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1 Introduction

In this note we consider generalizations of the one-player game analyzed in
Dijkstra’s note EWD1211a. We quote Dijkstra’s description of the game:

There is a table with four coins in the positions north, east, south
and west, and the player’s goal is to get them all in the same
orientation, i.e. all heads or all tails. The player never sees the
coins but will be informed as soon as he has reached his goal.
A move consists of the player mentioning one or more positions
in which the coins will then be turned over; the complication is
that, prior to each move, the table is rotated by a multiple of 90◦;
the multiple remains unknown to the player and may vary from
move to move.

At the outset, it is not at all clear that there is some deterministic algo-
rithm that solves this problem. However, such an algorithm exists, and is in
fact very simple. We will need three types of moves:

• C (corner): mention one of the corners.

• AD (adjacent): mention two adjacent corners.

• NA (non-adjacent): mention two non-adjacent corners.

The algorithm is the following:
NA, AD, NA, C, NA, AD, NA

We’ll let the reader check the correctness of the algorithm. It is also the
only one possible using only seven moves, if we disregard moves mentioning
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more than two corners (those are always equivalent to moves mentioning less
than two corners).

Dijkstra generalizes the algorithm by considering a table with any given
number of edges. We further generalize the game by considering any given
Abelian group for the set of orientations. The main result is a description of
all minimal solutions for pn sides and p orientations, for prime p.

In general, everything would be easier to state if the goal would be to
reach some fixed set of orientations. In section 6 we show that these two
variants are really the same.

2 Definition and basic results

We now formally define the game and its solutions.

Definition 2.1. Let n ∈ N and S be some finite Abelian group. The game
G(n, S) is defined implicitly by its solutions as follows.

A move sequence for G(n, S) is any finite sequence σ of elements in Sn.
A realization of a move sequence σ is another sequence r where each ri

is some rotation of σi.
We denote by

∑
r the sequence of partial sums of a realization, including

the empty sum.
A move sequence σ is a solution of G(n, S) if for any rotation r and any

x ∈ Sn, there is some index t such that x + (
∑
r)t equals the zero vector.

Equivalently, for any x ∈ Sn there is some index t such that (
∑
r)t = x.

The notation G(n,m) will refer to the game G(n,Zm).

There is a simple bound on the length of any solution.

Theorem 2.2. Any solution of G(n, S) has size at least Sn − 1.

Proof. Take any solution and some realization of it. By definition, the se-
quence of partial sums must contain any possible vector in Sn. Therefore its
length must be at least Sn − 1 (recall we allow the empty sum).

This prompts a definition.

Definition 2.3. A solution is G(n, S) is minimal if its size is exactly Sn−1.

It turns out that every solvable instance of the game is in fact minimally
solvable, as we will see in section 3.

There is a dual property satisfied by minimal solutions.
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Lemma 2.4. A move sequence for G(n, S) of length |S|n − 1 is a minimal
solution iff no realization of any non-empty subsequence of it can sum to
zero. Put differently, in any realization, no non-empty subsequence sums to
zero.

Proof. By definition, a move sequence is a solution iff the partial sums of
any realization cover the set Sn. In fact, since there are |S|n partial sums,
the condition of covering all of |S|n is equivalent to not covering any element
more than once. This is equivalent for having no subsequence summing to
zero.

Some cases are trivially solvable.

Theorem 2.5. The game G(n, 1) is minimally solved by the empty sequence.
The game G(1, S) is solvable. The minimal solutions are σi = πi − πi−1

for all permutations π of S starting with the zero element.

Proof. The statement about G(n, 1) is trivial.
Next, consider any minimal move sequence for G(1, S). It has only one

realization so it forms a solution iff its sequence of partial sums is a permu-
tation of S, which must start with the zero element.

There is a simple unsolvable case.

Lemma 2.6. If p 6= q are different primes, then G(p, q) is unsolvable.

Proof. Consider any solution σ of G(p, q). We can assume that the last move
is essential in the sense that if we remove it, we no longer get a solution. Hence
there is some realization r in which x = (

∑
r)i does not appear earlier in the

sequence of partial sums. This implies that the last move in the sequence
must be rotation-invariant, i.e. of the form cp. Since p > 1, not all moves
can be rotation-invariant. Choose the last move σj which isn’t.

