ω(ε1/(d+2))-far when d is even. When d = 1, the sparse FKN theorem [Fil16] shows that the
exponent 1/2 is tight.

8 New proof of classical Kindler–Safra theorem

In this section we give a self-contained proof of the Kindler–Safra theorem in the µ1/2 setting. The proof
can easily be extended to the µp setting for any constant p. Our functions are on the domain {±1}n,
and we denote their inputs by x1, . . . , xn ∈ {±1}.

When we write x ∼ {±1}n, we always mean that x is chosen according to the uniform distribution
over {±1}n.

8.1 A-valued FKN theorem

As a prerequisite for our proof of the Kindler–Safra theorem, we need to extend the FKN theorem to
the A-valued setting. Our proof closely follows the proof in Kindler’s thesis [Kin03]. In contrast to the
classical FKN theorem, in which the approximating functions are dictators, in the A-valued setting we
only get juntas. Indeed, if A = {0, 1, . . . , a} then the function

∑a
i=1

1+xi
2 is A-valued.

We start by identifying the junta variables.

Lemma 8.1. Fix a finite set A. Let f : {±1}n → R be a degree 1 function satisfying E[dist(f,A)2] = ε.

There exists a constant m > 0 (depending on A) such that f̂(i)2 ≥ mε for at most |A| − 1 many

coefficients f̂(i).

Proof. Let m = 2|A|+1, and let J0 = {i : f̂(i)2 ≥ mε}. Our goal is to show that |J0| < |A|. If not, we
can choose a subset J ⊆ J0 of size exactly |A|. There is an assignment α to the coordinates outside J
such that E[dist(f |α, A)2] ≤ ε. This implies that for some c,

E[dist(
∑
i∈J

f̂(i)xi + c, A)2] ≤ ε.

We can assume, without loss of generality, that f̂(i) > 0 for all i ∈ J (otherwise, we can define
a new function obtained from f by flipping the appropriate inputs). Assume also, for simplicity, that
J = {1, . . . , |A|}. For 0 ≤ i ≤ |A|, define

vi = c+

i−1∑
j=0

f̂(j)−
|A|∑
j=i

f̂(j).
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For every 0 ≤ i ≤ |A|, let ai = round(vi, A). Since vi − vi−1 = 2f̂(i) > 0, we can assume that ai ≥ ai−1.
By assumption, |vi−ai|2 ≤ 2|J|ε = 2|A|ε for all i. If ai = ai−1, then this implies that (vi−vi−1)2 ≤ 2|A|+2ε

(using the L2
2 triangle inequality), which contradicts the upper bound, (vi − vi−1)2 = 4f̂(i)2 ≥ 4mε =

2|A|+3ε. We conclude that ai > ai−1, and so a0 < a1 < · · · < a|A|. However, this is impossible, since A
contains only |A| elements. This contradiction shows that |J0| < |A|.

The idea now is to truncate f to its junta part, and to show that the noisy part has small norm. We
do this in an inductive fashion, using the following lemma.

Lemma 8.2. Fix a finite set A, and let m be the constant from Lemma 8.1. There exists a constant
ε0 > 0 (depending on A) such the following holds for all ε ≤ ε0.

If f : {±1}n → R is a degree 1 function satisfying V[f ] ≤ (2 + m)ε and E[dist(f,A)2] = ε, then in
fact V[f ] ≤ 2ε.

Proof. Markov’s inequality shows that each of the events (f − E[f ])2 ≤ 3(2 + m)ε and dist(f,A)2 ≤ 3ε
occurs with probability 2/3, and so there is a point at which both occur simultaneously. The L2

2 triangle
inequality implies that for some a ∈ A,

(E[f ]− a)2 ≤ 6(2 +m)ε+ 6ε = (18 + 6m)ε.

Let E denote the event that round(f,A) = a. Then

ε ≥ E[dist(f,A)21E ] = E[(f − a)21E ] = E[(f − a)2]− E[(f − a)21E ]︸ ︷︷ ︸
δ

.