Consider next some other realization r′ where only r′j is different. For
k ≥ j we have (

∑
r′)k = (

∑
r)k +(r′j−rj). Now x must appear among those

(
∑
r′)k, suppose x = (

∑
r′)l. Since all further states were rotation-invariant,

x− (
∑
r′)j is some rotation-invariant vector. The same reasoning works for∑

r, and we conclude that r′j − rj is rotation-invariant. Thus all rotations of
σj differ by rotation-invariant vectors.

We can think of moves as elements of Zq[x]/(xp − 1). Rotation is then
multiplication by x. Our vector σj has the property that (x − 1)σ = c(1 +
x+ · · ·+xp−1). Substituting x = 1, we find that c = 0 and so in fact σj must
be rotation-invariant, contrary to the way we chose it.
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Most of the games reduce to this unsolvable case, using the next two
lemmas.

Lemma 2.7. Let f |n. Then if G(n, S) is solvable then so is G(f, S).

Proof. Define a mapping from Sn to Sf by taking the coordinates i(n/f).
This mapping respects rotation (i.e. a rotation of the input translates to a
rotation of the output), and so any solution ofG(n, S) also solves G(f, S).

Lemma 2.8. Let H ≤ S. Then if G(n, S) is solvable then so is G(n,H).

Proof. Since S is Abelian, there is a homomorphism from S to H. Apply-
ing this homomorphism translates any solution of G(n, S) into a solution of
G(n,H).

Putting the last few lemmas together, we get the following criterion for
solvability.

Theorem 2.9. If G(n, S) is solvable then either n = 1, S = Z1, or n = pN

for some prime p and S is a p-group.

Proof. Suppose that G(n, S) is solvable. If p is any prime factor of n and q
is any prime order of some element of S, then by lemmas 2.7 and 2.8, G(p, q)
is solvable, and so p = q by lemma 2.6.

If we futher assume that n 6= 1 and S 6= Z1, then there must be some
prime factor p|n and some element of prime order in S. We easily get that
p must be the only prime factor of n and that all elements of prime order in
S must be of order p.

3 Product solutions

Given solutions for two games, we can form a solution for the product game
using a very simple construction. In fact, this construction works within an
even more general framework than the one given by definition 2.1.

Definition 3.1. Let R be a finite group acting on a finite Abelian group S.
The generalized game G′(R, S) is defined implicitly by its solutions as follows.

A rotation of s ∈ S is the application of any element of R on it.
A move sequence for G′(R, S) is any finite sequence σ of elements in S.
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A realization of a move sequence σ is another sequence r where each ri

is some rotation of σi.
We denote by

∑
r the sequence of partial sums of a realization, including

the empty sum.
A move sequence σ is a solution of G′(R, S) if for any rotation r and

any x ∈ S, there is some index t such that x+ (
∑
r)t equals the zero vector.

Equivalently, for any x ∈ S there is some index t such that (
∑
r)t = x.

Note that G(n, S) is the same as G′(Zn, S
n).

In practice the group R used in the definition will always be cyclic.
There are simple analogues of theorem 2.2, definition 2.3 and lemma 2.4,

whose proofs directly carry to generalized games.
The product construction is described by the following basic result.

Definition 3.2. We say the an Abelian group S can be decomposed as the
quasi-direct sum S = T +̃U if:

(a) T, U are Abelian groups with embeddings TS, US into S.

(b) Every element s ∈ S has a unique representation s = PT (s) + PU(s),
where PT ∈ TS and PU ∈ US.

(c) There’s a generalized addition law (t1 + u1) + (t2 + u2) = (t1 + t2 +
f(u1, u2)) + (u1 +u2), where f : US×US → TS is symmetric and satisfies
f(u, 0) = 0.

If f(u1, u2) = 0 then the sum is direct and we write simply S = T + U .

Definition 3.3. Let S = T +̃U . We say that the decomposition respects a
group R acting on S, T, U if:

(a) For all r ∈ R and s ∈ S, PU(r(s)) = r(PU(s)).

(b) For all r ∈ R and t ∈ T , r(TS(t)) = TS(r(t)).

Theorem 3.4. Let G′(R, S) be a generalized game.
Suppose that S can be decomposed as a quasi-direct sum S = T +̃U which

respects R.
Let further τ i be solutions of G′(R, T ), and υ a move sequence for G′(R, S)

whose projection into U is a solution of G′(R,U).
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Then the following move sequence σ solves G′(R, S):

TS(τ 0), υ1, TS(τ 1), . . . , TS(τ |U |−2), υ|U |−1, TS(τ |U |−1).

Moreover, if all τ i and υ are minimal solutions, so is σ.

Proof. Let x ∈ S. We need to show that x appears in the sequence of partial
sums for any realization of σ.

Any realization s of σ corresponds to realizations ti, u of τ i, υ. In par-
ticular, for some t, (

∑
υ)t = PU(x). Let the indices of σ start from 1,

so that σt|T | = υt (unless t 6= 0). Thus PU

(
(
∑
s)t|T |

)
= PU(x). Since

τ t is a solution sequence for G′(R, T ), there is some t′ < |T | such that
PT

(
(
∑
s)t|T |+t′

)
= PT (x). Since PU(τ t

i ) = 0 for all moves in τ t, we see
that (

∑
s)t|T |+t′ = x.

The truth of the moreover part follows by calculating the length of the
solution.

In some cases, theorem 3.4 describes the form of all minimal solutions.

Definition 3.5. Let S = T +̃U , and R be a finite Abelian group. For s ∈ S,
let Rs denote the subgroup of T generated by PT (r(s)− s). We call s ∈ S
admissible if s /∈ T and PU(s) is R-invariant.

If for all admissible s, the size of Rs is divisible by some d, we say that
R acts on the decomposition d-uniformly. If d = |T |, we say that R acts on
the decomposition uniformly.

Theorem 3.6. Let us be in the setting of theorem 3.4, and suppose the sum
is direct.

If the action of R on the decomposition is d-uniform, then in every min-
imal solution (σi)

|S|−1
i=1 of G′(R, S), if σt /∈ T then t is divisible by d.

If the action of R is uniform, then moreover all minimal solutions of
G′(R, S) are of the form described by theorem 3.4.

Proof. Consider some minimal solution σ of G′(R, S). Consider the set

N = {i : σi /∈ T} ∪ {|S|}.

Suppose not all elements of N are divisible by d. By Lagrange’s theorem, d
divides |T | and so |S|. Thus there are two adjacent elements whose difference
is not divisible by d. Consider the last such pair i, j. Note that i 6= |S|, and
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that d - i. Let s be some realization of σ. The equation PU(t) = PU ((
∑
s)i)

should be true for exactly |T | different times. Suppose that PU(s′i) 6= PU(si)
for some other rotation s′i of σi. The effect of changing si to s′i on the number
of times the aforementioned equation is true would be subtraction of j − i,
and addition of some multiple of d (since all further differences are multiples
of d). The total effect cannot be zero since d - j − i, and we conclude that
all realizations of σi should have the same projection PU into U . Thus si is
admissible.

Denote by Hs(t) the number of times k ≥ i such that PT ((
∑
s)k) = t.

For r ∈ R, denote by sr the realization differing from s only by applying r
to si. Notice that Hs(t) = Hsr(t) since the same elements must be covered
in both realizations. On the other hand, Hsr(t) = Hs(t + ∆r), where ∆r =
PT (r(s)− s); here we use the fact that the sum is direct. Thus, Hs must
be constant on each coset of Rs (defined in definition 3.5), whose sizes are
a multiple of d. In particular, the number of times |S| − i must be divisible
by d, which contradicts our choice of i. We conclude that all times for which
σi /∈ T must satisfy d|i.

If the action of R is uniform, then we get that σ must be of the form
mentioned in 3.4. Since moves in T do not affect PU , we see that PU(υ)
must be a minimal solution to G′(R,U). It is easy to see that the τ i must
be minimal solutions to G′(R, T ).

Using the product construction, we can form minimal solutions by de-
composing S.

Lemma 3.7. Let S be a group and S1 ≤ S its subgroup. If G(n, S1) and
G(n, S/S1) are solvable, then so is G(n, S).