When round(f,A) 6= a, necessarily (f − a)2 = ΩA(1), and so (f − a)2 = OA((f − a)4). This shows that

δ ≤ OA(E[(f − a)4]) = OA(‖f − a‖44)
(∗)
= OA(‖f − a‖42) = OA(E[(f − a)2]2),

using hypercontractivity in (∗). The L2
2 triangle inequality shows that

E[(f − a)2] ≤ 2V[f ] + 2(E[f ]− a)2 ≤ 2(2 +m)ε+ 2(18 + 6m)ε = (40 + 14m)ε.

Choosing ε0 small enough (as a function of A), we can guarantee that

ε ≥ E[(f − a)2](1−OA(40 + 14m)ε) ≥ 1

2
E[(f − a)2],

and so E[(f − a)2] ≤ 2ε. The lemma follows from the well-known inequality V[f ] ≤ E[(f − a)2].

We now carry out the induction.

Lemma 8.3. Fix a finite set A, and let m, ε0 be the constants from Lemma 8.2. The following holds for
all ε ≤ ε0.

Let f : {±1}n → R be a degree 1 function satisfying E[dist(f,A)2] = ε, let J = {i : f̂(i)2 ≥ mε}, and

define g = f̂(∅) +
∑
i∈J f̂(i)xi. Then ‖f − g‖2 ≤ 2ε.

Proof. Assume without loss of generality that J = {1, . . . , N} for some N < |A|. We will prove by

reverse induction on i ≥ N that
∑
j>i f̂(j)2 ≤ 2ε. The lemma will follow since ‖f − g‖2 =

∑
j>N f̂(j)2.

The base case i = n is obvious, so assume that
∑
j>i+1 f̂(j)2 ≤ 2ε for some i ≥ N . The definition of

J guarantees that
∑
j>i f̂(j)2 ≤ (2 +m)ε. Since E[dist(f,A)2] = ε, there must exist an assignment α to

x1, . . . , xi such that E[dist(f |α, A)2] ≤ ε. Then g = f |α satisfies E[dist(g,A)2] ≤ ε and V[g] ≤ (2 +m)ε.

Lemma 8.2 shows that V[g] ≤ 2ε, and so
∑
j>i f̂(j)2 ≤ 2ε.

To complete the proof, we need the following simple lemma.

Lemma 8.4. For every finite set A and every x, y we have (x−round(y,A))2 = O((x−y)2+dist(x,A)2).
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Proof. Let a = round(x,A) and b = round(y,A). If a = b then (x − b)2 = (x − a)2 = dist(x,A)2.
Otherwise, without loss of generality a < b. Note that x ≤ a+b

2 ≤ y. If |x − a| ≤ b−a
4 then |x − y| ≥

|x− a+b
2 | ≥

b−a
4 . Therefore (x−b)2 ≤ 2(x−a)2 +2(a−b)2 ≤ 2(x−a)2 +32(x−y)2. If |x−a| ≥ b−a

4 then
(x− b)2 ≤ 2(x− a)2 + 2(a− b)2 ≤ 34(x− a)2. (In both cases, we used the L2

2 triangle inequality.)

The main theorem easily follows.

Theorem 8.5. Fix a finite set A, and let f : {±1}n → R be a degree 1 function satisfying E[dist(f,A)2] =
ε. There exists a degree 1 function g : {±1}n → A, depending on at most |A| − 1 coordinates, such that
‖f − g‖2 = OA(ε).

Proof. Let ε0 be the constant from Lemma 8.3. Suppose first that ε ≤ ε0. The lemma defines a
set J of size at most |A| − 1 (according to Lemma 8.1) such that h := f̂(∅) +

∑
i∈J f̂(i)xi satisfies

‖f −h‖2 ≤ 2ε. Let g = round(h,A), which also depends only on the coordinates in J . Lemma 8.4 shows
that ‖f − g‖2 = O(‖f − h‖2 + E[dist(f,A)2]) = O(ε).