Moreover, if G(n, S1) and G(n, S/S1) are minimally solvable, then so is
G(n, S).

Proof. Let S2 ⊂ S be any set of representatives of the cosets of S1. It is
easy to see that S = S1+̃S2. This implies that Sn = Sn

1 +̃Sn
2 . Trivially

the last decomposition respects rotation, and so the lemma follows from
theorem 3.4.

In section 5 we will prove that G(pN , p) is always minimally solvable
(theorem 5.11). This implies the following theorem.

Theorem 3.8. If the game G(n, S) is solvable then it is minimally solvable.
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Proof. If n = 1 or |S| = 1 then this is shown in theorem 2.5.
Otherwise, by theorem 2.9 there is some prime p such that n = pN and

S is a p-group. Since S is a p-group, it has some subset H of size p. The
quotient group S/H is also a p-group. Thus the theorem follows by induc-
tion using lemma 3.7, where the solvability of G(pn, H) is demonstrated by
theorem 5.11.

4 Solving G(2N , 2)

In this section we will prove that G(2N , 2) is always solvable, and moreover
describe all minimal solutions. The method we use can be generalized to
G(pN , p), however in section 5 we prove this generalization differently.

Lemma 4.1. For N ≥ 0, define SN = Z2N

2 .
We think of an element in SN+1 also as a concatenation of two elements

from SN .
Define the following mappings from SN+1 to SN and vice versa:

PT (x, y) = x,

PU(x, y) = x+ y,

TS(x) = (x, x),

US(x) = (0, x).

Let TN = TS(SN) and UN = US(SN) be the images of TS, US.
Then SN+1 = TN + UN in the meaning of definition 3.2, and this sum

respects rotation in the meaning of definition 3.3.
Moreover, σ is a solution of G′(2N , SN) iff TS(σ) is a solution of G′(2N+1, TN)

iff US(σ) is a solution of G′(2N+1, UN).

Proof. Routine verification.

Lemma 4.2. The decomposition mentioned in lemma 4.1 is uniform with
respect to the group of rotations.

Proof. Let s ∈ SN+1 be an admissible element. Thus s /∈ TN+1 and PU(s)
is rotation-invariant. We conclude that PU(s) = 12N

and so s is of the form
(x, x) + (02N

, 12N
). Denote ri rotation i times to the left. Then Rs (defined

in definition 3.5) is generated by PT (ri(s)− s) = 02N−i1i. It is easy to see
that these elements generate all of TN+1.
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These lemmas form the bulk of the structure theorem for all solutions of
G(2N , 2).

Theorem 4.3. The game G(2N , 2) is solvable for all N ≥ 0.
For 0 ≤ x < 2N , define the x’th generalized parity px of y ∈ Z2N

2 to be the
parity of the bits yt for the indices t in which ti = 0 for any zero bit xi = 0
in the function index. If x = 2N − 1, we get the normal parity.

All minimal solutions of G(2N , 2) are move sequences (σi)
22N−1
1 such that

if 2d‖i then d is the maximum index for which the generalized parity of σi is
odd.

Proof. The proof is by induction on N .
Clearly, the only minimal solution of G(20, 2) is 1, and it is of the men-

tioned form since 1 is odd.
Lemmas 4.1 and 4.2 imply that all minimal solutions of G(2N+1, 2) can

be constructed from minimal solutions of G(2N , 2) using the construction of
theorem 3.4. Now consider some move σi in a minimal solution σ. There are
two cases: either 22N |i or not.

If 22N |i then σi = (x, y) where x + y corresponds to location j = i/22N

in a solution of G(2N , 2). Suppose 2d‖j, so that 2d+2N‖i. Notice that
p2N+e(x, y) = pe(x + y), and so the maximum index for which the gener-
alized parity of σi is odd is 2N + d.

Conversely, if 22N - i then σi = (x, x) where x corresponds to location
j = i mod 22N

. Thus if 2d‖j then also 2d‖i. For any e < 2N , p2N+e(x, x) =
pe(0) = 0. On the other hand, pe(x, x) = pe(x), and so the maximum index
for which the generalized parity of σi is odd is d.