It remains to show that deg g ≤ 1. There are finitely many A-valued functions on |A|−1 coordinates.
Hence if g>1 6= 0 then g>1 = ΩA(1), and so ‖f − g‖2 ≥ ‖(f − g)>1‖2 = ‖g>1‖2 = ΩA(1). By possibly
reducing ε0, we can rule out this case, and so deg g ≤ 1.

If ε > ε0 then we take g = a for an arbitrary a ∈ A. The L2
2 triangle inequality shows that E[f2] ≤

2E[round(f,A)2] + 2E[dist(f,A)2] = OA(1 + ε). Another application of the triangle inequality shows
that E[(f − g)2] ≤ 2E[f2] + 2a2 = OA(1 + ε). Since ε ≥ ε0, in fact E[(f − g)2] = OA(1 + ε) = OA(ε).

Corollary 8.6. Fix a finite set A, and let F : {±1}n → A satisfy ‖F>1‖2 = ε. There exists a degree 1
function g : {±1}n → A, depending on at most |A| − 1 coordinates, such that ‖F − g‖2 = OA(ε) and
Pr[F 6= g] = OA(ε).

Proof. Let f = F≤1, which satisfies E[dist(f,A)2] ≤ E[(f − F )2] = ε. The theorem gives an A-valued
function g which depends on at most |A| − 1 coordinates and satisfies ‖f − g‖2 = OA(ε). The L2

2

triangle inequality shows that ‖F − g‖2 ≤ 2‖f − g‖2 + 2‖f − F‖2 = OA(ε). If F (x) 6= g(x) then
(F (x)− g(x))2 = ΩA(1), and so Pr[F 6= g] = E[1F 6=g] = OA(E[(F − g)2]) = OA(ε).

8.2 A-valued Kindler–Safra theorem

We now prove the A-valued Kindler–Safra theorem by induction on the degree. We start by stating the
theorem.

Theorem 8.7. Fix a finite set A and a degree d. Let f : {±1}n → R be a degree d function satisfying
E[dist(f,A)2] = ε. There exists a degree d function g : {±1}n → A, depending on OA,d(1) coordinates,
such that ‖f − g‖2 = OA,d(ε).

We also get a corollary whose omitted proof is the same as that of Corollary 8.6.

Corollary 8.8. Fix a finite set A and a degree d. Let F : {±1}n → A be a degree d function satisfying
E[dist(f,A)2] = ε. There exists a degree d function g : {±1}n → A, depending on OA,d(1) coordinates,
such that ‖F − g‖2 = OA,d(ε) and Pr[F 6= g] = OA,d(ε).

The theorem clearly holds when d = 0 (take g = round(f,A)), and it holds for d = 1 due to The-
orem 8.5. Consider now d > 1. Assuming Theorem 8.7 for smaller d, we will prove it for the given
d.

Let f : {±1}n → R be a degree d function satisfying E[dist(f,A)2] = ε. As in the proof of Theorem 8.5,
if ε > 2−d then ‖f − a‖2 = OA(ε) for any a ∈ A, allowing us to take g = a, so assume that ε ≤ 2−d.
This has the following implication:

Claim 8.9. We have ‖f‖2 = OA(1).

Proof. The L2
2 triangle inequality shows that

‖f‖2 ≤ 2E[round(f,A)2] + 2E[dist(f,A)2] = OA(1 + ε) = OA(1).
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For a set S ⊆ [n] and an assignment y ∈ {±1}S , let fS,y : {±1}S → R be the function obtained by
restricting the variables in S to the values in y, and define

εS,y = E[dist(fS,y, A)2].

Claim 8.10. For all S,
E

y∼{±1}S
[εS,y] = ε.

Proof. We have
E

y∼{±1}S
[εS,y] = E

y∼{±1}S

z∼{±1}S

[dist(f(y, z), A)2] = E[dist(f,A)2] = ε.

For all S and y ∈ {±1}S , define
γS,y = ‖f=d

S,y‖2,
and let γS = Ey[γS,y].

Claim 8.11. The value γS,y doesn’t depend on y, and

E
S∼µ

ε1/d
([n])

[γS ] = ε‖f=d‖2 = OA(ε).