5 Solving G(pN , p)

In the previous section 4 we presented a solution of G(2N , 2). This solution
can be adapted to general prime p by generalizing lemma 4.1 to a decom-
position with p factors. This approach works by presenting a solution for
each length pN , and thus has N steps. A different approach, which results
necessarily in the same minimal solutions, works by taking pN steps to solve
G(pN , p). The reader may adapt the solution presented here to the method
presented in section 4 by considering the case N = 1.
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For the rest of the section, we assume that p is some prime. All our
arithmetic will be done modulo p. The function ρ rotates a vector once to
the right.

We begin with a sequence of lemmas about binomial coefficients.

Lemma 5.1. Let the base p expansion of a be ad. Then

(−1)a = (−1)
P

ad .

Proof. If p = 2 then this is trivial. Otherwise, it follows from the fact that
(−1)p = −1.

Lemma 5.2. If b, d < p then(
ap+ b

cp+ d

)
=

(
a

c

)(
b

d

)
.

Proof. This is a well-known result. One way to prove it is to notice that(
ap+b
cp+d

)
is the coefficient of xcp+d in the power series (1 + x)ap+b. By Fermat’s

theorem,

(1 + x)ap+b = (1 + x)ap(1 + x)b = (1 + xp)a(1 + x)b.

The lemma follows.

Corollary 5.3. Let ad, bd be the base p expansions of a, b. Then(
a

b

)
=
∏

i

(
ad

bd

)
.

Lemma 5.4. For i, j < p we have(
i

j

)
= (−1)i+j

(
p− 1− j
p− 1− i

)
.

Proof. We can rewrite the equation as follows:(
i

i− j

)
= (−1)i−j

(
p− 1− j
i− j

)
.

The factors in the left-hand binomial are j + 1 up to i, and those in the
right-hand binomial are p− (j + 1) down to p− i. The lemma follows.

10



Corollary 5.5. For i, j < pN we have(
i

j

)
= (−1)i+j

(
pN − 1− j
pN − 1− i

)
.

Proof. This follows directly from corollary 5.3 and lemma 5.1.

Lemma 5.6. Let i+ j < p− 1. Then

p−1∑
k=0

(
k

i

)(
k

j

)
= 0.

If i+ j = p− 1, the sum is non-zero and equal to (−1)i = (−1)j.

Proof. The proof uses lemma 5.4:

p−1∑
k=0

(
k

i

)(
k

j

)
=

p−1∑
k=0

(
p− 1− i

k

)(
p− 1− j

k

)
=

(
2(p− 1)− (i+ j)

p− 1− i

)
.

If i + j < p − 1, we have 2(p − 1) − (i + j) > p − 1 and so the binomial
coefficient

(
2(p−1)(i+j)

p−1−i

)
equals zero. If i + j = p− 1, this binomial coefficient

is
(

p−1
p−1−i

)
= (−1)i

(
i
0

)
= (−1)i by lemma 5.4.

Corollary 5.7. Let i+ j < pN − 1. Then

pN−1∑
k=0

(
k

i

)(
k

j

)
= 0.

If i+ j = pN − 1, the sum is non-zero and equal to (−1)i = (−1)j.

Proof. Let id, jd denote the dth digits of i, j in base p representation. Clearly

pN−1∑
k=0

(
k

i

)(
k

j

)
=

N−1∏
d=0

p−1∑
k=0

(
k

id

)(
k

jd

)
.

Suppose first that i+ j < pN − 1. If always id + jd ≥ p− 1 then i+ j ≥
(p− 1)

∑N−1
d=0 p

d = pN − 1, contrary to our assumption. Thus, for some d it
must happen that id + jd < p − 1, and the corresponding factor zeroes the
product.

If i + j = pN − 1 then id + jd = p − 1, and so the corollary follows from
corollary 5.3 and lemma 5.1.
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Using this sequence of lemmas, we define a decomposition of ZpN

p which
we call the rotation basis. We also define analogues of the generalized parity
functions of theorem 4.3 (in reverse order).

Definition 5.8. The rotation basis of ZpN

p consists of the pN vectors bi for

0 ≤ i < pN defined by bij =
(

j
i

)
for 0 ≤ j < pN .

The subspace spanned by bi is Bi = span(bi).
The invariant subspaces are defined by Si = Span(b0, . . . , bi−1).
The i’th generalized parity function is defined by pi(x) = (−1)i〈x, bpN−1−i〉.

Note that the rotation basis is symmetric in the sense of corollary 5.5 (if
we reverse both rows and columns and transpose rows and columns, we reach
the same set of vectors).

The rotation basis enjoys the properties summarized in the following
lemma.

Lemma 5.9. The rotation basis satisfies the following properties:

(a) The dimension of Si is i.

(b) The subspaces Si are rotation-invariant.

(c) The vector bi is rotation-invariant modulo Si.

(d) The subspace Si+1 consists of all vectors x such that pi(x
′) is constant

for all rotations x′ of x.

(e) The subspace Si consists of all vectors x ∈ Si+1 such that pi(x) = 0.

(f) If x ∈ Si+1 then pi(x) is the coefficient of bi.

Proof. Denote by ρ(x) the rotation of x ∈ ZpN

p once to the right.
Item (a) follows from the easy fact that the vectors bi are independent as

they form a triangular matrix.
We prove items (b) and (c) together by induction on i. Item (b) is trivially

true for i ≤ 1 since b0i =
(

i
0

)
= 1 and so b0 is a constant vector.

To prove item (c) for i from item (b) for i, note first that the vector

ρ(bi) satisfies ρ(bi)j =
(

pN+j−1
i

)
by an application of corollary 5.3. Pascal’s

identity
(

j
i

)
−
(

j−1
i

)
=
(

j−1
i−1

)
thus implies bi− ρ(bi) = ρ(bi−1) ∈ Si. Since Si is

rotation-invariant, it follows that ρk(bi)− ρk+1(bi) ∈ Si and item (c) follows.
Item (b) for i+ 1 now trivially follows.
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Next, notice that corollary 5.7 implies that pj(b
i) = 0 for i < j. Since

bi is rotation-invariant modulo Si, it follows that any x ∈ Si+1 satisfies
ρk(x) − x ∈ span(b0, . . . , bi−1) and so pi(ρ

k(x)) = pi(x). Thus Si+1 contains
all vectors x such that pi(ρ

k(x)) = pi(x). On the other hand, pi(ρ
k(x)) =

pi(x) is equivalent to 〈ρk(bp
N−1−i) − bpN−1−i, x〉 = 0. Since bp

N−1−i
j = 0 for

j < pN − 1− i, we get that the vectors ρ−k(bp
N−1−i)− bpN−1−i for k = 1 up

to k = pN −1− i are all linearly independent. Thus the solution of the set of
equations pi(ρ

k(x)) = pi(x) has dimension at most pN − (pN − 1− i) = i+ 1.
Item (d) follows.

Again by corollary 5.7 we see that pi(b
i) = 1. Thus the subspace of Si+1

consisting of all vectors x such that pi(x) = 0 is strictly smaller than Si+1.
On the other hand, again by the corollary, all vectors x ∈ Si satisfy pi(x) = 0.
Item (e) follows.

Item (f) follows from item (e) since pi(b
i) = 1.

We can now infer a decomposition of ZpN

p along the lines of definitions 3.2,
3.3 and 3.5.

Lemma 5.10. The decomposition ZpN

p /Si = Bi + ZpN

p /Si+1 is a direct sum,
where rotations act on Bi as the identity.

Moreover, the decomposition respect rotation, and rotation acts on it uni-
formly.

Proof. Note that ZpN

p /Si = span(bi, . . .) and ZpN

p /Si+1 = span(bi+1, . . .).
Hence lemma 5.9(a) implies that the decomposition is a direct sum.

We can represent any vector in ZpN

p /Si in the form s = cib
i + s′, where

s′ ∈ ZpN

p /Si+1. By lemma 5.9(c), for bi as an element of ZpN

p /Si, we have
r(bi) = bi for all rotations r, and r(s′)− s′ ∈ Bi. Thus r(s) ∈ Bi + r(s′).

In order to show that the decomposition respects rotation, we go over the
two condition in definition 3.3. Let r be some rotation. If s = cib

i + c′s′ then
the projection of r(s) into ZpN

p /Si+1 is r(s′), confirming the first condition.
The second condition follows from the fact r(bi) = bi noted above.