Proof. Note first that for all y,

f=d
S,y =

∑
|T |=d
T⊆S

f̂(T )xT .

Therefore γS,y doesn’t depend on y, and

E
S∼µ

ε1/d
([n])

[γS ] =
∑
|T |=d

Pr
S∼µ

ε1/d
([n])

[T ⊆ S]f̂(T )2 =
∑
|T |=d

(ε1/d)df̂(T )2 = ε‖f=d‖2.

We complete the proof using Claim 8.9.

For each S, y, we apply Theorem 8.7 to the degree d− 1 function f<dS,y which satisfies

E[dist(f<dS,y, A)2] ≤ 2E[dist(fS,y, A)2] + 2‖f=d
S,y‖2 = 2εS,y + 2γS .

The theorem gives us an A-valued function gS,y which depends on OA,d(1) coordinates and satisfies

‖f<dS,y − gS,y‖
2 = OA,d(εS,y + γS).

Since gS,y is an A-valued junta, there exists a finite set B (depending only on A, d) such that all Fourier
coefficients of gS,y belong to B.

A simple calculation shows that for all T ⊆ S of size d− 1,

hS,T (y) := f̂S,y(T ) = f̂(T ) +
∑
i/∈S

f̂(T + i)yi.

We think of this as a degree 1 function hS,T : {±1}S → R.

Claim 8.12. For all S ⊆ [n] we have∑
T∈( S

d−1)

E[dist(hS,T , B)2] = OA,d(ε+ γS).

Proof. For each y ∈ {±1}S we have∑
T∈( S

d−1)

dist(hS,T (y), B)2 ≤
∑

T∈( S
d−1)

(f̂S,y(T )− ĝS,y(T ))2 ≤ ‖f<dS,y − gS,y‖
2 = OA,d(εS,y + γS).

Taking expectation over y, we complete the proof using Claim 8.10.
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On the other hand, an application of the generalized FKN theorem gives the following:

Claim 8.13. There exists a finite set C (depending only on A, d) such that for all S ⊆ [n] and T ∈
(
S
d−1

)
,

dist(f̂(T ), C)2 +
∑
i/∈S

dist(f̂(T + i), C)2 = OA,d(E[dist(hS,T , B)2]).

Proof. Theorem 8.5, applied to f := hS,T and A := B, gives a B-valued function uS,T depending on at
most |B|− 1 coordinates such that ‖hS,T −uS,T ‖2 = OA,d(E[dist(hS,T , B)2]). All the Fourier coefficients
of uS,T belong to some finite set C, and so the claim follows from Parseval’s identity since the coefficients

of the Fourier expansion of hS,T are ĥS,T (∅) = f̂(T ) and ĥS,T (i) = f̂(T + i) for all i /∈ S.

Putting both claims together, we deduce:

Claim 8.14. We have ∑
d−1≤|T |≤d

dist(f̂(T ), C)2 = OA,d(ε
1/d).

Proof. Summing over T in Claim 8.13 and using Claim 8.12, we get that for all S ⊆ [n],

∑
T∈( S

d−1)

[
dist(f̂(T ), C)2 +

∑
i/∈S

dist(f̂(T + i), C)2

]
=

∑
T∈( S

d−1)

OA,d(E[dist(hS,T , B)2]) = OA,d(ε+ γS).

Taking expectation with respect to S ∼ µδ, where δ = ε1/d, Claim 8.11 shows that

E
S∼µδ

 ∑
T∈( S

d−1)

dist(f̂(T ), C)2 +
∑
i/∈S

dist(f̂(T + i), C)2

 = OA,d(ε).

A set T of size d−1 appears in the sum with probability δd−1, and a set of size d appears with probability
dδd−1(1− δ). Since δ ≤ (2−d)1/d = 1/2 by assumption, we deduce that∑

d−1≤|T |≤d

dist(f̂(T ), C)2 = OA,d(ε/δ
d−1) = OA,d(ε

1/d).