In order to show that rotation acts uniformly, consider some admissi-
ble element s. Since s /∈ Bi, it is of the form s = cib

i + s′ with s′ 6= 0.
Lemma 5.9(e) now implies that for some rotation r, r(s′) − s′ 6= 0 and so
r(s)− s = r(s′)− s′ = cbi for c 6= 0. Since Bi ≈ Zp, the element cbi generates
all of Bi, proving that |Rs| = |Bi|.
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We can now prove the structure theorem describing all minimal solutions
of G(pN , p).

Theorem 5.11. The game G(pN , p) is solvable for all prime p and N ≥ 0.

All minimal solutions of G(pN , p) are move sequences (σi)
ppN−1
1 such that:

(a) If pi‖t then σt ∈ Si+1 \ Si.

(b) If pi|t for i > 0 then the subsequence pi−1(σt+pi−1k)p−1
k=1 is a solution of

G(1, p).

(c) For each 0 < i ≤ pN , the subsequence pi−1(σpi−1k)p−1
k=1 is a solution of

G(1, p).

Note that condition (c) is a formulation of condition (b) for t = 0 and ppN‖t.

Proof. Fix p and N . We know by 3.6 that all minimal solutions are con-
structed using pN−1 applications of theorem 3.4 on decompositions produced
by lemma 5.10.

For each i, let τ i
k = σpik be a move sequence of length ppN−i − 1. We

claim that σ is a minimal solution iff τ i (mod Si) is a minimal solution of
G′(pN ,ZpN

p /Si) for all 0 ≤ i < pN − 1. This follows easily from lemma 5.10.
Moreover, looking more carefully at the construction, we see that we

can relax this condition to the following one: σ is a minimal solution iff τ i

(mod Si) satisfies that for all 0 ≤ l < ppN−i−1 − 1, the sequence (τ i
pl+k)p−1

k=1

is a minimal solution of Bi ≈ G(1, p). This is because the the condition on
the elements τ i

pl themselves is handled by τj for j > i, which provide a total
description of the sequence τ i

pl.
It is easy to check that this characterization is equivalent to the charac-

terization outlined in the statement of the lemma.

6 Appendix: the goal of reaching the same

orientation

The original problem mentioned in the introduction does not fall into our
framework, since we require for all switches to be in the same orientation,
rather to be in some fixed orientation. However, it is clearly equivalent to
the following generalized game.
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Definition 6.1. For n ≥ 1 and finite Abelian group S define C(n, S)
def
= {sn :

s ∈ S} to be the set of constant vectors. Let Sn/C(n, S) be the set of vectors
up to addition of a constant vector, with the natural rotation.

The game up-to-constant is defined by GC(n, S) = G′(n, Sn/C(n, S)).

The following lemma is easy to see.

Lemma 6.2. For any n ≥ 1 and finite Abelian group S, we have Sn =
C(n, S)+̃Sn/C(n, S), where Sn/C(n, S) is embedded in Sn as the set of all
vectors starting with 0, the projection PC(n,S)(s) = s0 is the first coordinate,
and the other projection is PSn/C(n,S)(s) = s− sn

0 .

Corollary 6.3. The up-to-constant game GC(n, S) is (minimally) solvable
iff the game G(n, S).

Proof. Clearly, any solution of G(n, S), taken modulo C(n, S), also solves
GC(n, S). The converse follows from theorem 3.4 sinceG(n,C(n, S)) is equiv-
alent to G(1, S), which is always minimally solvable by theorem 2.5.

Moreover, if |S| is prime we can describe all minimal solutions.

Theorem 6.4. If GC(n, S) is solvable and |S| = p is prime then all minimal
solutions are describe by theorem 3.4 via the decomposition in lemma 6.2.

Proof. We claim that the decomposition in lemma 6.2 is uniform with respect
to rotation. Indeed, for any s /∈ C(n, S), there is some rotation s′ of it such
that s′0 6= s0 and so for some rotation r, PC(n,S)(r(s

′
0−s0)) generates C(n, S).

Thus, the theorem follows from theorem 3.6.

This theorem is not true in general for S 6= Zp.
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