This claim prompts defining

h =
∑

d−1≤|T |≤d

round(f̂(T ), C)xT .

Claim 8.15. There exists a finite set D (depending only on A, d) such that h is a D-valued function
depending on OA,d(1) coordinates and satisfying ‖h‖2 = OA,d(1).

Proof. Claim 8.14 shows that ‖h−f≥d−1‖2 = OA,d(ε
1/d) = OA,d(1). Since ‖f‖2 = OA,d(1) by Claim 8.9,

it follows that ‖h‖2 = OA,d(1) and so
∑
S ĥ(S)2 = OA,d(1). As all Fourier coefficients of h belong to C,

we deduce that h has OA,d(1) non-zero coefficients. Since all of them involve at most d coordinates, it
follows that h depends on OA,d(1) coordinates. Each value of h is a signed sum of OA,d(1) elements of
C, and so h is D-valued for some finite set D.

The next step is an application of Theorem 8.7 for degree d− 2.

Claim 8.16. There exists a finite set E (depending only on A, d) and an E-valued degree d− 2 function
g depending on OA,d(1) coordinates such that ‖f − (g + h)‖2 = OA,d(ε

1/d).

Proof. Let f̃ = f<d−1 + h. Then ‖f − f̃‖2 = ‖f≥d−1 − h‖2 = OA,d(ε
1/d) by Claim 8.14, and so the L2

2

triangle inequality shows that E[dist(f̃ , A)2] ≤ 2E[dist(f,A)2]+2‖f− f̃‖2 = OA,d(ε+ε1/d) = OA,d(ε
1/d)

(using ε ≤ 2−d). Setting E to be the Minkowski difference A−D and using the fact that h is D-valued,
we deduce that E[dist(f<d−1, E)2] = OA,d(ε

1/d).
Applying Theorem 8.7 to the degree d − 2 function f<d−1, we obtain an E-valued degree d − 2

function g depending on OA,d(1) coordinates such that ‖f<d−1 − g‖2 = OA,d(ε
1/d). Together with

‖f≥d−1−h‖2 = OA,d(ε
1/d) and the L2

2 triangle inequality, this shows that ‖f−(g+h)‖2 = OA,d(ε
1/d).
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Using the fact that E[dist(f,A)2] = ε, we can improve the bound on ‖f − (g + h)‖2.

Claim 8.17. We have ‖f − (g + h)‖2 = OA,d(ε).

Proof. Let s := f − (g + h). Since E[dist(f,A)2] = ε and g + h is (D + E)-valued (where D + E is the
Minkowski sum), we see that E[dist(s, V )2] ≤ ε, where V = A− (D + E) is a finite set. We can assume
without loss of generality that 0 ∈ V (this can only decrease the distance). At any point in the domain,
either round(s, V ) = 0 or round(s, V ) = ΩA(1). Hence

ε ≥ E[dist(s, V )21round(s,V )=0] = E[s21round(s,V )=0] = E[s2]− E[s21round(s,V )6=0] ≥ E[s2]−OA(E[s2d]).

Since deg(s2d) ≤ 2d2, hypercontractivity shows that E[s2d] = ‖s‖2d2d = Od(‖s‖2d2 ), and so Claim 8.16,
which states that E[s2] = OA,d(ε

1/d), implies that

E[s2] ≤ ε+OA,d(E[s2]d) = OA,d(ε).

We can now complete the proof.

Completion of the proof of Theorem 8.7. Let r = round(g + h,A), and note that r depends on OA,d(1)
coordinates. Lemma 8.4 shows that ‖f −r‖2 = O(‖f − (g+h)‖2 +E[dist(f,A)2]) = OA,d(ε). If deg r > d
then since r is an A-valued function depending on OA,d(1) coordinates, we have ‖r>d‖2 = ΩA,d(1),
implying that ‖f − r‖2 = ΩA,d(1) and so ε = ΩA,d(1). As in the proof of Theorem 8.5, in this case
‖f − a‖2 = OA,d(ε) for any a ∈ A.
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